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Abstract—As third generation sequencing technologies become
more reliable and widely used to solve several genome-related
problems, self-correction of long reads is becoming the preferred
method to reduce the error rate of Pacific Biosciences and
Oxford Nanopore long reads, that is now around 10-12%.
Several of these self-correction methods rely on some form
of Multiple Sequence Alignment (MSA) to obtain a consensus
sequence for the original reads. In particular, error-correction
tools such as RACON and CONSENT use Partial Order (PO)
graph alignment to accomplish this task. PO graph alignment,
which is computationally more expensive than optimal global
pairwise alignment between two sequences, needs to be performed
several times for each read during the error correction process.
GPUs have proven very effective in accelerating several compute-
intensive tasks in different scientific fields. We harnessed the
power of these architectures to accelerate the error correction
process of existing self-correction tools, to improve the efficiency
of this step of genome analysis.

In this paper, we introduce a GPU-accelerated version of
the PO alignment presented in the POA v2 software library,
implemented on an NVIDIA Tesla V100 GPU. We obtain up to
6.5x speedup compared to 64 CPU threads run on two 2.3 GHz
16-core Intel Xeon Processors E5-2698 v3. In our implementation
we focused on the alignment of smaller sequences, as the CON-
SENT segmentation strategy based on k-mer chaining provides
an optimal opportunity to exploit the parallel-processing power
of GPUs. To demonstrate this, we have integrated our kernel in
the CONSENT software. This accelerated version of CONSENT
provides a speedup for the whole error correction step that ranges
from 1.95x to 8.5x depending on the input reads.

I. INTRODUCTION

Third generation sequencing technologies, such as Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies
(ONT), are establishing themselves as effective tools for
important genomic problems such as assembly. They pro-
vide much longer reads compared to the second generation
technologies such as Illumina, which allows a more precise
contig and haplotype assembly and structural variant calling.
However, third generation reads have much higher error rates
compared to their second generation counterparts. Although
the error rate of these sequences is improving, they are still
in the 10-20% range, which is significantly higher than 0.2%
error rates of Illumina sequencing. Moreover, third generation
sequences present a more complex error profile with a high

prevalence of insertions. These factors justify the need to
include error correction as a preliminary step in any genome
analysis project that uses third generation sequences. In recent
years, many different tools and methodologies have been em-
ployed to tackle this problem [1]. Due to the wide availability
of third generation sequences and the improvements achieved
in reducing their overall error rate, self-correction methods
are becoming the preferred approach as opposed to hybrid
methods, which rely on second generation sequences to correct
the noisy reads.

A commonality among many of these self-correction tools
is that they rely on multiple sequence alignment (MSA) to
obtain a consensus sequence to provide corrections for the raw
reads. In particular, tools such as RACON [2] and CONSENT
[3] use partial order (PO) alignment to generate consensus
sequences. PO alignment can be viewed as an extension of
the traditional Needleman-Wunsch (NW) and Smith-Waterman
(SW) algorithms for optimal sequence alignment, that inter-
prets sequences as partially ordered graphs and allows to
encode the intermediate results of the MSA more completely
and effectively. This comes with the additional computational
cost of dealing with graphs instead of sequences and requires
a more generalized algorithm to compute the globally optimal
alignment result.

In this paper, we present a GPU implementation of a PO
MSA algorithm, based on a fork of the POA V2 software
library [4]. Lee et al. [5] described the general concepts behind
this PO alignment library. We verify that our implementation
optimally leverages the GPU by using an extended Roofline
model analysis. In addition, we present an integration of our
kernel with CONSENT, a state of the art self-correction tool.

While our work is motivated by error correction, MSA
in general and PO alignment in particular have widespread
applications in computational biology that we summarize in
Section II. The techniques we describe in this paper will
help others develop optimal parallel GPU implementations of
similar algorithms in the MSA family. The main contributions
of this work are:

• A GPU implementation of the PO alignment algorithm
that achieves up to 6.5x speedup compared to the soft-
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ware version run on two 2.3 GHz 16-core Intel Xeon
Processors E5-2698 v3 with 64 CPU threads.

• An extension of the Roofline model analysis for GPUs
presented in [6] that takes into account the character-
istics of GPU architectures and algorithmic features of
alignment algorithms to evaluate the performance of our
implementation on the NVIDIA Tesla V100 GPU.

• The integration of our kernel with CONSENT, a state
of the art long read self-correction tool, that employs a
more optimal software infrastructure to fully utilize the
computation capabilities of the GPU, obtaining up to 8.5x
speedup of the error correction module without affecting
the quality of the results. Both software are run on two
Intel Xeon Gold 6148 (’Skylake’) running at 2.40 GHz
with 80 software threads and an NVIDIA Tesla V100
GPU.

The remainder of the paper is organized as follows. In Section
II, we discuss similar works and how they relate to our
implementation of PO alignment. In Section III, we report
the key concepts behind the PO alignment algorithm for the
reader’s convenience. In Section IV, we detail the GPU imple-
mentation of our alignment kernel, the strategies employed to
obtain maximal acceleration and the reasoning behind them.
In Section V, we explain how the kernel was integrated with
CONSENT. In Section VI, we present the results obtained by
testing our implementation. Finally, Section VII summarizes
our contributions and details possible future research directions
for this work.

II. RELATED WORK

Multiple sequence alignment (MSA) is an extremely impor-
tant task in computational biology. MSA is performed on a
group of related protein, DNA or RNA sequences and aims to
find the globally optimal alignment between these sequences
that maximizes a given scoring function. For example, profile
search methods such as PSI-BLAST [7] and profile hidden
Markov models [8] that form the backbone of the most
accurate protein homology search algorithms first start with
the MSA of the set of proteins that are already known to be
homologous to each other.

Since the general MSA problem is known to be NP-hard [9],
several heuristic approaches have been developed to render the
task more manageable. Progressive MSA reduces the problem
of multiple sequence alignment to a series of iterated pairwise
alignments. Clustal-W [10] adopts this approach paired with
other heuristics to obtain improved sensitivity. Moreover, a
GPU-accelerated version of this algorithm has been shown
to achieve notable speedup [11]. Another example of GPU
acceleration following the same approach is due to [12].
The T-coffee alignment algorithm [13] is another example
of heuristic approach that has been adopted to improve the
accuracy of results for pairwise multiple sequence alignment.
This approach has also been accelerated on a GPU architecture
[14].

While these approaches based on the pairwise alignment
of sequences have useful applications, in the context of self-

Fig. 1. Interpretation of a sequence as a partial order graph and corresponding
fused graph obtained from the alignment result of two sequences

correction the encoding of the result of multiple sequence
alignment as a single string is not optimal to obtain a final con-
sensus sequence. For this application, PO alignment achieves
notable results since it can model more complex alignment
structures [15]. Variations of the PO alignment approach has
also been the workhorse of many popular whole genome
alignment tools [16], [17]

Since handling partial order graphs introduces an additional
element of complexity to the traditional dynamic programming
alignment algorithms, a GPU acceleration of this task is more
challenging. To the best of our knowledge, the only other GPU
implementation of PO alignment has been recently presented
by NVIDIA as a part of the Clara Genomics Analysis SDK
[18]. A more detailed comparison with our work is discussed
in section VI.

III. BACKGROUND

The Partial Order Multiple Sequence Alignment (PO-
MSA) algorithm extends the dynamic programming method
of Needleman-Wunsch for the alignment of two sequences.
In PO alignment the input sequences become partial orders
containing branching. Each node in the partial order represents
a base, which is connected to other bases by directed edges.
These partial order structures are transferred to the two-
dimensional dynamic programming matrix by flattening the
nodes to a sequence that is a legal ordering according to the
original partially ordered graph while maintaining the edges of
the original structure. To calculate the score of each cell the
NW algorithm admits only three possible moves, insertion,
deletion or substitution. In PO alignment this move set is
extended since each cell can have more than one predecessor
both vertically, horizontally and diagonally in the DP matrix
depending on the structure of the input PO graphs. The scoring
system associates a transition cost to each move, depending on
whether the move is diagonal, vertical or horizontal according
to the selected match, mismatch, and gap penalties. For a cell
S of the DP matrix aligning residues n and m with gap penalty
g, let w(n,m) be the match or mismatch score for a diagonal
move, p(n) the horizontal predecessor of a cell S, q(m) its
vertical predecessor. The scoring is calculated as:
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S(n,m) = max


S(p(n), q(p(n))) + w(n,m)

S(p(n),m) + g(m)

S(n, q(m)) + g(n)

for each vertical and horizontal predecessor of the involved
cells. The iterative MSA procedure starts by encoding the
first two sequences as trivial partial orders. The PO alignment
algorithm is then applied to obtain the optimal alignment
between the sequences. The alignment result is used to fuse
the two original sequences, as illustrated in figure 1. Where
the sequences align, fuse the nodes of the two partial orders.
Where they do not align, create a branch in the partial order
and keep both fragments of the two sequences. We then
perform PO alignment on the fused partial order graph and
iteratively enrich it with the results of the alignment to the
other sequences until we obtain a final PO graph that encodes
the result of our MSA procedure.

IV. IMPLEMENTATION

A. Kernels Organization

Our GPU implementation of the PO-MSA of the BOA
library is logically divided into a few specialized kernels that
interact with each other to compute a batch of alignments.
The input consists of a batch of windows of sequences to
align and the final output is for each element in the batch the
corresponding MSA. Each GPU block in each kernel takes
care of processing one MSA task in the batch. At the beginning
of execution, a portion of the GPU global memory is reserved
depending on the dimension of the input sequences. This
statically allocated memory space is empirically determined
to be sufficient to complete the whole MSA procedure.

Nevertheless, the dimension of the MSA problem is data
dependent, as the memory footprint of the partial order which
encodes the alignment result depends on how the sequences
in the window align. We have avoided considering the worst
case space for the PO graph, as doing so would severely impact
the kernel performance. Instead, since most alignments require
a far smaller amount of space when the sequences in the
window align well to each other, we allocate an empirically
determined amount of space and in the rare examples where
this space is not sufficient, the kernel is able to default to the
CPU implementation of the algorithm to obtain the correct
result. Since this instance is very rare, the overall impact on
performance is negligible. Once the memory on the GPU
is reserved, the generate lpo kernel is called. This kernel
transforms the sequences in each window into linear partial
order graphs. This operation is performed in parallel for each
sequence in the window, and each window in the batch.
After this initialization step is complete, the main alignment
loop executes. For each pairwise alignment to perform, the
following steps are executed:

• Initialization: the DP matrices are initialized for the next
pair of alignments in the batch.

• Pairwise PO alignment: the actual alignment kernel is ex-
ecuted. This kernel performs the scoring and backtracking
phases in parallel for each element in the batch.

• PO graph fusion: the result of the pairwise alignment is
used to integrate the sequence aligned in the previous step
to the current PO graph encoding the MSA result

Once all the sequences in the window have been processed
for all the elements in the batch, the final alignment result is
computed for each element and transferred back to the CPU.

B. Scoring kernel Optimization

Since most of the PO graphs handled during the MSA
procedure are very sparse, we chose to represent them as a
sequence of characters which encode the bases contained in
the nodes and an edge list containing the predecessors to each
node represented by their position in the sequence. Since we
want to avoid dealing with actual lists on the GPU, we use
three arrays: the sequence array contains the characters of the
PO graph nodes in an admissible total order consistent with the
PO graph. The edge list array contains all the edges for the
graph stored in contiguous memory space and the edge offsets
array contains the end positions of each set of predecessors
for each node in the PO graph. To efficiently access multiple
PO graphs in parallel while processing a batch, we also store
global offsets indexing the start of each array for each element
in the batch which enables us to store all the PO graphs in
contiguous memory.

One of the most challenging aspects of this generalized
scoring algorithm is that we need to access a variable number
of memory cells at runtime to compute the correct score
for a cell. To reduce the global memory accesses caused by
accessing the auxiliary edge list and edge offsets arrays we
transfer these structures in the GPU shared memory before
scoring. To parallelize the scoring process as much as possible,
we compute the score for each cell in each antidiagonal in
parallel. This is done by assigning a GPU thread to each
column of the DP matrix. At each step of the scoring process a
thread takes care of scoring a cell in its column starting from
the top, and each thread is activated a step after the one to
its left, as shown in figure 2. This exploitation of parallelism
in the algorithm is still possible even if we are dealing
with graphs instead of sequences, because the PO graphs are
directed and acyclic, which ensures that a predecessor for
any given cell in the DP matrix must be somewhere in the
triangular up-left corner delimited by the antidiagonal which
is currently being processed.

Nevertheless, this generalization creates an important prob-
lem: in the traditional SW and NW algorithms it is enough
to store the two previous antidiagonals of the DP matrix and
the current maximum score to complete the scoring of a new
antidiagonal. In PO alignment, each antidiagonal has a set of
dependencies which vary depending on the topology of the
two PO graphs that we need to align, and lie anywhere in
the top-left corner of the DP matrix. In the original software
library, a bookkeeping mechanism is used to free columns of
the DP matrix where all their cells are not reached by any node
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ahead in the computation. In our GPU implementation we
tried to employ a similar mechanism, but ultimately removed
it since it did not yield any performance improvement and
for our target use case it was possible to store the whole
DP matrix in the GPU global memory. Nevertheless, we are
aware that for a different GPU with less memory resources,
or to compute alignments for larger graphs, some heuristic
procedure to reduce the memory footprint may be necessary,
and it is a possible improvement to our approach.

To obtain coalesced memory access for each antidiagonal in
the DP matrix, we store it in global memory one antidiagonal
after another. This allows for an optimal memory access
pattern for each thread and simplifies the indexing mechanism
during the computation. To easily access the correct cells we
need to store an array containing the offsets of the first cell of
each antidiagonal. The dimensions of each pairwise alignment
in the MSA procedure changes at each iteration and it is data
dependent, therefore we need to compute the correct offsets
at each iteration. The offsets can be easily deduced from
the dimensions of the DP matrix and we can compute them
without a significant impact on performance.

We use an additional pair of matrices, movex and movey ,
to store the DP moves by which a cell of the DP matrix has
been assigned its score. It is important to note that, differently
from the traditional NW and SW algorithms, we cannot simply
store the direction of the predecessor used for the scoring of
a cell, but we need to store its coordinates: if cell c has been
scored using the value of cell c2, movesx [c] = c.x − c2 .x ,
and movesy [c] = c.y − c2 .y , where .x and .y are the position
of the cell in the DP matrix. The maximum score is calculated
for each column in the DP matrix and stored by each thread
in a shared array, together with the coordinates of the cell it
originates from. At the end of the scoring procedure, the final
maximum score is calculated via a parallel wrap reduction on
the shared array. The backtracking procedure is executed by a
single thread, but it contributes in minimal part to the overall
execution time of the scoring procedure (around 1% of the
overall execution).

C. Roofline Model Analysis

In this section, we provide a detailed performance analy-
sis of our PO alignment kernel by adapting the Instruction
Roofline model [6]. The Instruction Roofline model is a
visually-intuitive method to understand the performance of
a given kernel based on a bound and bottleneck analysis
approach. The Instruction Roofline model characterizes a ker-
nel’s performance in billions of warp instructions per second
(warp GIPS) as a function of its instruction intensity (II, x-
axis, warp instructions per DRAM memory transaction) on
GPUs. Given that our PO alignment kernel performs only
integer instructions, here we combine billions of warp integer
instructions (warp GIntIPS), instruction intensity (warp integer
instruction per transaction), and memory bandwidth into a
2D log-log scale graph. A given implementation of the target
application is represented as a point on the graph. If the point
touches the horizontal ceiling, we know that we are compute

bound. Conversely, if it touches the memory bandwidth (the
oblique line), we know that the application is memory bound.
If the point does not touch either line, it is possible that
by using more resources, either bandwidth or computational
power, the application could be further optimized.

To verify the optimality of our GPU implementation, we
propose a tighter ceiling which is derived from a study of
the parallelism characterizing a particular algorithm. In every
alignment algorithm solved through dynamic programming
we have two fundamental dimensions of parallelism, inter-
task and intra-task. Inter-task parallelism can be achieved on
GPU by scheduling multiple alignments tasks at the same
time, while intra-task parallelism is achieved by computing
each antidiagonal of the DP matrix in parallel. This intra-task
parallelism limits by nature the number of cells of the DP
matrix that we can compute each cycle for a single alignment.
Since the number of GPU threads scheduled per block is fixed
for a given kernel execution, if we assign the computation of
each cell of the DP matrix to a thread to achieve maximum
parallelism, at the beginning of the computation we will
have several inactive threads. This performance loss can be
mitigated by reducing the number of parallel threads in favor
of scheduling more blocks computing more alignments at the
same time. In this context, we consider an implementation to
be optimal if the frequency of integer operations reflects the
maximum achievable frequency given the number of active
elements expected at a given cycle of the algorithm and the
number of threads and blocks scheduled. This indicates that a
given implementation is not slowed by memory latency issues,
which given the complex nature of the memory accesses in
our algorithm, is a critical issue to evaluate. This ceiling is
computed as:

IntFmax =
1

D

D∑
k=1

Fint ·Nk ·B
dT ·B/min{INT c, T · SM ·MB}e

(1)

Given a set of alignment problems chosen to evaluate the
kernel, D is the average number of antidiagonals of the DP
matrices, Fint is the frequency of an integer functional unit
on the GPU, Nk is the number of cells processed at each step
for the average alignment and B is the number of scheduled
GPU blocks. T is the total number of threads required to
compute Nk cells, computed as

⌈
Nk

Ts

⌉
· Ts, where Ts is the

number of thread scheduled per block when the kernel is
called. INT c is the number of integer functional units available
on the NVIDIA Tesla V100, SM is the number of streaming
multiprocessors and MB is the maximum number of blocks
per streaming multiprocessor.

This model captures the fact that the number of overall
scoring cells computed at each iteration is limited by the
maximum parallelism of the algorithm at the given iteration,
the number of blocks and threads scheduled and the maximum
physical resources of the GPU. We assume that an optimal
implementation can fully utilize the integer functional units
available to each thread which is actively computing the
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scoring for a DP matrix cell at each iteration. This ceiling
is necessarily lower than the more theoretical ceiling which
assumes that every thread is always able to compute a valid DP
cell. Of course this result is achievable in theory by assigning
only one thread to each alignment problem, but this is not
achievable in practice since CUDA issues instructions at the
warp level, which is constituted by 32 thread. Moreover, the
optimal balance between inter-task and intra-task parallelism
also depends on the processing overhead generated by the
segmentation of the single tasks if we use fewer threads
than the size of the maximum antidiagonal. This model is
useful to verify that a chosen distribution of these two level
of parallelism is using optimally the technological resources
available.

In Figures 3, 4, 5 and 6 we have plotted the result of our
Roofline analysis for four of the combinations of scheduled
threads and blocks used in the kernels parameterized for
windows of sequences with maximum initial length of 32, 64,
128 and 255 bp respectively. On the y axis we have the warp-
giga-instructions per second, on the x axis we have the warp
instructions per memory transaction and a single point on the
graph represents an instruction intensity. The diagonal lines
represent the different bandwidth for global memory, L1 and
L2 caches, and the ceilings represent, from highest to lowest,
the maximum theoretical ceiling, empirical ceiling for integer
instructions and our proposed theoretical ceiling in terms of
warp-giga-integer-instructions per second. We observe that in
all four cases the memory bandwidth is not the limiting factor.
As we increase the number of parallel threads scheduled,
the value of the integer operational intensity, marked by
the triangular dots in the graph, increases. This is primarily
because the average size of the alignment problem increases
as the length of the sequences to align increases, therefore the
percentage of time effectively spent computing the scoring
matrix increases with respect to the initial time spent in the
setup phase and the final backtracking phase. Since we have
taken the average execution time of the alignment kernel
to compute the operational intensity, the overall operational
intensity increases proportionately. In all the figures we have
the integer operational intensity near our predicted theoretical
ceiling, which is matched in figure 6. This tells us that the
kernel is optimally using the integer functional units for the
given number active threads and scheduled alignments.

V. CONSENT INTEGRATION

The CONSENT tool as presented in [3] contains an error
correction module that takes as input a set of raw reads and
outputs their corrected version. To do so, the tool first creates a
series of overlaps between the reads using minimap2 [19]. At
the end of this step, the resulting piles of reads are processed
to create a consensus sequence. A segmentation strategy based
on the individuation of collinear k-mers is used to subdivide
the original MSA task into a series of smaller tasks. This has
been shown to have a positive effect on the overall quality
of the correction, while reducing the runtime of the correction
procedure. One of the most important aspects of this technique

Fig. 2. Computation of the dynamic programming matrix for a PO alignment.
In the first image the data dependencies for a scoring cell are highlighted.
The second image highlights the wavefront direction as well as an example
of thread assignment for the GPU kernel

Fig. 3. Roofline model plot for a kernel with 32 threads per block and 150000
parallel alignments

is that by transforming the task of a single, very large multiple
sequence alignment into a set of smaller MSAs, it changes
the requirements of a corresponding GPU acceleration of this
procedure: we need a kernel that is optimized to perform
a high number of smaller MSA tasks in parallel. For this
reason, our GPU implementation is optimized to process small
sequences (¡= 255 bp) but a very high number of alignments
in parallel (up to 150000). We have empirically verified on
real datasets that on average our GPU implementation covers
more than 90% of the required alignments for a correction run
with default parameters. For the cases where the alignment to
perform does not fit on the device, we fall back to running the
alignment on CPU. To effectively integrate our GPU kernel
within CONSENT, we had to apply some important changes
to the correction procedure, as well as create an appropriate
software infrastructure to ensure the maximum utilization of
our GPU kernel.

A. Task Batching

In the original CONSENT software, a thread pooling strat-
egy is employed. Each read to correct represents a task that
is assigned to an available thread, which performs the whole
correction procedure, including the segmentation of the read
pile into smaller windows, the corresponding MSA tasks and
the computation of the final consensus sequence. To fully
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Fig. 4. Roofline model plot for a kernel with 64 threads per block and 120000
parallel alignments

Fig. 5. Roofline model plot for a kernel with 128 threads per block and 40000
parallel alignments

exploit the capability of our GPU kernel, we needed to have
more alignments to perform in parallel than just the ones
corresponding to a single read. To this end, we created a
batching strategy that divides the correction procedure in three
phases: pre-processing and segmentation, PO graph alignment,
and post-processing and consensus computation. For each
batch of reads to correct we use multiple threads to perform
the first phase for all the reads, then the PO alignment
for all the resulting MSA tasks, and lastly we compute the
consensus sequence for all the reads. In this way, by selecting
an appropriate batch size, we can perform several thousands
alignments in parallel.

B. Kernel Selection

The number of GPU blocks that we can schedule for
each kernel call depends on the amount of memory space
required by each alignment in the batch. For this reason, our
GPU kernels are templates which can be called with different
combinations of parameters to ensure the maximum level of
parallelism is achieved. We have empirically derived a few
optimal combinations for different MSA tasks depending on
the number of sequences in a window and the maximum length
of the sequences to align. To be able to fully utilize this feature,
all the MSA tasks must be divided based on this characteristics

Fig. 6. Roofline model plot for a kernel with 255 threads per block and 10900
parallel alignments

and processed by a set of kernels called with the appropriate
parameters.

C. Queue infrastructure

Our GPU-accelerated version of CONSENT relies on a
thread-safe queue infrastructure to assign the MSA tasks to
the appropriate GPU kernels and manage the pre-processing
and post-processing for each read. At the start of the com-
putation, an executor thread is initialized. This thread takes
care of calling the GPU MSA procedure whenever a batch of
alignment tasks is ready to be processed. When the processing
of a batch of tasks is initiated, all the remaining CPU thread
are employed with a round robin scheduling policy to perform
the pre-processing and segmentation for a pile of reads. After
the segmentation, each thread assigns to each of the resulting
MSA tasks a label corresponding to an existing kernel template
that is the most appropriate to execute PO graph alignment on
that specific set of sequences. Immediately after, each thread
enqueues the tasks to separate thread-safe queues. Whenever
a queue reaches a certain capacity, the tasks are transferred to
the GPU and the appropriate set of kernels for PO alignment
is called by the executor thread. When all the reads in a CPU
batch have been processed, if any alignment tasks remain in
any of the queues, they are computed. When all the alignments
have been computed, the post processing phase is initiated.
All the available CPU threads are again used in a round robin
fashion to retrieve the MSA results for each task, compute the
consensus sequence for the given task and finally reconstruct
the complete corrected read from the fragmented consensus
sequences. The process is repeated until all the read piles have
been processed. A schematic of this infrastructure is shown in
figure 7.

VI. DISCUSSION

To validate our approach, we compared the performance of
our kernel both with the original BOA library and with other
implementations of PO alignment on GPU. Moreover, we have
evaluated the performance of our integration with CONSENT,
by comparing the runtimes of the correction portion of the
tool on different datasets.
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Fig. 7. Schematic of the thread-safe queue infrastructure that integrates our
GPU kernel in CONSENT

TABLE I
PERFORMANCE COMPARISON OF THE PO ALIGNMENT KERNEL EXECUTED

ON A NVIDIA TESLA V100 AGAINST THE CPU IMPLEMENTATION OF
THE BOA LIBRARY EXECUTED WITH 80 PARALLEL THREADS ON TWO
INTEL XEON GOLD 6148 (’SKYLAKE’) RUNNING AT 2.40 GHZ. BOTH

WERE EXECUTED ON 3.2 MILLION WINDOWS OF SEQUENCES.

Sequence Window Alignments CPU GPU Speedupsize size

1-31 bp 2-8 3.2 mil 31.80s 10.42s 3.05x

32-63 bp 2-8 3.2 mil 52.07s 16.67s 3.12x

64-127 bp 2-8 3.2 mil 1 min 38s 33.12s 2.98x

128-255 bp 2-8 3.2 mil 4 min 11s 1 min 28s 2.84x

1-31 bp 9-16 3.2 mil 59.48s 20.42s 2.91x

32-63 bp 9-16 3.2 mil 2 min 0s 46.30s 2.6x

64-127 bp 9-16 3.2 mil 4 min 17s 1 min 18s 2.91x

128-255 bp 9-16 3.2 mil 11 min 58s 4 min 7s 2.90x

1-31 bp 17-32 3.2 mil 2 min 25s 1 min 7s 2.16x

32-63 bp 17-32 3.2 mil 4 min 45s 1 min 57s 2.43x

64-127 bp 17-32 3.2 mil 11 min 29s 4 min 19s 2.65x

128-255 bp 17-32 3.2 mil 36 min 44s 12 min 55s 2.84x

A. BOA comparison

Since the target for our implementation is the alignment of
small sequences, as a first benchmark we have compared the
performance of our GPU implementation to the performance
of the BOA software library in a multi-threading environment
for a set of randomly generated windows of sequences. The
results are shown in table I. In table II we compare our

TABLE II
PERFORMANCE COMPARISON OF THE PO ALIGNMENT KERNEL EXECUTED

ON A NVIDIA TESLA V100 AGAINST THE CPU IMPLEMENTATION OF
THE BOA LIBRARY EXECUTED ON A SINGLE THREAD AND WITH 64

PARALLEL THREADS ON TWO 2.3 GHZ 16-CORE INTEL XEON
PROCESSORS E5-2698 V3 WITH A TOTAL OF 64 HARDWARE THREADS.

BOTH WERE EXECUTED ON 1.2 MILLION WINDOWS OF SEQUENCES.

Sequence Window Alignments CPU 1 thread 64 threadssize size speedup speedup

1-31 bp 2-8 1.2 mil 1 min 34s 35.31x 2.6x

32-63 bp 2-8 1.2 mil 7 min 52s 82.15x 3.5x

64-127 bp 2-8 1.2 mil 26 min 45s 121.28x 4.3x

128-255 bp 2-8 1.2 mil 1 h 42 min 192.13x 6.49x

TABLE III
PERFORMANCE COMPARISON OF THE PO ALIGNMENT KERNEL EXECUTED
ON A NVIDIA TESLA V100 AGAINST THE CLARA GENOMICS ANALYSIS
SDK IMPLEMENTATION OF PO ALIGNMENT. BOTH WERE EXECUTED ON 2

MILLION WINDOWS OF SEQUENCES.

Sequence Window Alignments Our Clara Speedupsize size kernel Genomics

1-255 bp 1-32 2 mil 2 min 40s 15 min 42s 5.89x

1-255 bp 1-32 2 mil 2 min 40s 10 min 28s 3.92x

kernel performance to a different CPU architecture against
both a single thread and multi-thread CPU implementation.
The results show that we can obtain a speedup of up to 3.12x
versus 80 threads run on two Intel Xeon Gold 6148 (’Skylake’)
processors running at 2.40 GHz, and up to 6.49x versus 64
threads run on two 2.3 GHz 16-core Intel Xeon Processors
E5-2698 v3. These results show that our GPU implementa-
tion significantly outperforms state-of-the-art multiprocessor
nodes.

B. Clara Genomics comparison

To the best of our knowledge, the only other GPU im-
plementation of PO alignment at present is the POA module
contined in the Clara Genomics Analysys SDK. To compare
our implementation we run both kernels on an NVIDIA Tesla
V100 on the same dataset of 2 milion randomly generated
windows of sequences ranging from 1 to 255 bp with windows
of up to 32 sequences. This choice is motivated by the fact that
our kernel targets a specific use case, namely the CONSENT
integration. We evaluated on several real datasets for long
reads error correction that after the segmentation strategy
applied by CONSENT on the initial long reads overlaps over
90% of the resulting windows fall within these dimensions.
Therefore we have optimized our kernel to deal efficiently
with a very large number of smaller windows of sequences
and it is significant to compare to existing implementations
through a similar use case. Table III shows the comparison
against the Clara Genomics kernel. On the first line the
kernel was run with a single cuda stream in MSA generation
mode, since our implementation also generates the MSA as
output. In this case our implementation outperforms the Clara
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TABLE IV
PERFORMANCE COMPARISON OF CONSENT AND OUR GPU ACCELERATED VERSION. BOTH SOFTWARE WERE RUN ON TWO INTEL XEON GOLD 6148

(’SKYLAKE’) RUNNING AT 2.40 GHZ WITH 80 PARALLEL THREADS.

Dataset Organism Dataset CONSENT-GPU CONSENT Speedupsize

SRR10326407 E. Coli(30x) 151 Mbp 6 min 29s 34 min 36s 5.3x

SRR10326407 E. Coli(60x) 290 Mbp 16 min 44s 2h 26 min 8.5x

SRR7743079 D. Melanogaster(20x) 2.9 Gbp 2h 53 min 6h 17min 2.18x

ERR3454401 S. Cerevisiae(30x) 386 Mbp 1h 6 min 23 min 2.86x

ERR3454401 S. Cerevisiae(60x) 756 Mbp 3h 0 min 1h 32 min 1.95x

Genomics PO alignment by 5.89x. In the second line the kernel
was run with the Clara Genomics multi-batch benchmark,
which uses multiple cuda streams to fill up the GPU. This
benchmark outputs the consensus sequence instead of the
MSA, since the consensus generation is more optimized than
the MSA generation in Clara Genomics. Nonetheless, our
kernel achieves a speedup of 3.92x.

C. CONSENT integration evaluation

To evaluate the performance of our integration with CON-
SENT we have run both the original version presented in
[3] and our GPU accelerated version on multiple raw reads
datasets. In table IV we report the speedups obtained with
our GPU integration. The quality of the results is unchanged,
since our kernel performs the same MSA procedure as its
CPU counterpart and the corrected reads we obtain from
our GPU accelerated version of consent are identical to the
ones obtained with the CPU-only version. The performance
vary depending on the organism, genome size and coverage,
since the number of windows produced as well as the size
of the corresponding alignments is heavily dependent on the
data. Although the PO alignment is just a portion of the
CONSENT error correction procedure, we have been able
to obtain significant overall speedup since we are efficiently
using both the GPU and CPU resources available on our
test system. Moreover, the batching strategy adopted to im-
prove the throughput of the GPU kernel improves the overall
performance of CONSENT, at the cost of more memory
consumption proportional to the size of the tasks present in a
single batch. This result shows how our GPU implementation
can be integrated into an error correction tool and improve its
overall performance. Given that CONSENT is able to obtain
good quality results for a variety of raw read datasets at
the cost of a fairly long run time, we have shown how the
use of a specific accelerator can improve performance and
speedup many genome analysis pipelines that rely on an error
correction module to improve the quality of third generation
sequencing data.

VII. CONCLUSIONS

We presented a GPU accelerated algorithm for multiple
sequence alignment based on partial order graphs. The pro-
posed implementation outperforms the state-of-the-art CPU-

based POA v2 alignment library for the targeted range of
sequence and window lengths, achieving a speedup that ranges
from 2.16x to 6.49x versus state-of-the-art CPU nodes run with
the optimal number of threads. To evaluate the quality of the
proposed GPU implementation, we have devised an extension
of the Roofline model for GPU that is able to take into account
the nature of the parallelism that characterizes a generic
alignment algorithm based on dynamic programming and we
show that our kernel achieves near-optimal performance with
respect to the performance ceiling computed by our model.

We have also compared our kernel to the PO alignment
kernel present in the NVIDIA Clara Genomic Analysis SDK
[18] which is, to the best of our knowledge, the only other
GPU accelerated multiple sequence alignment based on par-
tial order graphs. We have shown that for the target range
of sequences and window lengths we outperform the Clara
Genomics PO alignment module by 5.89x on the NVIDIA
Tesla V100 GPU. To showcase the practical utility of our
alignment kernel we have integrated it into the CONSENT
software for long reads self-correction. This use case shows
how an alignment strategy based on the segmentation of longer
overlaps between long reads into smaller alignment windows
presents an opportunity to exploit the parallel processing
power offered by GPU architectures. We have created the
appropriate software infrastructure to ensure that we fully take
advantage of the computational capabilities of the GPU while
also exploiting the CPU resources as much as possible. We
have shown that we maintain the quality of the results while
reducing the execution time of the error correction phase by
two to four times for real raw read datasets for different
organisms.
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