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Abstract12

Brains are able to integrate memory from the recent past into their current computations,13

seemingly without effort. This ability is critical for cognitive tasks such as speech understand-14

ing or working with sequences of symbols according to dynamically changing rules. But it has15

remained unknown how networks of spiking neurons in the brain can achieve that. We show16

that the presence of neurons with spike frequency adaptation makes a significant difference:17

Their inclusion in a network moves its performance for such computing tasks from a very low18

level close to the level of human performance. While artificial neural networks with special19

long short-term memory (LSTM) units had already reached such high performance levels,20

they lack biological plausibility. We find that neurons with spike-frequency adaptation, which21

occur especially frequently in higher cortical areas of the human brain, provide to brains a22

functional equivalent to LSTM units.23

Introduction24

Our brains are able to constantly process new information in the light of recent experiences and25

dynamically changing rules, seemingly without any effort. But we do not know how networks of26

spiking neurons (SNNs) in the brain accomplish that. The performance of both spike-based and27

rate-based models for recurrent neural networks in the brain have stayed on a rather low perfor-28

mance level for such tasks, far below the performance level of the human brain and artificial neural29

network models. Artificial neural network models that perform well on such tasks use, instead of30

neuron models, a special type of unit called Long Short-Term Memory (LSTM) unit. LSTM units31

store information in registers — like a digital computer — where it remains without perturbance32

by network activity for an indefinite amount of time, until is is actively updated or recalled. Hence33

these LSTM units are not biologically plausible, and it has remained an open problem how neural34

networks in the brain achieve so high performance on cognitively demanding tasks that require35

integration of information from the recent past into current computational processing. We pro-36

pose that the brain achieves this — at least for some tasks — without separating computation and37

short-term memory in different network modules: Rather it intertwines computing and memory38

with the help of inherent slow dynamic processes in neurons and synapses.39

Arguably the most prominent internal dynamics of neurons on the time scale of seconds —40

which is particularly relevant for many cognitive tasks — is spike-frequency adaptation (SFA). It41
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is expressed by a substantial fraction of neocortical neurons (Allen Institute, 2018). SFA reduces42

the excitability of a neuron in response to its firing, see Fig. 1. Neurons with SFA have often43

been included in SNN models that aim at modelling the dynamics of brain networks (Gutkin and44

Zeldenrust, 2014), but not in computational studies. We show that neurons with SFA do in fact45

significantly enhance the computational power of SNNs. This is somewhat surprising, because on46

first sight their history dependence, which even varies strongly from neuron to neuron, tends to47

obstruct — rather than enhance — network computations. We propose that this may hold for hand-48

constructed circuits, whereas evolutionary and learning processes are able to exploit advantages49

of such diverse forms of SFA. We demonstrate this in SNN models for a series of demanding50

benchmark tasks for network computations that all require integration of information over time:51

Recalling features of fleeting sensory inputs, speech recognition, time series classification, and52

operations on sequences of symbols.53

We also compare the performance of SNNs with SFA to the performance of SNNs that have a54

different type of slow hidden dynamics, although on a smaller time scale — short-term plasticity55

(STP) of synapses. But the contribution of synaptic short-term plasticity — especially synaptic56

facilitation — to computational performance turns out to be lower. Interestingly, the most common57

form of STP in synapses between pyramidal cells, synaptic depression, tends to provide better58

support for such computations than synaptic facilitation. References to the related literature can59

be found in the Discussion.60

Altogether our results suggest that neurons with SFA provide to SNNs a similar performance61

boost for computations that require a long short-term memory as LSTM units do for artificial62

neural networks. Hence we refer to SNNs that contain neurons with SFA as Long short-term63

memory SNNs (LSNNs). Since the term short-term memory is more common in the literature on64

LSTM networks, but the term working memory is more common in the neuroscience literature,65

and both appear to refer to the same phenomena, we treat these two notions as synonyms and let66

their use depend on the context.67

SNNs are currently of high interest not only for modelling neural networks of the brain, but68

also as a computing paradigm for drastically more energy-efficient computer hardware. Hence it is69

of interest to see that the performance of LSTM networks, and thereby many recent achievements70

in Artificial Intelligence, can be ported to spike-based computing hardware.71

Results72

Experimental data and a simple model for SFA73

The SFA of a neuron is usually measured in terms of the gradual increase of interspike intervals in74

its spike response to a constant input drive. An example for such measurement is the Adaptation75

Index (AI) that is employed by the Allen Institute (Allen Institute, 2018), see Fig. 1A for samples76

of neurons with different AI, Fig. 1B for the distribution of AI values, and the Methods for the77

definition of the AI. These data suggest that the human neocortex has a larger fraction of neurons78

with SFA than the mouse neocortex, and that within the human brain the frontal lobe has a79

larger fraction than the temporal gyrus. The analysis of experimental data in (Pozzorini et al.,80

2013, 2015) lead to the conclusion that SFA takes place on multiple time scales, with a history81

dependence that lasts up to 20 s in neocortical neurons. Various models for adapting neurons82

have been proposed in (Gerstner et al., 2014; Teeter et al., 2018). We employ a very simple model83

for SFA, the generalized leaky integrate-and-fire model GLIF2 from (Teeter et al., 2018; Allen84

Institute, 2017), which we will refer to as the ALIF (adaptive LIF) model. A practical advantage85

of this simple model is that it can be very efficiently simulated and is amenable to gradient descent86

training methods. It assumes that the firing threshold A(t) contains a variable component a(t) that87

increases by a fixed amount after each of its spikes z(t) (Fig. 1C), and then decays exponentially88

back to 0. This variable threshold models the inactivation of voltage-dependent sodium channels89

in a qualitative manner. We write zj(t) for the spike output of neuron j, that switches from 0 to90

1 at time t when the neuron fires at time t, and otherwise has value 0. With this notation one can91
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define the ALIF model by the equations:92

Aj(t) = vth + βaj(t),

aj(t+ δt) = ρjaj(t) + (1− ρj)zj(t)δt,
(1)

where vth is the constant baseline of the firing threshold Aj(t), and β > 0 scales the amplitude of93

the activity-dependent component. The parameter ρj = exp
(
−δt
τa,j

)
controls the speed by which94

aj(t) decays back to 0, where τa,j is the adaptation time constant and δt is the duration of a95

discrete time step (which we chose to be 1 ms). An LSNN is a network of spiking neurons that96

contains some ALIF neurons (see Methods for details on neuron and synapse models). It typically97

suffices to use ALIF neurons with some spread of time constants τa,j around the required duration98

of working memory for solving a task (see Table S1 in Supplement for details on how the choice99

of adaptation time constant impacts performance).100

Methods for training recurrent SNNs101

We focused on the best performing training method for recurrent SNNs that is currently known:102

Backpropagation through time (BPTT ) with the pseudo-derivative for spiking neurons from (Bellec103

et al., 2018b). While BPTT is not assumed to be biologically plausible as an online learning104

method, results from training with BPTT inform us about computational capabilities of different105

types of SNNs. They also inform us about performance levels that could in principle be attained106

through evolution. In order to test whether complex cognitive computations, such as the 12AX107

task , can in principle also be learnt by brain networks, we also trained the same LSNN with a108

biologically plausible learning method: e-prop. For LSNNs, e-prop tends to achieve in general an109

almost as good computational performance level as BPTT (Bellec et al., 2019).110

SFA provides a functionally powerful working memory for spike-based111

computing112

Our brains are able to recall an image, even after having seen many other images in between. We113

wondered whether LSNNs would be able to model such fundamental working memory task. Note114

that remembering an image requires retaining substantially more than a single bit, even if it is115

encoded in a highly compressed form in a higher cortical area. In contrast, most models for working116

memory have focused on retaining just a single bit, and this memory content occurred during117

training and testing. We formulated our more demanding computational task as the STORE-118

RECALL task illustrated in Fig. 2. The network received a sequence of frames, each consisting of119

a vector of 20 binary features — arranged in a 4× 5 grid (top of Fig. 2) — which were presented120

for 200 ms. Each frame can be seen as corresponding to the compressed representation of an121

image in a higher visual area such as IT. In addition, the network received occasional STORE and122

RECALL commands, marked in yellow and green in Fig. 2. The STORE command corresponds123

to directing attention to a particular frame of the input stream. The computational task was124

to reproduce, during a RECALL command, the feature vector that had been presented during125

the preceding STORE command. The delay between the STORE and RECALL commands was126

randomly chosen from the interval between 200 and 1600 ms.127

We trained an LSNN that consisted of 500 ALIF neurons, whose firing thresholds had time128

constants of 800 ms, to solve this task. Sigmoidal readout neurons, one for each of the 20 binary129

input features, were trained to reproduce the feature value that had been present during STORE.130

Binary feature values were extracted by rounding the activity of readout neurons at the half-way131

(100 ms) mark of each 200 ms time window. A sample segment of a test trial is shown in Fig. 2,132

with the activity of input neurons at the top and the activation of readout neurons at the bottom.133

In order to probe the generalization capability of the LSNN we made sure that none of the patterns134

shown during testing had occurred during training, and in fact had a Hamming distance of at least135

5 bits to all training patterns. Note that previous models for working memory only aimed at136

storing a single bit, and the model could only be tested for the same content for which it was137

trained. Here we require that the working memory can be used for content other than what was138

used during training. The resulting recall performance of the LSNN was 99.09%, i.e., 99.09% of139
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the stored feature vectors were perfectly reproduced during recall. This demonstrates that LSNNs140

have inherent high-dimensional working memory capabilities. SFA was essential for this, because141

the recall performance of a recurrent network of LIF neurons without SFA, trained in exactly142

the same way, stayed at chance level (see Methods). A closer inspection of the time course of143

firing thresholds of a sample subset of neurons in the LSNN provides insight into how LSNNs are144

able to solve this task: A pattern-specific subset S of neurons is highly activated during STORE,145

which raises their firing thresholds (shown as blue curves in Fig. 2). Many neurons are activated146

again during RECALL, but the firing activity of neurons in the subset S remains lower this time,147

thereby providing a negative imprint of their activation pattern during STORE. Readout neurons148

can easily be trained to decode these negative imprints, and to reproduce the originally stored149

pattern.150

Interestingly, the firing activity of the network was rather low during the delay between STORE151

and RECALL. Furthermore we found that a Support Vector Machine (SVM) was not able to152

decode the stored feature vector from the firing activity of the LSNN neurons during the delay153

(the decoding accuracy during the delay was 4.38%, as opposed to 100% decoding accuracy during154

RECALL; see Methods). Hence the type of working memory that an LSNN exhibits corresponds155

to the activity-silent form of working memory in the human brain that had been examined in156

the experiments of (Wolff et al., 2017). It had also been shown there that the representation of157

working memory content changes drastically between memory encoding and subsequent network158

reactivation during the delay by an “impulse stimulus”: A classifier trained on the network activity159

during encoding was not able to classify the memory content during a network reactivation, and vice160

versa. The same holds for our LSNN model (see Methods), since the reactivation of the network161

during RECALL provides a negative, rather than a positive imprint, of the high-dimensional162

memory content.163

We also examined how the time constants of the thresholds of ALIF neurons should be chosen164

to achieve good performance for a task that requires a particular time span of working memory.165

We studied this for a variant of the STORE-RECALL task where the time-varying input vector of166

features was just 1D instead of 20D, but where the expected delays between STORE and RECALL167

varied between 0.2 to 16 s for different versions of the task. It turned out that good performance168

did not require a tight coupling between the required length of working memory and the adaptation169

time constants of ALIF neurons in the LSNN, see Table S1. In particular, good working memory170

performance was also achieved when the required time span for working memory was substantially171

larger than these time-constants, suggesting that the network had learned to automatically refresh172

or stagger the implicit memory in firing thresholds of different neurons. We also verified that good173

performance for many memory retention time spans could be achieved by a single network with174

a mixture of time constants of firing thresholds drawn from a uniform or power-law distribution.175

This suggests that brains can solve working memory tasks for many different retention spans using176

SFA neurons with a generic spread of time constants.177

Finally, we wondered whether the adaptive firing threshold of ALIF neurons affects the auto-178

correlation function of their firing activity — termed intrinsic timescale in (Wasmuht et al., 2018).179

We tested this for an LSNN consisting of 200 LIF and 200 ALIF neurons that was trained to solve180

a 1D version of the STORE-RECALL task. It turned out that during the delay between STORE181

and RECALL these intrinsic time constants were in the same range as those measured in monkey182

cortex, see Fig. 1C in (Wasmuht et al., 2018). Furthermore LIF and ALIF neurons exhibited very183

similar distributions of these time constants (see Fig. S1), suggesting that these intrinsic time184

constants are determined largely by their network inputs, and less by the neuron type.185

Working memory performance of variants of SNNs with other slow pro-186

cesses in neurons or synapses187

There exist numerous other slow processes on the time scale of seconds in neurons and synapses,188

that can potentially also enhance network computations on this time scale. We examined the189

performance of three other candidates besides SFA on a simple version of the STORE-RECALL190

task:191

• LIF neurons whose excitability gets increased through their firing: ELIF neurons192
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• Depressing short-term plasticity of synapses (STP-D)193

• Facilitating short-term plasticity of synapses (STP-F).194

The ELIF neuron is a dual version of an ALIF neuron whose excitability is increased through195

preceding firing, rather than decreased (see Methods). ELIF neurons appear to be particularly196

suitable for creating a working memory through persistent firing. Facilitating short-term plasticity197

of synapses also supports that, and was conjectured by (Mongillo et al., 2008) to produce a working198

memory. We also evaluated the performance of depressing short-term plasticity, because this is199

the standard dynamics of synapses between pyramidal cells (Markram et al., 2015). The dynamics200

of the salient hidden variables in these three models is illustrated in Fig. S2. The performance of201

corresponding variants of the SNN is shown in Fig. 3A for a 1D variant of the STORE-RECALL202

task from Fig. 2, with a delay between STORE and RECALL commands varying between 200 ms203

and 3600 ms. It turns out that SNNs with ALIF neurons, i.e., LSNNs, learn to solve this task204

much faster than the other variants of the SNN model, and also reach the highest performance205

level. Furthermore only the networks with STP-D or ELIF neurons eventually approach reasonably206

good — although lower — performance levels. We were surprised to see that facilitating short-term207

plasticity of synapses (STP-F) did not provide the working memory capability needed to solve this208

task, although we used here a really long time constant for facilitation with a mean of 2000 ms —209

much larger than the mean of 507 ms that had been found experimentally in (Wang et al., 2006)210

for synaptic connections between pyramidal cells in the PFC. Similar results hold for the time211

series classification task sMNIST, see Fig. 3C and the subsection on sMNIST below.212

We also found that replacing ALIF by ELIF neurons reduced the working memory capability213

of the network for both tasks, see Fig. 3A and C. One possible reason is that information that214

is stored in the firing threshold of a neuron is better protected in the case of an ALIF neuron,215

since an increased firing threshold suppresses subsequent accidental firing, and hence accidental216

modifications of the memory that is stored in the firing threshold. In contrast, for an ELIF neuron217

the information that is stored in the firing threshold is quite vulnerable, since a decreased firing218

threshold invites accidental firing.219

Performance of LSNNs for speech recognition and other benchmark tasks220

that require substantial integration of information over time221

Google Speech Commands dataset. We trained LSNNs and networks of LIF neurons on222

the keyword spotting task with Google Speech Commands Dataset (Warden, 2018) (v0.02). The223

dataset consists of 105,000 audio recordings of people saying thirty different words. Fully connected224

networks were trained to classify audio recordings, that are clipped to one second length, into one225

of 12 classes (10 keywords, as well as two special classes for silence and unknown words; the226

remaining 20 words had to be classified as “unknown”). Comparison of maximum performance of227

trained spiking networks against state-of-the-art artificial recurrent networks is shown in Table 1.228

Averaging over 5 runs, the LSNN reached 90.88±0.22%, and the LIF network reached 88.79±0.16%229

accuracy. Thus an SNN without ALIF neurons can already solve this task quite well, but the LSNN230

halves the performance gap to the published state-of-the-art in machine learning. The only other231

report on a solution of this task with spiking networks is (Cramer et al., 2019). There the authors232

encode the audio features to spike trains using cochlea model and train a network of LIF neurons233

using surrogate gradients with BPTT and achieve 50.9± 1.1% accuracy.234

235

Delayed-memory XOR task. We also tested the performance of LSNNs on a previously con-236

sidered benchmark task for SNNs, where two items in the working memory have to be combined237

non-linearly: The Delayed-memory XOR task (Huh and Sejnowski, 2018). The network is required238

to compute the exclusive-or operation on the history of input pulses when prompted by a go-cue239

signal, see Fig. 3B.240

The network receives on one input channel two types of pulses (up or down), and a go-cue on241

another channel. If the network received two input pulses since the last go-cue signal, it should242

generate the output “1” during the next go-cue if the input pulses were different or “0” if the input243

pulses were the same. Otherwise, if the network only received one input pulse since the last go-cue244

signal, it should generate a null output (no output pulse). Variable time delays are introduced245
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between the input and go-cue pulses. Time scale of the task was 600 ms which limited the delay246

between input pulses to 200 ms.247

This task was solved in (Huh and Sejnowski, 2018), without providing a performance statistics,248

by using a type of neuron that has not been documented in biology — a non-leaky quadratic249

integrate and fire neuron. We are not aware of previous solutions by networks of LIF neurons. To250

compare and investigate the impact of SFA on the performance of delayed-memory XOR task, we251

trained networks of ALIF and LIF neurons of the same size as in (Huh and Sejnowski, 2018) — 80252

neurons. Across 10 runs, networks of ALIF neurons solved the task with 95.19± 0.014% accuracy,253

whereas the networks of LIF neurons converged at lower 61.30± 0.029% accuracy.254

255

Sequential MNIST (sMNIST).256

Finally, we compared the performance of LSNNs and other variants of SNNs with that of LSTM257

networks on a more demanding benchmark task for time series classification: The classification of258

pixel-wise sequentially presented handwritten digits (sMNIST dataset), see Fig. 3C,D and Fig. S3.259

This task requires integration of information over a longer time span than for recognizing speech260

commands. It also requires very good generalization capability, since the pixel sequences for261

different handwriting styles of the same digit may vary widely. LSNNs achieved here about the262

same performance level as LSTM networks, whereas networks that contain only LIF and not263

ALIF neurons performed poorly, see Fig. 3D. Besides a fully connected LSNN, we also tested the264

performance of a variant of the model, called SC-LSNN, that integrates additional constraints of265

SNNs in the brain: It is sparsely connected (12% of possible connections are present) and consists266

of 75% excitatory and 25% inhibitory neurons that adhere to Dale’s law. By adapting the sparse267

connections with the rewiring method in (Bellec et al., 2018a) during BPTT training, the SC-LSNN268

was enabled to perform even better than the fully-connected LSNN. The resulting architecture of269

the SC-LSNN is shown in Fig. S3C. Its activity of excitatory and inhibitory neurons, as well as270

the time courses of adaptive thresholds for (excitatory) ALIF neurons of the SC-LSNN are shown271

in Fig. S3B.272

Fig. 3C shows that, apart from LSNNs, SNNs with experimentally reported parameters for273

short-term synaptic plasticity (STP-D) also achieve very high performance. Furthermore, SNNs274

with STP-D perform substantially better for this task than networks with data-based synaptic275

facilitation (STP-F), similar as for STORE-RECALL (see Fig. 3A).276

SFA supports demanding cognitive computations with dynamically chang-277

ing rules278

The 12AX task — which can be viewed as a simplified version of the Wisconsin Card Sorting279

task — tests the capability of subjects to apply dynamically changing rules for pattern recognition280

and to ignore currently irrelevant inputs (O’Reilly and Frank, 2006; MacDonald III, 2008). It also281

probes — at least in the more demanding version that we consider — the capability to maintain and282

update a hierarchical working memory. The task consists of a sequence of trials where the subject283

is first shown a context cue to indicate which one of two possible sequences is the “correct” symbol284

sequence in the current trial. These sequences consist of two relevant symbols, interspersed with285

distractor symbols, including those belonging to the “wrong” sequence in the current context. At286

every step, the subject has to press one of two buttons depending on whether the correct sequence287

has been completed or not. The context of the trial switches randomly after a few presentation of288

symbols.289

To model this, we gave as network inputs sequences of 90 symbols from the set {1, 2, A, B, C,290

X, Y, Z}, with repetitions as described in Methods. See the top of Fig. 4 for an example. After291

each symbol, the network should output “R” if this symbol terminates a context dependent target292

sequence and “L” otherwise. Specifically, given a context where the most recently received digit293

was a “1”, the subject should output “R” only after presentation of a symbol X that terminates294

a subsequence A...X. This occurs, for example, for the 7th symbol in the trial shown in Fig. 4. In295

case that the most recent input digit was a “2”, the subject should respond “R” only after the296

symbol Y in a subsequent subsequence B...Y (see the 20th symbol in Fig. 4). The letters C and Z297

are irrelevant and serve as distractors. This task requires a hierarchical working memory, because298

the most recently occurring digit determines whether subsequent occurrences of “A” or “B” should299
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be placed into working memory. Note also that neither the content of the higher-level working300

memory — the digit — nor the content of the lower level working memory — the letter A or B —301

are simply recalled. Instead, they both affect processing rules, where the higher-level processing302

rule affects what is placed into the lower level working memory. A simpler version of this task,303

where X and Y were relevant only if they directly followed A or B respectively, and where fewer304

irrelevant letters occurred in the input, was solved in (O’Reilly and Frank, 2006) through artificial305

neural network models that were endowed with special working memory modules. Note that for306

this simpler version no lower order working memory is needed, because one just has to wait for an307

immediate transition from A to X in the input sequence, or for an immediate transition from B308

to Y. But neither the simpler nor the more complex version of the 12AX-task has previously been309

solved by a network of spiking neurons.310

We show in Fig. 4 that a generic LSNN can solve this quite demanding version of the 12AX311

task. The LSNN received spike trains from the input population of spiking neurons, producing312

Poisson spike trains. Possible input symbols {1, 2, A, B, C, X, Y, Z} were encoded using one-hot313

coding; each input symbol was signaled through a high firing rate of a separate subset of 5 input314

neurons for 500 ms. The LSNN consisted of 200 recurrently connected spiking neurons (100 ALIF315

and 100 LIF neurons), with all-to-all connections between them. The output consisted of two316

readouts, one for L, one for the R response. During each 500 ms time window the input to these317

readouts was the average activity of neurons in the LSNN during that time window. The final318

output symbol was based on which of the two readouts had the maximum value. After training319

with BPTT the LSNN produced an output string with all correct symbols in 97.79% of episodes,320

where 90 symbols had to be processed during each episode. But also after training with e-prop, a321

biologically realistic learning method (Bellec et al., 2019), the LSNN produced fully correct output322

sequences in 92.89% of the episodes. In contrast, a recurrent SNN with the same architecture323

but no neurons with SFA could achieve only 0.39% fully correct output strings after training with324

BPTT (not shown). Note that it was not necessary to create a special network architecture for the325

two levels of working memory that our more complex version of the 12AX task requires: A near326

perfectly performing network emerged from training a generic LSNN. This shows that neurons327

with SFA enable generic recurrent networks of spiking neurons to solve demanding cognitive tasks328

involving dynamically changing rules and two levels of working memory.329

SFA supports brain-like operations on sequences330

A generic difficulty for neural networks is learning to carry out operations on sequences of symbols331

in such a way that they generalize to new sequences, a fundamental capability of the human brain332

(Marcus, 2003). Actually, not only humans, but also non-human primates are able to carry out333

operations on sequences of items, and numerous neural recordings — starting with (Barone and334

Joseph, 1989) up to recent results such as (Carpenter et al., 2018; Liu et al., 2019) — provide335

information about the neural codes for sequences that accompany such operations in the brain.336

One fundamental question is how serial order of items is encoded in working memory. Behind this337

is the even more basic question of how transient structural information — the serial position of an338

item — is combined in the brain with content information about the identity of the item (Lashley,339

1951). Obviously, this question also lies at the heart of open questions about the interplay between340

neural codes for syntax and semantics that enable language understanding in the human brain.341

The experimental data both of (Barone and Joseph, 1989) and (Liu et al., 2019) suggest that342

the brain uses a factorial code where position and identity of an item in a sequence are encoded343

separately by some neurons, thereby facilitating flexible generalization of learned experience to new344

sequences. But so far we had been lacking spiking neural network models that were able to carry345

out such tasks, and whose emergent neural codes could then be compared with neural recordings346

from the brain. We show here that LSNNs can be trained to carry out complex operations on347

sequences, are able to generalize such capabilities to new sequences, and produce spiking activity348

and neural codes that offer interesting links to recorded data.349

One basic operation on sequences of symbols is remembering and reproducing a given sequence350

(Liu et al., 2019), a task which non-human primates can also learn, and for which neural codes for351

sequences have been investigated (Barone and Joseph, 1989; Liu et al., 2019). A more complex352

operation that can also be carried out by the brain is the reversal of a sequence (Marcus, 2003;353
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Liu et al., 2019). We show that an LSNN learns to carry out both of these operations, and is able354

to apply them to new sequences of symbols that did not occur during training.355

We trained an LSNN consisting of 128 LIF and 192 ALIF neurons to carry out these two356

operations on sequences of 5 symbols from a repertoire of 31 symbols, which we labeled by the357

letters a, b, c, ..., x, y, z, A, B, C, D, E from the English alphabet. Four additional symbols were358

used: “*” denoted the end of the input sequence (EOS), “?” a prompt for an output symbol,359

and one symbol each for the DUPLICATE and REVERSE commands (see Fig. 5A). Each of the360

altogether 35 input symbols were given to the network in the form of higher firing activity of a361

dedicated population of 5 input neurons outside of the LSNN (“one hot encoding”). It was not362

necessary to assign particular values to adaptation time constants of firing thresholds of neurons363

with SFA; we simply chose them uniformly randomly to be between 1 ms and 6000 ms, mimicking364

the diversity of SFA effects found in the neocortex (Allen Institute, 2018) in a qualitative manner.365

The network output was produced by linear readouts (one per potential output symbol, each with366

a low pass filter with a time constant of 250 ms) that received spikes from neurons in the LSNN,367

see the row “Output” in Fig. 5A). The final output symbol was selected using the readout which368

had the maximum value at the end of each 500 ms time window (a softmax instead of the hard369

argmax was used during training), mimicking winner-take-all computations in neural circuits of370

the brain (Chettih and Harvey, 2019) in a qualitative manner.371

After training, an LSNN was able to apply duplication and reversal also to new sequences,372

achieving a success rate of 0.9588 (average over 5 random seeds) for unseen sequences. The373

“success rate” was defined as the fraction of test episodes/trials where the full output sequence was374

generated correctly. Sample episodes of the trained LSNN are shown in Fig. 5A. For comparison,375

we also trained a LIF network in exactly the same way with the same number of neurons. It376

achieved a performance of 0.0 (zero).377

Emergent coding properties of neurons in the LSNN are analyzed in Fig. 5B-F. Neurons are378

sorted in Fig. 5B,C according to the time of their peak activity (averaged over 1000 episodes), like379

in (Harvey et al., 2012). A number of network neurons (about one-third) participate in sequential380

firing activity independent of the type of task and the symbols involved (Fig. 5B). Instead, these381

neurons have learned to abstract the overall timing of the tasks. This kind of activity is reminiscent382

of the neural activity relative to the start of a trial that was recorded in rodents after they had383

learned to solve tasks that had a similar duration (Tsao et al., 2018).384

The time of peak activity of other neurons depended on the task and the concrete content,385

see Fig. 5C. Interestingly enough, these neurons change their activation order already during the386

loading of the input sequence in dependence of the task (duplication or reversal). Using 3-way387

ANOVA, we were able to categorize each neuron as selective to a specific condition or a non-linear388

combination of conditions based on the effect size ω2. Each neuron could belong to more than one389

category if the effect size was above the threshold of 0.14 (as suggested by (Field, 2013)). Similar390

to recordings from the brain (Carpenter et al., 2018), a diversity of neural codes emerged that391

encode one or several of the variables symbol identity, serial position in the sequence, and type of392

task. In other words, a large fraction of neurons are mixed-selective, i.e. selective to non-linear393

combinations of all three variables. Peri-condition time histogram (PCTH) plots of two sample394

neurons are shown in Fig. 5E,F: One neuron is selective to symbol “g” but at different positions395

depending on task context. The other neuron is selective to symbol “C” occurring at position 5 in396

the input, independent of task context. Thus one sees that a realization of this task by an SNN,397

which was previously not available, provides rich opportunities for a comparison of emergent spike398

codes in the model and neuronal recordings from the brain.399

Discussion400

An important open problem in computational neuroscience is to understand how brains carry out401

computations that involve not just current cues, but information from the recent past. In fact,402

brains are able to store not just single bits for subsequent computational use over a time scale of403

many seconds, but previously experienced images, movie scenes, and dialogues that require a fairly404

large storage capacity. This problem is usually formulated as a question about the implementation405

of working memory — or short-term memory — in the brain. But this formulation is somewhat406
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biased against the possibility that computing and short-term memory are so intertwined in neural407

networks of the brain that it becomes really difficult to separate mechanisms and network modules408

that hold short-term memory from those that constitute the computational machinery of the409

network.410

There already exists fairly wide agreement that different forms of working or short-term memory411

can be distinguished in the brain, see e.g. (Olivers et al., 2011; Kamiński and Rutishauser, 2019;412

Masse et al., 2019). Recent experimental data show clearly that, for a highly trained task, discrete413

attractors of the network dynamics, implemented by persistent firing, hold an intended movement414

direction in the anterior lateral motor cortex (Inagaki et al., 2019). But the question remains415

whether the brain uses the same mechanism — especially without extensive training — for holding416

quickly changing high-dimensional memory content, such as a movie scene, previously read text, or417

a sequence of images. Neural codes for storing information from a sequences of two images — after418

extensive training — had been examined in (Warden and Miller, 2007). A complex interaction was419

found between the memory traces of two sequentially presented images, thereby speaking against420

an assumption that each is held by a separate discrete attractor in working memory.421

Several publications argue that the brain uses a variety of mechanisms for working memory,422

each with its specific advantages and disadvantages, whose engagement depends on the specific423

task (Olivers et al., 2011; Trübutschek et al., 2017; Kamiński and Rutishauser, 2019; Barbosa424

et al., 2019; Hu et al., 2020). In particular, (Wolff et al., 2017; Trübutschek et al., 2017; Kamiński425

and Rutishauser, 2019; Masse et al., 2019; Barbosa et al., 2019) point to an activity-silent form426

of working memory that is used by the brain for maintaining working memory while it is not in427

the focus of attention. A model for such activity-silent memory had been proposed already in428

(Mongillo et al., 2008), based on facilitating short-term plasticity of synapses. This mechanism429

requires a facilitating short-term plasticity of synapses between excitatory neurons (pyramidal430

cells), which had previously been discovered in the medial prefrontal cortex of ferret (Wang et al.,431

2006). However the model of (Mongillo et al., 2008) used a time constant of 1500 ms for the time432

constant F of facilitation, whereas this parameter for the facilitation-dominant synapse type E1433

of (Wang et al., 2006) has a reported average value of 507 ms with a standard deviation of 37434

ms. An experimentally testable prediction of this form of activity-silent working memory is that435

an unspecific network reactivation between storage and recall would make the content of working436

memory decodable from the resulting network activity. However, the experimental data of (Wolff437

et al., 2017) do not support this prediction.438

We examined in this paper whether the arguably most prominent dynamic feature of neurons439

on the time-scale of seconds, SFA, supports computations that require a working memory. Experi-440

mental data show that SFA does in fact produce history-dependence of neural firing on a time scale441

of several seconds up to 20 seconds (Pozzorini et al., 2013, 2015). We found that this prominent442

feature of a fairly large fraction of neurons in the neocortex provides an inherent working memory443

capability to neural networks. Our results suggest that this working memory capability is func-444

tionally quite powerful, and enables networks of spiking neurons to solve a variety of cognitively445

demanding tasks that were previously beyond the reach of SNN models. In particular, SFA enables446

flexible operations on sequences of symbols (Fig. 4, 5). This allows us, for the first time, to study447

emergent neural codes for symbols and their position in a sequence in a model network of spiking448

neurons, and to compare them with recordings from neurons in the neocortex for corresponding449

tasks (Fig. 5). When we compared the contribution of SFA with the contribution of the other two450

most prominent slow processes in neurons or synapses, synaptic facilitation and synaptic depres-451

sion, we found that the contribution of SFA is substantially more powerful for a basic working452

memory task (Fig. 3A). A comparison for a demanding time series classification task with a lower453

demand on the retention time span (Fig. 3C) suggests that synaptic depression works for such tasks454

about equally well, but not synaptic facilitation. The good performance of synaptic depression455

for tasks that require shorter retention time of working memory is consistent with the modelling456

results of (Masse et al., 2019) and (Hu et al., 2020). However, as already pointed out in (Masse457

et al., 2019), synaptic depression tends to work best for tasks that require rather short working458

memory maintenance. Our results are also consistent with the finding of (Masse et al., 2019) that459

persistent activity is more prominent if the working memory content has to be manipulated, rather460

than just maintained. Compare the higher firing activity in Fig. S3B for the sMNIST task that461

requires continuous manipulation of working memory content with the low firing activity in Fig. 2,462
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where the working memory content just has to be maintained. One sees this difference also in the463

sequence manipulation task of Fig. 5. There the working memory just has to be maintained during464

the first half of a trial, yielding an average firing rate of 16.6 Hz over all neurons. But this average465

firing rate increased to 26.7 Hz during the second halfs of the trials, where the stored information466

had to be manipulated (averages taken over 50,000 trials during testing).467

On first sight one might think that working memory can only be held in neural activity through468

increased firing. Our results show that it can just as well be attained through decreased firing,469

which is the way how neurons with SFA provide evidence of preceding strong activation. Whereas470

this mechanism may be intuitively less plausible, it looks equally viable from the perspective of471

downstream networks in the brain. Whether preceding firing activity leaves a positive or nega-472

tive imprint in subsequent firing appears to be of secondary relevance for readout neurons if the473

downstream integration of evidence involves a weighted sum, since weights can have positive or474

negative signs. One may argue that there are actually, from the systems-perspective, two benefits475

in maintaining working memory in the form of a negative imprint, i.e., through decreased excitabil-476

ity of neurons. One is that encoding working memory through non-firing consumes less energy.477

Another is that this form of working memory is less vulnerable to disturbances through interven-478

ing network activity, since a decreased excitability protects a neuron from accidental activation —479

and hence potential overwriting of its memory content. One first piece of experimental evidence480

for the negative imprinting hypothesis was provided by the previously mentioned result of (Wolff481

et al., 2017). It was examined there whether a classifier that had been trained to decode from the482

network activity the stored memory content during encoding would be able to decode the memory483

content also during a subsequent network reactivation through an unspecific impulse. The answer484

was negative, which is consistent with the negative imprinting hypothesis. We confirmed for the485

task of Fig. 2 that the same holds true for our model with SFA (see subsection “Decoding memory486

from the network activity” in Methods). It is actually well-known that negative imprinting is used487

by the brain for a particular type of long-term memory called recognition memory: Familiarity of488

an object is encoded through reduced firing of a large fraction of neurons in the perirhinal cortex489

and adjacent areas, see (Winters et al., 2008) for a review.490

A major structural difference between standard models for neural networks in the brain and491

artificial neural networks (ANNs) that are used in artificial intelligence and deep learning for solving492

computational tasks that involve memory from the recent past lies in the type of neurons (units)493

that are used. Well-performing ANNs usually employ LSTM units or similar units that allow to494

store a bit or analog variable in a memory register — like in a digital computer — where it is495

protected from perturbation by ongoing network activity. Our results show — rather surprisingly496

— that such drastic protection of working memory content is not needed: We showed that almost497

the same performance can be achieved by LSNNs, i.e., SNNs that contain neurons with SFA. This498

holds in spite of the fact that memory content that is stored in an adaptive firing threshold of a499

neuron with SFA is not fully protected from the disturbance through network activity. But it is at500

least somewhat shielded, because a neuron that holds memory in the form of an increased firing501

threshold has an inherent tendency not to respond to smaller membrane depolarizations.502

Our results show that biologically rather realistic models for spiking neural networks in the503

brain that also contain neurons with SFA reach for demanding cognitive tasks for the first time504

the performance level of humans, which could previously only be reached with ANNs that employ505

biologically unrealistic LSTM units. This paves the way for reaching a key-goal of brain modelling506

— to combine detailed experimentally data from neurophysiology on the level of neurons and507

synapses with brain-like functionality of the network.508

Recurrent networks of spiking neurons are also of interest from the perspective of novel comput-509

ing technology. Spike-based computing hardware has the potential to provide substantially more510

energy-efficient implementations of artificial intelligence and deep learning results than standard511

digital hardware. But its performance has so far been significantly inferior to that of non-spiking512

neural networks. Our results show that this performance gap is becoming quite small for the case513

of recurrent neural networks if one integrates neurons with SFA into the spike-based network.514

Altogether, we have shown that a well-known feature of a substantial fraction of neurons in the515

neocortex — SFA — provides an important new facet to our understanding of computations in516

SNNs: It enables SNNs to integrate working memory from the recent past seamlessly into ongoing517

network computations.518
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Materials and Methods519

Table of Contents:520
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• Tasks524

Adaptation index525

The adaptation index (AI) is a quantitative measure of firing rate adaptation that has been
recorded for a wide variety of cells in the Allen institute database (Allen Institute, 2018). It
measures the rate at which firing of a spiking neuron speeds up or slows down when the neuron is
fed with a step current of 1 second. Given the induced spike times, it is defined as:

1

N − 1

N−1∑
n=1

ISIn+1 − ISIn
ISIn+1 + ISIn

,

where ISIn is n-th inter spike interval (ISI) and N is the number of ISIs induced during the stimulus526

duration. Hence regular doubling of the ISI produces for example AI = 0.33.527

Network models528

Leaky integrate and fire (LIF) neurons. A LIF neuron j spikes as soon at its membrane529

potential Vj(t) is above its threshold vth. At each spike time t, the membrane potential Vj(t) is530

reset by subtracting the threshold value vth and the neuron enters a strict refractory period for 2531

to 5 ms (depending on the experiment) where it cannot spike again. Between spikes the membrane532

voltage Vj(t) is following the dynamic:533

τmV̇j(t) = −Vj(t) +RmIj(t).

Our simulations were performed in discrete time with a time step δt = 1 ms. In discrete534

time, the input and output spike trains are modeled as binary sequences xi(t), zj(t) ∈ {0, 1
δt}535

respectively. Neuron j emits a spike at time t if it is currently not in a refractory period, and its536

membrane potential Vj(t) is above its threshold. During the refractory period following a spike,537

zj(t) is fixed to 0. The neural dynamics in discrete time reads as follows:538

Vj(t+ δt) = αVj(t) + (1− α)RmIj(t)− vthzj(t)δt, (2)

where α = exp(− δt
τm

) , with τm being the membrane constant of the neuron j. The spike of neuron539

j is defined by zj(t) = H
(
Vj(t)−vth

vth

)
1
δt , with H(x) = 0 if x < 0 and 1 otherwise. The term540

−vthzj(t)δt implements the reset of the membrane voltage after each spike.541

In all simulations the Rm was set to 1 GΩ. The input current Ij(t) is defined as the weighted542

sum of spikes from external inputs and other neurons in the network:543

Ij(t) =
∑
i

W in
ji xi(t− dinji ) +

∑
i

W rec
ji zi(t− drecji ), (3)

where W in
ji and W rec

ji denote respectively the input and the recurrent synaptic weights and dinji544

and drecji the corresponding synaptic delays.545

546

Adaptive leaky integrate and fire (ALIF) neurons. An ALIF neuron extends the LIF547

neuron with an SFA mechanism. The SFA is realized by replacing the fixed threshold vth with the548

adaptive threshold Aj(t) which follows the dynamic described in equation (1). The spiking output549

of ALIF neuron j is then defined by zj(t) = H(
Vj(t)−Aj(t)

Aj(t)
) 1
δt .550
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Adaptation time constants of ALIF neurons were chosen to match the task requirements while551

still conforming to the experimental data from rodents (Allen Institute, 2018; Pozzorini et al.,552

2013, 2015; Mensi et al., 2012). For an analysis of the impact of the adaptation time constants on553

the performance see Table S1 in Supplement.554

555

LIF neurons whose excitability gets increased through their firing: ELIF neurons.556

There exists experimental evidence that some neurons fire for the same stimulus more for a rep-557

etition of the same sensory stimulus. We refer to such neurons as ELIF neurons, since they are558

becoming more excitable. Such repetition enhancement was discussed for example in (Tartaglia559

et al., 2015). But to the best of our knowledge, it has remained open whether repetition enhance-560

ment is a network effect, resulting for example from a transient depression of inhibitory synapses561

onto the cell that is caused by postsynaptic firing (Kullmann et al., 2012), or a result of an intrinsic562

firing property of some neurons. We used a simple model for ELIF neurons that is dual to the563

ALIF neuron model: The threshold is lowered through each spike of the neuron, and then decays564

exponentially back to its resting value. This can be achieved by using a negative value for β in565

equation (1).566

567

Models for Short-Term Plasticity (STP) of synapses. We modelled the STP dynamic568

according to the classical model of STP in (Mongillo et al., 2008). The STP dynamics in discrete569

time, derived from the equations in (Mongillo et al., 2008), are as follows:570

u′ji(t+ δt) = exp

(
−δt
F

)
u′ji(t) + Uji(1− uji(t))zi(t)δt, (4)

uji(t+ δt) = Uji + u′ji(t), (5)

r′ji(t+ δt) = exp

(
−δt
D

)
r′ji(t) + uji(t)(1− r′ji(t))zi(t)δt, (6)

rji(t+ δt) = 1− r′ji(t), (7)

WSTP
ji (t+ δt) = W rec

ji uji(t)rji(t), (8)

where zi(t) is the spike train of the pre-synaptic neuron and W rec
ji scales the synaptic efficacy of571

synapses from neuron i to neuron j. Networks with STP were constructed from LIF neurons with572

the weight W rec
ji in equation (3) replaced by the time dependent weight WSTP

ji (t).573

STP time constants of facilitation-dominant and depression-dominant network models were574

based on values of experimental recordings in (Wang et al., 2006) of PFC-E1 and PFC-E2 synapse575

types respectively. Recordings in (Wang et al., 2006) were performed in medial prefrontal cortex of576

young adult ferrets. For the STORE-RECALL task, both facilitation and depression time constants577

were equally scaled up until the larger time constant matched the requirement of the task (see578

section on “Comparing networks with different slow processes” below). In the sMNIST task for579

the depression-dominant network model (STP-D) we used values based on PFC-E2: F = 20 ms,580

D = 700 ms and U = 0.2, and for facilitation-dominant network model (STP-F) we used values581

based on PFC-E1: F = 500 ms, D = 200 ms and U = 0.2.582

583

Weight initialization. Initial input and recurrent weights were drawn from a Gaussian distribu-584

tion Wji ∼ w0√
nin
N (0, 1), where nin is the number of afferent neurons and N (0, 1) is the zero-mean585

unit-variance Gaussian distribution and w0 = 1Volt
Rm

δt is a normalization constant (Bellec et al.,586

2018b).587

Training methods588

BPTT. In artificial recurrent neural networks such as LSTMs, gradients can be computed with589

backpropagation through time (BPTT ). In spiking neural networks, complications arise from the590

non-differentiability of the output of spiking neurons. In our discrete time simulation, this is591

formalized by the discontinuous step function H arising in the definition of the spike variable zj(t).592

All other operations can be differentiated exactly with BPTT. For feedforward artificial neural593

networks using step functions, a solution was to use a pseudo derivative H ′(x) := max{0, 1− |x|},594
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but we observed that this convention is unstable with recurrently connected neurons. We found595

that dampening this pseudo-derivative with a factor γ < 1 (typically γ = 0.3) solves that issue.596

Hence we use the pseudo-derivative:597

dzj(t)

dvj(t)
:= γmax{0, 1− |vj(t)|}, (9)

where vj(t) denotes the normalized membrane potential vj(t) =
Vj(t)−Aj(t)

Aj(t)
. Importantly, gradients598

can propagate in adaptive neurons through many time steps in the dynamic threshold without599

being affected by the dampening.600

601

e-prop. In the 12AX task the networks were trained using biologically plausible learning method602

random e-prop (Bellec et al., 2019) in addition to BPTT.603

Tasks604

The STORE-RECALL task of Fig. 2 The input to the network consisted of STORE, RE-605

CALL, and 20 bits which were represented by sub-populations of spiking input neurons. STORE606

and RECALL commands were represented by 4 neurons each. The 20 bits were represented by607

population coding where each bit was assigned 4 input neurons (2 for value zero, and 2 for value608

one). When a sub-population is active, it would exhibit a Poisson firing with frequency of 400 Hz.609

To measure the generalization capability of a trained network, we first generate a test set dictio-610

nary of 20 unique feature vectors (random bit strings of length 20) that have at least a Hamming611

distance of 5 bits among each other. For every training batch a new dictionary of 40 random bit612

strings (of length 20) would be generated where each string has a Hamming distance of at least 5613

bits from any of the bit string in the test set dictionary. This way we ensure that, during training,614

a network never encounters any bit string similar to one from the test set. Each input sequence615

consisted of 10 steps (200 ms each) where a different population encoded bit string is shown during616

every step. Only during the RECALL period, the 20 bit input populations are silent. At every617

step, the STORE or the RECALL populations were activated interchangeably with probability618

0.2 which resulted in distribution of delays between the STORE-RECALL pairs in the range [200,619

1600] ms.620

The training and the test performance were computed as average over 256 and 512 random621

input sequences respectively. Networks were trained for 4000 iterations and stopped if the error622

on the training batch was below 1%. We used the Adam optimizer with default parameters and623

initial learning rate of 0.01 which is decayed every 200 iterations by a factor of 0.8. We also used624

learning rate ramping, which, for the first 200 iterations, monotonically increased the learning625

rate from 0.00001 to 0.01. To avoid unrealistically high firing rates, the loss function contained626

a regularization term (scaled with coefficient 0.001) that minimizes the squared difference of the627

average firing rate of individual neurons from a target firing rate of 10 Hz. To improve convergence,628

we also included an entropy component to the loss (scaled with coefficient 0.3) which was computed629

as the mean of the entropies of the sigmoid neurons outputs.630

We trained an ALIF network and a LIF network, both consisting of 500 recurrently connected631

neurons. The membrane time constant was τm = 20 ms. For adaptation parameters we used632

βALIF = 4 mV and τa = 800 ms with baseline threshold voltage 10 mV. Synaptic delay was 1 ms.633

The input to the sigmoidal readout neurons were the neuron traces that were calculated by passing634

all the network spikes through a low-pass filter with a time constant of 20 ms.635

We ran 5 training runs with different random seeds for both ALIF and LIF network models.636

All runs of the ALIF network converged after ∼ 3600 iterations to a training error below 1%. At637

that point we measured the accuracy on 512 test sequences generated using the previously unseen638

test bit strings which resulted in test accuracy of 99.09% with standard deviation of 0.17%. The639

LIF network was not able to solve the task in any of the runs (all runs resulted in 0% training640

and test accuracy with zero standard deviation). On the level of individual feature recall accuracy,641

the best out of 5 training runs of the LIF network was able to achieve 49% accuracy which is642

the chance level since individual features are binary bits. In contrast, all ALIF network runs had643

individual feature level accuracy of above 99.99%.644
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645

Decoding memory from the network activity. We trained a Support Vector Machine (SVM)646

to classify the stored memory content from the network spiking activity in the step before the647

RECALL (200 ms before the start of RECALL command). We performed a cross-validated grid-648

search to find the best hyperparameters for the SVM which included kernel type [linear, polynomial,649

RBF] and penalty parameter C of the error term [0.1, 1, 10, 100, 1000]. We trained SVMs on650

test batches of the 5 different training runs (see above). SVMs trained on the period preceding651

the RECALL command of a test batch achieved an average of 4.38% accuracy with standard652

deviation of 1.29%. In contrast SVMs trained on a period during the RECALL command achieved653

an accuracy of 100%. This demonstrates that the memory stored in the network is not decodable654

from the network firing activity before the RECALL input command.655

Additionally, analogous to the experiments of (Wolff et al., 2017), we trained SVMs on network656

activity during the encoding (STORE) period and evaluated them on the network activity during657

reactivation (RECALL), and vice versa. In both scenarios, the classifiers were not able to classify658

the memory content of the evaluation period (0.0% accuracy).659

660

Comparing networks with different slow processes on a simplified version of the661

STORE-RECALL task. For the comprehensive comparison of networks endowed with dif-662

ferent slow processes in neuron and synapse dynamics we used a single dimensional version of the663

STORE-RECALL task where only a single feature needs to be stored and recalled from memory.664

The input to the network consisted of 40 input neurons: 10 for STORE, 10 for RECALL, and665

20 for population coding of a binary feature. Each sequence consisted of 20 steps (200 ms each)666

where the STORE or the RECALL populations were activated with probability 0.09 interchange-667

ably which resulted in delays between the STORE-RECALL pairs to be in the range [200, 3600]668

ms.669

The training batch and the test performance were computed as average over 128 and 2048670

random input sequences respectively. All networks were trained for 400 iterations. We used the671

Adam optimizer with default parameters and initial learning rate of 0.01 which was decayed every672

100 iterations by a factor of 0.3. The same firing rate regularization term was added to the loss673

as in the original STORE-RECALL setup (see above).674

All networks consisted of 60 recurrently connected neurons. The membrane time constant was675

τm = 20 ms. For ALIF and ELIF networks, we used βALIF = 1 mV and βELIF = −0.5 mV with676

τa = 2000 ms. Synapse parameters of STP-D network were F = 51 ± 15 ms, D = 2000 ± 51 ms677

and U = 0.25, and of STP-F network F = 2000 ± 146 ms, D = 765 ± 71 ms and U = 0.28. The678

baseline threshold voltage was 10 mV for all models except ELIF for which it was 20 mV. Synaptic679

delay was 1 ms across all network models.680

681

Google Speech Commands task. Features were extracted from the raw audio using the Mel682

Frequency Cepstral Coefficient (MFCC) method with 30 ms window size, 1 ms stride and 40 output683

features. The network models were trained to classify the input features to one of the 10 keywords684

(yes, no, up, down, left, right, on, off, stop, go) or to two special classes for silence or unknown685

word (where the remainder of 20 recorded keywords are grouped). The training, validation and686

test set were assigned 80, 10, and 10 percent of data respectively while making sure that audio687

clips from the same person stay in the same set.688

All networks were trained for 18,000 iterations using the Adam optimizer with batch size 100.689

The output spikes of the networks were averaged over time, and the linear readout layer was applied690

to those values. During the first 15,000 we used a learning rate of 0.001 and for the last 3000 we691

used a learning rate of 0.0001. The loss function contained a regularization term (scaled with692

coefficient 0.001) that minimizes the squared difference of average firing rate between individual693

neurons and a target firing rate of 10 Hz.694

Both ALIF and LIF networks consisted of 2048 fully connected neurons in a single recurrent695

layer. The neurons had a membrane time constant of τm = 20 ms, the adaptation time constant696

of ALIF neurons was τa = 100 ms, adaptation strength was β = 2 mV. The baseline threshold was697

vth = 10 mV, and the refractory period was 2 ms. Synaptic delay was 1 ms.698

699

Delayed-memory XOR task. The pulses on the two input channels were generated with 30700
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ms duration and the shape of a normal probability density function normalized in the range [0, 1].701

The pulses were added or subtracted from the baseline zero input current at appropriate delays.702

The go-cue was always a positive current pulse. The 6 possible configurations of the input pulses703

(+, −, ++, −−, +−, −+) were sampled with equal probability during training and testing.704

Networks were trained for 2000 iterations using the Adam optimizer with batch size 256. The705

initial learning rate was 0.01 and every 200 iterations the learning rate was decayed by a factor of706

0.8. The loss function contained a regularization term (scaled with coefficient 50) that minimizes707

the squared difference of the average firing rate of individual neurons from a target firing rate of708

10 Hz. This regularization resulted in networks with mean firing rate of 10 Hz where firing rates709

of individual neurons were spread in the range [1, 16] Hz.710

Both ALIF and LIF networks consisted of 80 fully connected neurons in a single recurrent layer.711

The neurons had a membrane time constant of τm = 20 ms, a baseline threshold vth = 10 mV, and712

a refractory period of 3 ms. ALIF neurons had an adaptation time constant of τa = 500 ms and an713

adaptation strength of β = 1 mV. Synaptic delay was 1 ms. For training the network to classify714

the input into one of the three classes, we used the cross-entropy loss between the labels and the715

softmax of three linear readout neurons. The input to the linear readout neurons were the neuron716

traces that were calculated by passing all the network spikes through a low-pass filter with a time717

constant of 20 ms.718

719

The sequential MNIST (sMNIST) task. The input consisted of sequences of 784 pixel values720

created by unrolling the handwritten digits of the MNIST dataset, one pixel after the other in a721

scanline manner as indicated in Fig. S3A. For comparing different spiking network models, we used722

1 ms presentation time for each pixel (Fig. 3C). LSTM networks also work well for tasks on larger723

time-scales. Hence for comparing LSNNs with LSTM networks, we used a version of the task with724

2 ms presentation time per pixel, thereby doubling the length of sequences to be classified to 1568725

ms (Fig. 3D). A trial of a trained LSNN (with an input sequence that encodes a handwritten digit726

“3” using population rate coding) is shown in Fig. S3B. The top row of Fig. S3B shows a version727

where the grey value of the currently presented pixel is encoded by population coding, through the728

firing probability of 80 input neurons. Somewhat better performance was achieved when each of729

the 80 input neurons was associated with a particular threshold for the grey value, and this input730

neuron fired whenever the grey value crossed its threshold in the transition from the previous to731

the current pixel (this input convention was used for the results of Fig. 3C,D). Grey values of732

pixels were presented to the LSTM network simply as analog numbers.733

Networks were trained for 36,000 iterations using the Adam optimizer with batch size 256. The734

initial learning rate was 0.01 and every 2500 iterations the learning rate was decayed by a factor of735

0.8. The loss function contained a regularization term (scaled with coefficient 0.1) that minimizes736

the squared difference of average firing rate between individual neurons and a target firing rate of737

10 Hz.738

The neurons had a membrane time constant of τm = 20 ms, a baseline threshold of vth = 10 mV,739

and a refractory period of 5 ms. The adaptation time constants of ALIF and ELIF neurons were740

τa = 700 ms in Fig. 3C. ALIF neurons had τa = 1400 ms in Fig. 3D. The adaptation strength of741

ALIF neurons was β = 1.8 mV, and of ELIF neurons β = −0.9 mV. Synaptic delay was 1 ms. The742

output of the LSNN is produced by the softmax of 10 linear output neurons that receive spikes743

from all neurons in the network, as shown in the bottom row of Fig. S3B. For training the network744

to classify to one of the ten classes we used cross-entropy loss computed between the labels and the745

softmax of output neurons. The input to the linear readout neurons were the neuron traces that746

were calculated by passing all the network spikes through a low-pass filter with a time constant of747

20 ms.748

749

The 12AX task. The input for each training and testing episode consisted of a sequence of 90750

symbols from the set {1,2,A,B,C,X,Y,Z}. A single episode could contain multiple occurrences of751

digits 1 or 2 (up to 23), each time changing the target sequence (A...X or B...Y) after which the752

network was supposed to output R. Each digit could be followed by up to 26 letters before the next753

digit appeared. More precisely, the following regular expression describes the string that is pro-754

duced: [12][ABCXYZ]{1,10}((A[CZ]{0,6}X|B[CZ]{0,6}Y)|([ABC][XYZ])){1,2}. Each choice755

in this regular expression is made randomly.756
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The neurons had a membrane time constant of τm = 20 ms, a baseline threshold vth = 30 mV,757

a refractory period of 5 ms, and synaptic delays of 1 ms. ALIF neurons had an adaptation strength758

of β = 1.7 mV, and adaptation time constants were chosen uniformly from [1, 13500] ms.759

A cross-entropy loss function was used along with a regularization term (scaled with coefficient760

15) that minimizes the squared difference of average firing rate between individual neurons and a761

target firing rate of 10 Hz. The LSNN was trained for 10,000 iterations with a batch size of 20762

episodes and a fixed learning rate of 0.001. An episode consisted of 90 steps, with between 4 to763

23 tasks generated according to the task generation procedure described previously. We trained764

the network with BPTT using 5 different seeds, which resulted in average test success rate 97.79%765

with standard deviation 0.42%. The network trained with random e-prop using 5 different seeds766

resulted in average test success rate 92.89% with standard deviation 0.75%.767

768

Symbolic computation on strings of symbols. The input to the network consisted of 35769

symbols - 31 symbols represented symbols from the English alphabet {a, b, c, d, ... x, y, z, A,770

B, C, D, E}, one symbol was for “end-of-string” (EOS) ‘*’, one for cue for the output prompt771

‘?’, and two symbols to denote whether the task instruction was duplication or reversal. The task772

and the rest of the symbols were encoded using separate one-hot vectors of dimension 2 and 33773

respectively. Inputs to the network were transformed into spike trains using a population of 5774

spiking neurons for each input component for a total of 175 input neurons. This population fired775

at a “high” rate (200 Hz) to encode 1, and at a “low” rate (2 Hz) otherwise. The output consisted776

of 32 linear readouts: 31 for symbols from the English alphabet and one additional readout for777

the “end-of-string” symbol. The input to these linear readouts was the value of neuron traces at778

the end of each step of 500 ms during the output period, i.e, the second half of each episode. The779

neuron traces were calculated by passing all the network spikes through a low-pass filter with a780

time constant of 250 ms. The final output symbol was produced using the argmax over the value781

of all the readouts (a softmax instead of the hard argmax was used during training). The network782

was trained to minimize the cross entropy error between the softmax applied on the output layer783

and targets. The loss function contained a regularization term (scaled with coefficient 5) that784

minimizes the squared difference of average firing rate between individual neurons and a target785

firing rate of 20 Hz.786

The training was performed for 50,000 iterations, with a batch size of 50 episodes. We used787

the Adam optimizer with default parameters and fixed learning rate of 0.001. Each symbol was788

presented to the network for a duration of 500 ms. The primary metric we used for measuring789

the performance of the network was success rate, which was defined as the percentage of episodes790

where the network produced the full correct output for a given string i.e. all the output symbols791

in the episode had to be correct. The network was tested on 50,000 previously unseen strings.792

The network consisted of 128 LIF and 192 ALIF neurons. All the neurons had a membrane793

time constant of τm = 20 ms, a baseline threshold vth = 30 mV, a refractory period of 5 ms, and a794

synaptic delay of 1 ms. ALIF neurons in the network had an adaptation strength of β = 1.7 mV,795

and an adaptation time constant randomly uniformly chosen from the range [1, 6000] ms. All796

other parameters were the same as in the other experiments. We trained the network using 5797

different seeds and tested it on previously unseen strings. Average test success rate was 95.88%798

with standard deviation 1.39%.799

800

Analysis of spiking data. We used 3-way ANOVA to analyze if a neuron’s firing rate is signif-801

icantly affected by task, serial position in the sequence, symbol identity, or combination of these802

(similar to (Lindsay et al., 2017)). We refer to these factors as “conditions”. The analysis was803

performed on the activity of the neurons of the trained LSNN during 50,000 test episodes. For804

the analysis, neurons whose average firing rate over all episodes was lower than 2Hz or greater805

than 60Hz were discarded from the analysis to remove large outliers. This left 279 out of the 320806

neurons. From each episode, a serial position from the input period was chosen randomly, and807

hence each episode could be used only once, i.e., as one data point. This was to make sure that808

each entry in the 3-way ANOVA was completely independent of other entries, since the neuron809

activity within an episode is highly correlated. Each data point was labeled with the corresponding810

triple of (task type, serial position, symbol identity). To ensure that the dataset was balanced,811

the same number of data points per particular combination of conditions was used, discarding812
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all the excess data points, resulting in a total of 41,850 data points. To categorize a neuron as813

selective to one or more conditions, or combination of conditions, we observed p-values obtained814

from 3−way ANOVA and calculated the effect size ω2 for each combination of conditions. If the815

p-value was smaller than 0.001 and ω2 greater than 0.14 for a particular combination of conditions,816

the neuron was categorized as selective to that combination of conditions. The ω2 threshold of817

0.14 was suggested by (Field, 2013) to select large effect sizes. Each neuron can have large effect818

size for more than one combination of conditions. Thus the values shown in Fig. 5D sum to > 1.819

The neuron shown in Fig. 5E had the most prominent selectivity for the combination of Task ×820

Position × Symbol, with ω2 = 0.394 and p < 0.001. The neuron shown in Fig. 5F was categorized821

as selective to a combination of Position × Symbol category, with ω2 = 0.467 and p < 0.001.822

While the 3-way ANOVA tells us if a neuron is selective to a particular combination of conditions,823

it does not give us the exact task/symbol/position that the neuron is selective to. To find the824

specific task/symbol/position that the neuron was selective to, Welch’s t-test was performed, and825

a particular combination with maximum t-statistic and p < 0.001 was chosen to be shown in826

Fig. 5E,F.827
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Figures and Tables951

Figure 1: Experimental data on neurons with SFA, and a simple model for SFA. (A)
The response to a 1-second long step current is displayed for three sample neurons in the neocortex.
The adaptation index AI measures the rate of increase of interspike intervals. AI > 0 means that
a neuron exhibits SFA. (B) Distribution of adaptation indices in neurons from human and rodent
neocortex. Source of data for A and B: (Allen Institute, 2018). (C) Response of a simple model
for a neuron with SFA — the adaptive LIF (ALIF) model — to the same input current as in A.
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Figure 2: High-dimensional working memory capability of an LSNN. Rows top to bot-
tom: Stream of randomly drawn 20 dimensional input patterns, represented by the firing activity
of 20 populations of input neurons (subsampled), firing activity of two additional populations of
input neurons for the STORE and RECALL commands, firing activity of 25 sample ALIF neurons
in the LSNN (we first ordered all ALIF neurons with regard to the variance of their dynamic firing
thresholds, and then picked every 20th), temporal evolution of the firing thresholds of these 25 neu-
rons, traces of the activation of 20 sigmoidal readout neurons, and their average value during the
200 ms time window of the RECALL command represented by grey values. During the RECALL
command (green shading) the network successfully reproduced the pattern that had been given as
input during the preceding STORE command (yellow shading). Coloring of the threshold traces
in blue or red was done after visual inspection to highlight the emergent two disjoint populations
of ALIF neurons. The activity of one of them peaks during the STORE command, and provides
a negative imprint of the stored pattern during RECALL through a reduced firing response. The
other one peaks during RECALL.
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Figure 3: Performance comparisons for common benchmark tasks that require sub-
stantial integration of information over time. (A) Learning curves of networks with different
slow processes, for a 1D version of the STORE-RECALL task from Fig. 2. The standard SNN
(“LIF”) as well as SNNs with STP-F cannot learn the task. SNNs with STP-D come closest to
the performance level of the LSNN, but require substantially longer training. Mean accuracy and
standard deviation are shown for 7 runs with different network initializations for all 5 network
types. (B) Trained LSNN solving the delayed-memory XOR task (Huh and Sejnowski, 2018).
Plot of a trial with input consisting of two different types of pulses is shown. From top to bottom:
Input pulses, go cue, neuron spike raster, threshold traces, network output. (C) Learning curves
of five variants of the SNN model (same as in A) for the sMNIST time series classification task.
Mean accuracy and standard deviation are shown for a minimum of 4 runs with different network
initializations for all 5 network types. (D) sMNIST performance of two versions of LSNNs are
compared with that of an equally large network of LIF neurons, and an LSTM network. SC-LSNN
is a sparsely connected LSNN consisting of excitatory and inhibitory neurons.
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Figure 4: Solving the 12AX task by a network of spiking neurons (LSNN), trained
with random e-prop. A sample trial of the trained network is shown. From top to bottom:
Full input and target output sequence for a trial, consisting of 90 symbols each, blow-up for a
subsequence of the input symbols, firing activity of 10 sample LIF neurons and 10 sample ALIF
neurons from the LSNN, time course of the firing thresholds of these 10 ALIF neurons, activation
of the two readout neurons, the resulting sequence of output symbols which the network produced,
and the target output sequence.
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Figure 5: (Caption on the next page.)
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Figure 5: Analysis of an LSNN trained to carry out operations on sequences. (A)
Two sample episodes where the LSNN carried out sequence duplication (left) and reversal (right).
Top to bottom: Spike inputs to the network (subset), sequence of symbols they encode, spike
activity of 10 sample LIF, and ALIF neurons in the LSNN, firing threshold dynamics for these
10 ALIF neurons, activation of linear readout neurons, output sequence produced by applying
argmax to them, target output sequence. (B-F) Emergent neural coding of 279 neurons in the
LSNN. Neurons sorted by time of peak activity. (B) A substantial number of neurons are sensitive
to the generic timing of the tasks, especially for the second half of trials when the output sequence
is produced. (C) Neurons separately sorted for duplication episodes (left column) and reversal
episodes (right column). Many neurons respond to input symbols according to their serial position,
but differentially for different tasks. (D) Histogram of neurons categorized according to conditions
with statistically significant effect (3-way ANOVA). Firing activity of a sample neuron that fires
primarily when: (E) the symbol “g” is to be written at the beginning of the output sequence. The
activity of this neuron depends on the task context during the input period; (F) the symbol “C”
occurs in position 5 in the input, irrespective of the task context.
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Model test accuracy (%)

FastGRNN-LSQ (Kusupati et al., 2018) 93.18
LSNN 91.21
LIF network 89.04

Table 1: Google Speech Commands. Accuracy of the spiking network models on the test
set compared to the state-of-the-art artificial recurrent model reported in (Kusupati et al., 2018).
Accuracy of the best out of 5 simulations for LSNNs and LIF networks is reported.
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