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Abstract

Respiratory infections, such as the novel coronavirus (SARS-COV-2), and other lung
injuries infect and damage the pulmonary epithelium. In the most severe cases this
leads to acute respiratory distress syndrome (ARDS). Due to respiratory failure
associated with ARDS, the clinical intervention is the use of mechanical ventila-
tion. Despite the benefits of mechanical ventilators, pro-longed or misuse of these
ventilators may lead to ventilation-induced lung injury (VILI). Damage caused to
epithelial cells within the alveoli can lead to various types of complications and in-
creased mortality rates. A key component of the immune response is recruitment
of macrophages, immune cells that differentiate into phenotypes with unique pro-
and/or anti-inflammatory roles based on the surrounding environment. An imbal-
ance in pro- and anti-inflammatory responses can have deleterious effects on the
individual’s health. To gain a greater understanding of the mechanisms of the im-
mune response to VILI and post-ventilation outcomes, we develop a mathematical
model of interactions between the immune system and site of damage while account-
ing for macrophage polarization. Through Latin Hypercube Sampling and available
data, we generate a virtual cohort of patients with biologically feasible dynamics. We
use a variety of methods to analyze the results, including a random forest decision
tree algorithm and parameter sensitivity with eFAST. Analysis shows that parame-
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ters and properties of transients related to epithelial repair and M1 activation and
de-activation best predicted outcome. Using this new information, we hypothesize
interventions and use these treatment strategies to modulate damage in select virtual
patients.
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Mechanical Ventilation, Lung Inflammation, Mathematical Modeling, Epithelial
Cells, Macrophage Polarization

1. Introduction

Inflammation occurs in the lungs when an immune response is initiated to elimi-
nate an insult. Types of insults include inhaled pathogens, such pneumonia, tuber-
culosis or COVID-19, or harmful particles. In the most severe cases this leads to
acute respiratory distress syndrome (ARDS). Due to respiratory failure associated
with ARDS, the clinical intervention is the use of mechanical ventilation. When
COVID-19 infected individuals symptoms become severe, it can lead to respiratory
failure and death of the patients. In recent study, two thirds patients admitted for
COVID-19 required mechanical ventilation (Mahase, 2020).

Despite the benefits of mechanical ventilators, pro-longed or misuse of these ven-
tilators may lead to ventilation-induced lung injury (VILI). In this work we will
focus on the tissue damage associated with mechanical ventilation and resulting im-
mune cell recruitment. The damage caused to alveolar sacs (clusters of alveolar
cells) during mechanical ventilation can lead to volutrauma (extreme stress/strain),
barotrauma (air leaks), atelectrauma (repeated opening and closing of alveoli), and
biotrauma (general severe inflammatory response). If the trauma increases, it can
lead to multi-system organ failure (Halbertsma et al., 2005; Slutsky and Ranieri,
2013). It has also been shown that the inflammatory response of the elderly is al-
tered in the lungs and other areas (Provinciali et al., 2011; De Rekeneire et al.,
2006). As compared to younger individuals, increased levels of circulating inflamma-
tory cytokines and different immune cell function has been reported in older patients
(Canan et al., 2014). A 2003-2008 study conducted at Bridgeport Hospital reported
that 4,238 out of 9,912 (42.8%) patients received mechanical ventilation for a me-
dian of two days. Mortality or discharge to extended-care facilities increased for each
decade of age greater than 65 years (Feng et al., 2009). Additionally, the case fatality
rate for COVID-19 patients over 70-year-old and over 80-year-old was around 50.8%
and 14.8% of the total number of deaths, respectively (Wu and McGoogan, 2020).
This is in agreement with other studies reporting higher rates of severe outcomes in
patients with COVID-19 aged 65 or more (Bruno et al., 2020). The increase in the
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severity of VILI with patient age combined with the increased need for ventilation
and increased mortality rate among the elderly stresses the need to investigate the
influence of aging in VILI. The framework we have built here addresses VILI with
various parameters and initial conditions that can be narrowed, in future studies,
with data from different age groups and insults to explore dynamics and driving
factors in diseases.

Through mathematical modeling, we can understand more about the pulmonary
immune response and how treatments can be most effective in combating damage to
alveoli and immune cells. Towards this goal, we adapted a model developed by Torres
et al. for the innate immune response to bacteria, which accounts for macrophage
polarization, to include epithelial dynamics and stretch-induced recruitment of im-
mune cells (Torres et al., 2019). We use this model to understand the mechanisms
by which the immune system responds to damaged epithelial cells and the sensitiv-
ity of post-ventilation outcome to components of this complex process. We begin
this study by analyzing the epithelial subsystem mathematically. This allows us to
understand fixed point stability and how various parameters affect stability for the
new portion of the model. The full model is a large system of ordinary differential
equations with a large number of parameters and a variety of nonlinear dynamics.
Allowing the parameters in the model to vary over biologically feasible ranges using
Latin Hypercube sampling simulates the variety of immune system dynamics ob-
served in patients. We organize disease progressions into three categories, healthy,
persistent inflammation, and dying, based on the percentage of epithelial cells that
are healthy. To determine what is driving differences in outcome, we use a variety
of methods to analyze the resulting dynamics: 1) comparison of parameters associ-
ated with different outcomes, 2) random forest decision tree algorithm, which parses
through the variety of predictors that may be particularly important in the immune
response to VILI and 3) parameter sensitivity with eFAST, a variance-based method.

1.1. Biological background

The alveolar epithelium consist of alveolar type I and type II cells. Alveolar
type I cells make up about 95% of the alveolar surface and are primarily responsible
for facilitating gas exchange. Type II cells cover the other 5% of the surface and
are important in the innate immune response. In the presence of damage, these cells
proliferate to repair the epithelium and can also differentiate to type I cells (Matthay
et al., 2005; Mason, 2006). The extent to which the alveolar epithelium is damaged
is a useful indicator of the overall effects of a lung insult (Ware and Matthay, 2000).

The immune response is divided into innate (non-specific) and adaptive (acquired)
responses. Two of the most important innate immune cells are neutrophils and
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macrophages, which can be tissue-specific or recruited to the site upon damage. This
response is always present and ready to defend against pathogens or other insults.
On the other hand, the adaptive immune response includes B and T cells, which dif-
ferentiate in such a way that they are effective at fighting specific pathogens. They
are recruited by antigen-presenting cells, such as dendritic cells and macrophages,
that are a part of the innate immune response. We concentrate on the innate im-
mune system when modeling VILI to gain a better understanding of the epithelial
and immune cell interactions. Lung infection may lead to the need for mechanical
ventilation and the resulting model could be adapted to study mechanical ventila-
tion with infection in the future. Initially we consider a system in which the immune
response is triggered by damage associated with the ventilator without infection.

One of the key components of this response is recruitment of macrophages from
the bone marrow and bloodstream to the damaged area to support the population
of resident alveolar macrophages. Macrophages send signals to other immune cells
and aid in the process of eliminating dead cells and repairing damaged ones Aggar-
wal et al. (2014). Phenotypes of macrophages can range from “pro-inflammatory”
(M1) or “anti-inflammatory” (M2) based on their activators and byproducts (Mosser
and Edwards, 2008; Wang et al., 2014). Their pro-inflammatory behavior includes
destroying the pathogen, consuming damaged cells, and amplification of signaling.
Their anti-inflammatory response, which counteracts pro-inflammatory behavior,
promotes repair by producing anti-inflammatory cytokines and removing apoptotic
neutrophils. A single macrophage may produce both pro-inflammatory and anti-
inflammatory signals concurrently, which can make classification and identification
of phenotype a difficult question.

Another important type of immune cell is neutrophils, which respond quickly
to pro-inflammatory signals sent from damaged epithelial cells and other resident
cells. A small amount of neutrophils are found in the lungs in homeostasis; however,
neutrophils are recruited from bone marrow in response to pro-inflammatory signals
from damaged epithelial cells and resident macrophages during an insult in large
numbers (Kolaczkowska and Kubes, 2013). Neutrophils have phagocytic capabilities
in the presence of invading pathogens, but in the case of VILI without infection
neutrophils recruit other immune cells such as macrophages through the production
of pro-inflammatory agents such as proteinases and cytokines and contribute to the
removal of damaged or dead tissue. An overabundance of neutrophils and their
byproducts can cause further unnecessary damage (Grommes and Soehnlein, 2011).
Neutrophils are relatively short-lived; they become apoptotic and are removed by
macrophages (Kolaczkowska and Kubes, 2013) or become necrotic in an uncontrolled
death resulting in the release of cytotoxic material (Naylor et al., 2007).

4

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.132258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.132258


An imbalance in the pro- and anti-inflammatory responses can cause compli-
cations for the individual. Furthermore, an absence of immune cells can lead to
immunodeficiency and a surplus of immune cells can result in chronic inflammation
(Kolaczkowska and Kubes, 2013). Thus, it is important to understand the immune
response to lung injury and the interplay between various types of cells. It is also
believed that macrophages play a significant role in the impact of immune response
on aging (Canan et al., 2014; Linehan and Fitzgerald, 2015; Mahbub et al., 2011).

1.2. Mathematical background

Mathematical modeling is used to capture the complexities of the immune re-
sponse to epithelial cell damage, including important feedback loops and nonlin-
earities. Analyzing the resulting model gives insight into the driving mechanism
of this system. An in silico approach allows us to simulate various scenarios or
new treatments, especially when in vivo and in vitro experiments to explore pos-
sible intervention to improve outcome for patients are difficult to perform. To our
knowledge, no mathematical models have described M1/M2 interactions specific to
the immune response to VILI. Many models have examine the immune response
to bacterial and viral infections, such as pneumonia (Schirm et al., 2016; Mochan
et al., 2014; Smith et al., 2011), tuberculosis (Day et al., 2009; Raman et al., 2010;
Segovia-Juarez et al., 2004), and influenza (Manchanda et al., 2014; Anderson et al.,
2016; Hancioglu et al., 2007). Additionally, models related to smoking and asthma
(Brown et al., 2011; Chernyavsky et al., 2014; Golov et al., 2017; Pothen et al., 2015),
mechanical ventilation (Hickling, 1998; Marini et al., 1989; Pidaparti et al., 2013),
and general inflammatory stress (Reynolds et al., 2010) have been developed, but
these models generally deal with the mechanics of the airways, including airflow,
pressure, and gas exchange, and how these mechanics respond to inflammation and
particle inhalation without accounting for the various cells types involved in the im-
mune response. Models have also been developed to understand and analyze the
molecular mechanisms that govern the phenotype switch that macrophages undergo
from pro-inflammatory to anti-inflammatory, as well as other important subcellular
pathways (Anderson et al., 2016; Braun et al., 2013; Maiti et al., 2014).

Common modeling approaches used in these papers include agent based modeling
(Brown et al., 2011; Pothen et al., 2015; Segovia-Juarez et al., 2004), partial differ-
ential equations (Pidaparti et al., 2013; Reynolds et al., 2010), ordinary differential
equations (Chernyavsky et al., 2014; Day et al., 2009; Hancioglu et al., 2007; Mochan
et al., 2014; Schirm et al., 2016; Smith et al., 2011), and Boolean models (Anderson
et al., 2016). Each technique has its advantages and disadvantages, but we choose
to model the inflammatory response to VILI, specifically the resulting damage to
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epithelial cells, using a set of coupled ordinary differential equations (ODEs), which
we describe further in the following section. Systems of ODEs are ideal for modeling
dynamical systems because of their ability to capture, with reasonable computation
times, the highly nonlinear behavior of the many immune cells, epithelial cells and
other mediators involved in the immune response to VILI. This allows for mathe-
matical and sampling approaches to be used in order to determine key components
of the model.

2. Methods & Model Development

2.1. Experimental materials & methods
Animals: Male C57BL/6 mice 8 weeks of age were purchased from Jackson

Laboratory (Bar Harbor, ME). Male C57BL/6 mice 20 months of age were provided
by the National Institute on Aging (Bethesda, MD). All animals were housed in
accordance with guidelines from the American Association for Laboratory Animal
Care and Research protocols and approved by the Institutional Animal Care Use
Committee at Virginia Commonwealth University (Protocol No. AD10000465).

Pressure-Controlled Ventilator-Induced Lung Injury Model: We me-
chanically ventilated young (2-3 mo) and old (20-25 mo) C57BL/6J wild-type mice
using a Scireq FlexiVent computer-driven small-animal ventilator (Montreal, Canada)
and previously cited methods (Herbert et al., 2016) with slight modifications. Mice
were anesthetized, tracheotomized, and then ventilated for 5 minutes using a low
pressure-controlled strategy (peak inspiratory pressure (PIP): 15 cmH20, respiratory
rate (RR): 125 breaths/min, positive end-expiratory pressure (PEEP): 3 cmH20).
Mice were then ventilated for 2 hours using a high pressure-controlled mechanical
ventilation (PCMV) protocol (PIP: 35-45 cmH20, RR: 90 breaths/min, and PEEP:
0 cmH20). Pulmonary function and tissue mechanics were measured and collected at
baseline and every hour during the 2-hour high PCMV duration using the SCIREQ
FlexiVent system and FlexiWare 7 Software. A separate group of mice was anes-
thetized, tracheotomized, and maintained on spontaneous ventilation for 2 hours.

Tissue Processing: Immediately following mechanical ventilation, the right
lobes of the lung were snap frozen with liquid nitrogen, then stored at -80◦C for
further analysis. The left lobes of the lung were then inflated with digestion solution
containing 1.5 mg/mL of Collagenase A (Roche) and 0.4 mg/mL DNaseI (Roche) in
HBSS with 5% fetal bovine serum and 10mM HEPES and processed as previously
described (Yu et al., 2016). The resulting cells were counted, and dead cells were
excluded using trypan blue. Subsets of the experimental groups were also used to
collect bronchoalveolar lavage fluid (BALF) fluid, differential cell counts, and left
lobes for histological analysis.
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Flow Cytometric Analysis: Following live cell counts, 4×106 cells per sam-
ple were incubated in blocking solution containing 5% fetal bovine serum and 2%
FcBlock (BD Biosciences) in PBS. The cells were then stained using a previously val-
idated immunophenotyping panel of fluorochrome-conjugated antibodies (Misharin
et al., 2013) with slight modifications (See Table S1 in Supplementary Material for a
list of antibodies, clones, manufacturers, and concentrations). Following the staining
procedure, cells were washed and fixed with 1% paraformaldehyde in PBS. Data were
acquired and analyzed with a BD LSRFortessa-X20 flow cytometer using BD FACS-
Diva software (BD Bioscience). Histogram plots were generated using FCS Express 5
software (De Novo). Compensation was performed on the BD LSRFortessa-X20 flow
cytometer at the beginning of each experiment. “Fluorescence minus one” controls
were used when necessary. Cell populations were identified using a sequential gating
strategy that was previously developed (Misharin et al., 2013). The expression of
activation markers was presented as median fluorescence intensity (MFI).

Statistics: A total of 10 young mice were used for this study. Data is shown for
each type of activation (M0, M1, M2) as a percentage of the total macrophages.

2.2. Epithelial subsystem

The primary focus of this model is to examine the effects of damage on the
alveolar epithelium, in particular alveolar type II cells since they are responsible
for restoration of the epithelium. In this section we begin with a simple model,
concentrating on the novel aspect of incorporating epithelial cells and relative damage
due to inflammation, then add variables to more accurately model the dynamics
within this system.

We begin with a small three-dimensional system of differential equations, shown in
Equations (1)-(3), where Eh is the proportion of the local space filled by healthy cells,
Ed is the proportion of the local space filled by damaged cells, and Ee represents dead
cells awaiting removal by phagocytic immune cells or empty “space” to be filled with
new, healthy cells. Each term represents a biological event explained by the brackets
above the term. This first model includes only the baseline abilities of epithelial
cells to proliferate and repair themselves in the presence of sustained damage. We
do not explicitly model proliferating and non-proliferating cells; the parameter p is
modulated to reflect the general mechanism by which neighboring epithelial cells
renew exposed areas.
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dEh

dt
=

Proliferation︷ ︸︸ ︷
p(Eh + Ed)(Ee) +

Repair︷︸︸︷
rEd −

Damage︷︸︸︷
sEh (1)

dEd

dt
= −

Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage︷︸︸︷
sEh (2)

dEe

dt
=

Proliferation︷ ︸︸ ︷
p(Eh + Ed)(Ee) +

Death︷︸︸︷
bEd (3)

Damage from stretch due to mechanical ventilation is represented by the rate
s, and causes healthy epithelial cells to become damaged. Some damaged cells,
depending on the severity of damage, have the ability to repair themselves, returning
from the Ed state back to Eh, represented by a baseline repair rate r (Crosby and
Waters, 2010). Damaged cells may also decay naturally at a rate b.

The first term in the equations representing healthy cells, Equation (1), and
empty cells, Equation (3), accounts for proliferation of the healthy and damaged
cells into empty space. Nearby epithelial cells and progenitor cells, stem cells that
can differentiate into specific types of epithelial cells only, perform this task. These
cells spread and replicate to fill the empty space left by dead epithelial cells (Crosby
and Waters, 2010; Gardner et al., 2010; Herold et al., 2011). In this model we
account for proliferation associated with local epithelial cells. Multiplying by Ee in
this term scales the proliferation rate such that the term is increased (less contact
inhibition) when there is more empty space. Note that total local space is conserved:
Ee +Eh +Ed = 1. Therefore, we can define Ee = 1− (Eh +Ed) and rewrite this term
as logistic growth with a carrying capacity of 1. This gives rise to a two dimensional
system, Equations (4)-(5).

dEh

dt
=

Proliferation︷ ︸︸ ︷
p(Eh + Ed)(1− (Eh + Ed)) +

Repair︷︸︸︷
rEd −

Damage︷︸︸︷
sEh (4)

dEd

dt
= −

Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage︷︸︸︷
sEh (5)

Stability analysis reveals that in the absence of stretch (s = 0) and with all
positive parameters, (0, 0) is a saddle node and (0, 1) is a stable equilibrium with
eigenvalues λ1 = −r− b and λ2 = −p. Given a nonzero initial condition for damaged
cells the epithelial cells subsystem will resolve to the fully repaired fixed point (0, 1).
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In the presence of sustained stretch (s > 0), the Ed nullcline switches from a
vertical line to a line with slope (r + b)/s. The second equilibrium point changes
from (0,1) to

(E∗d , E
∗
h) =

(
s2(p− b) + ps(b+ r)

p(b2 + r2 + s2 + 2br + 2bs+ 2rs)
,

(r + b)[s(p− b) + p(b+ r)]

p(b2 + r2 + s2 + 2br + 2bs+ 2rs)

)
Therefore in the presence of damage, there no longer exists an equilibrium associated
with full recovery.

Exploratory simulations demonstrate that there is a bifurcation with respect to
p, proliferation rate of the epithelial cells. A bifurcation diagram for this parameter,
shown in Figure 1, has one transcritical bifurcation at p∗ = 0.497. In this figure,
we show the proportion of space occupied by healthy epithelial cells as a percent-
age, which is Eh multiplied by 100. The second equilibrium for p values below the
bifurcation is not included in the diagram, since it is non-biological (negative Eh).
For small values of p, the ability of healthy cells to proliferate and replace dead cells
is insufficient and damage causes both healthy and damaged cells to approach 0%.
On the other hand, for values of p larger than p∗, the system approaches the stable
nonzero equilibrium (E∗d , E

∗
h), which is closer to (0,1) for higher values of p even in

the presence of sustained damage.

2.3. Fixed immune response

Next we examine the roles of immune cells, especially neutrophils and macrophages,
by adding several terms to Equations (1) and (2). We first focused on dynamics with
a fixed immune response, because when we work with the full model (described in
the next section), we only consider parameter sets that give rise to steady state
solutions in the absence of damage. Therefore, we decided to start our model devel-
opment by analyzing Eh and Ed with immune cells as parameters before including
their dynamics. The modifications are shown in Equations (6) and (7).

dEh

dt
=

Proliferation︷ ︸︸ ︷
p(Eh + Ed)(1− (Eh + Ed)) +

Repair︷︸︸︷
rEd −

Damage︷︸︸︷
sEh −

Collateral damage
from neutrophils︷︸︸︷

nEh (6)

dEd

dt
= −

Repair︷︸︸︷
rEd −

Death︷︸︸︷
bEd +

Damage︷︸︸︷
sEh +

Collateral damage
from neutrophils︷︸︸︷

nEh −

Removal of damaged
cells by macrophages︷︸︸︷

mEd (7)
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Figure 1: Bifurcation diagram for the proliferation parameter p for the epithelial system with
stretch and no immune response. Other parameters are set to r = 2.6, s = 0.22, and b = 0.74. The
unstable equilibrium below p < p∗ = 0.497 is not included in the figure, since it is not biologically
relevant.
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The physical presence of immune cells, especially first-responder neutrophils,
cause small-scale collateral damage as they clear debris (Nathan, 2006) and can be
especially deleterious if the response is overzealous (Grommes and Soehnlein, 2011).
This biological event is modeled as the last term in Equation (6) with cells switching
from a healthy to a damaged state at the rate n. M1 macrophages aid in the clear-
ance of damaged cells to make room for replacement by new, healthy cells through
subcellular signalling and phagocytosis (Aggarwal et al., 2014; Gardner et al., 2010).
The last term in Equation (7) represents this loss of damaged cells.

The stability analysis is similar to that from the model without the immune
response, with additional parameters m,n that can shift steepness of the nullcline
or the speed at which the system approaches or diverges from an equilibrium. The
parameter p once again plays an important role in the stability of the two critical
points, (0, 0) and

(E∗d , E
∗
h) =

(
(n+ s)[(n+ s)(p− b−m) + p(b+m+ n)]

p(b+m+ n+ r + s)2
,

(b+m+ r)[(n+ s)(p− b−m) + p(b+m+ n)]

p(b+m+ n+ r + s)2

)

The equilibria result in a transcritical bifurcation for changing values of p similar
to Figure 1. The main difference is that the transcritical bifurcation point p∗ is lower
because of the damage resulting from macrophages and neutrophils, represented by
m and n. The rate of proliferation of healthy cells must be higher to counteract these
effects.

The bifurcation diagram for scaled Eh versus n also has a transcritical bifurcation
(see Figure 2a). For sufficiently low values of n, the nonzero critical point is stable,
but for values above n∗ = 1.364, (0, 0) is the stable equilibrium. Additionally, the
two-parameter stability diagram shows a curve which separates the p/n-space into
two stability regimes (see Figure 2b). For high enough values of n and low enough
values of p, the system goes to zero for both variables. Biologically, this corresponds
to a situation in which the ability of epithelial cells to proliferate is low and there are
high levels of immune cells. On the other hand, with low levels of immune cells and
a higher proliferation rate, the system limits to the nonzero equilibrium. It should
be noted that for a large enough p, it would take an extremely high value of n to
overpower proliferation and make (0, 0) the stable critical point. In the full system
the initial conditions for our simulations will have similar properties to the type of
steady state in the non-zero stable equilibrium region of Figure 2b.

11

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.132258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.132258


(a) (b)

Figure 2: (a) Bifurcation diagram for epithelial subsystem when varying n. Other parameter values
are set to r = 2.6, p = 0.45, s = 0.22, b = 0.74, n = 1.6, m = 0.92. (b) Two-parameter
plot showing values of p and n which cause the subsystem to have either a zero or nonzero stable
equilibrium.

These simple models provide a framework for the dynamics of the epithelium
in response to damage and an introductory look into the influence of the immune
response. However, there are many more complex, nonlinear interactions and events
involved in VILI which we will explore in the next section.

2.4. Development of complete model

By adding variables to the two-dimensional system proposed above, we develop a
system of coupled ordinary differential equations to model the interactions between
immune cells, epithelial cells, and other mediators shown in Figure 3. We also utilize
a two-compartment method in which resident immune cells respond to the damaged
epithelial cells and nonresident immune cells are recruited from the bloodstream.

A system of ODEs is ideal for modeling these interactions because of its ability to
capture distinct nonlinearities and feedback loops with relatively low computational
requirements. However, one of the drawbacks of an ODE model is that it assumes
a well-mixed environment, in which all elements of the model are evenly distributed
throughout the given space. Biologically, this is not always the case. One way to to
include aspects of the spatial heterogeneity without explicitly modeling space is to
use a compartmental model. Each compartment represents a well mixed environment
and, when biologically appropriate, variables can move between compartments. An
ODE can represent an immune system component in each compartment in which it
may exist.
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Figure 3: Schematic describing interactions between macrophages, neutrophils, various pro- and
anti-inflammatory mediators, and epithelial cells. Red boxes represent various types of neutrophils,
colored circles represent M0, M1, and M2 macrophages, green boxes represent various types of
factors and mediators that act as signals to immune cells, and white boxes represent healthy, dam-
aged, and dead epithelial cells. Damaged epithelial cells (Ed) release pro-inflammatory mediators
(pb & p) which recruit resting macrophages (M0) and free-flowing neutrophils (N0b) from the blood-
stream. Unactivated immune cells become activated by various cytokines, factors, and proteins and
perform either pro-inflammatory or anti-inflammatory roles which are meant to remove debris (Ee)
and promote repair of damaged epithelial cells.

Here we choose to model two compartments. The first is the site of inflammation
in the lungs, specifically the epithelial cells which provide a barrier lining the alveolar
cells. The second compartment is the adjacent blood vessel that provides additional
immune support to the site of damage. Differentiating between these two compart-
ments allows us to determine the concentrations of various immune cells and other
mediators in each separate area and examine their movement across compartments.
A two-compartmental model accounts for some spatial dynamics that a traditional
system of ODEs cannot, making the model more realistic for a better understanding
of the immune response to VILI.

Figure 3 gives a detailed breakdown of the dynamics in the lung. The dynamics
are similar for those cells and mediators that are in the blood. Cell types that are
tracked in each compartment are stated in Table 1. In the following subsections,
we develop the equations for these variables. The parameters used in used in the
equations are given in Table 2 with their description and range used during parameter
sampling.
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Bloodstream Lung Description
Eh Healthy epithelial cells
Ed Damaged epithelial cells
Ee Dead epithelial cells/empty space

pb p Pro-inflammatory mediators
ab a Anti-inflammatory mediators
M0b M0 Unactivated macrophages
M1b M1 M1 pro-inflammatory macrophages
M2b M2 M2 anti-inflammatory macrophages
N0b Unactivated neutrophils
Nb Activated neutrophils

N Neutrophils
AN Apoptotic neutrophils
R Repair mediators

Table 1: State variables for the model. Variables in both columns represent cells or mediators that
diffuse between the two compartments.
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Name Description Range used

ab∞ Relative effectiveness of ab at inhibiting M0b differentiation to M1b [0.29, 67.35]
a∞ Relative effectiveness of a at inhibiting M0 differentiation to M1 [0.13, 72.08]

bd Baseline decay of damaged cells [1.06× 10−5, 0.07]

bp Baseline self-resolving repair of epithelial cells [6.72× 10−70, 6.20]

br Baseline repair of damaged cells [9.79× 10−3, 4.47]
da Rate of diffusion for a [0.19, 177.98]

dp Rate of diffusion for p [0.34, 2.3× 103]
dm0 Rate of diffusion for M0 [0.24, 275.55]

dm1 Rate of diffusion for M1 [2.75× 10−3, 19.8]
dm2 Rate of diffusion for M2 [0.14, 143.36]
kam1 Production rate of a by M1b & M1 [0.01, 18.01]

kam2 Production rate of a by M2b & M2 [2.43× 10−3, 1.67]
kan Rate at which neutrophils become apoptotic [0.01, 50.04]

kanm1 Rate of M1 phagocytosis of AN [1.32× 10−3, 0.69]

kanm2 Rate of M2 phagocytosis of AN [2.71× 10−3, 7.36]
kem1 Rate of phagocytosis of damaged cells by M1 [0.01, 16.03]
ken Rate of phagocytosis of damaged cells by N [0.01, 16.03]

kep Rate of self-resolving repair mediated by p [5.38× 10−71, 4.30]

ker Rate of repair of damaged cells by R [1.47× 10−3, 1.08]

xer Regulates effectiveness of repair of damaged cells by R (Hill-type constant) [7.23× 10−3, 4.13]
km0a Rate of differentiation of M0 by a [0.01, 89.07]
xm0a Regulates effectiveness of differentiation of M0 by a (Hill-type constant) [0.16, 136.83]
km0ab Rate of differentiation of M0b by ab [1.15, 436.59]
xm0ab Regulates effectiveness of ab differentiation of M0b (Hill-type constant) [0.16, 83.97]
km0ad Rate of recruitment of M0b by ab [0.34, 181.89]
xm0ad Regulates effectiveness of recruitment of M0b by ab (Hill-type constant) [0.01, 27.6]

km0p Rate of differentiation of M0 by p [8.99× 10−3, 37.2]

xm0p Regulates effectiveness of differentiation of M0 by p (Hill-type constant) [1.17, 1.14× 104]
km0pb Rate of differentiation of M0b by pb [0.05, 89.96]

xm0pb Regulates effectiveness of differentiation of M0b by pb (Hill-type constant) [41.51, 2.92× 104]

km0pd Rate of recruitment of M0b by pb [4.57× 10−3, 53.97]

xm0pd Regulates effectiveness of recruitment of M0b by pb (Hill-type constant) [0.24, 180.74]

km1p Rate of recruitment of M1b by pb [0.2, 92.81]

xm1p Regulates effectiveness of recruitment of M1b by pb (Hill-type constant) [9.8× 10−3, 1.69]
km2a Upregulation of M2b recruitment by a [0.1, 219.93]
xm2a Regulates effectiveness of M2b recruitment by a (Hill-type constant) [0.08, 94.84]

km2r Upregulation of M2b recruitment by R [3.61× 10−3, 20.11]
xm2r Regulates effectiveness of M2b recruitment by R (Hill-type constant) [0.01, 18.70]
kman Rate of M1 switch to M2 by AN [0.01, 27.08]

kmne Rate of collateral damage to epithelial cells by macrophages and neutrophils [1.12× 10−3, 5.17]
xmne Regulates effectiveness of macrophages and neutrophils to damage epithelial cells (Hill-type constant) [0.03, 41.06]

kn Rate of migration of Nb to lung [2.39× 10−3, 3.54]
kn0p Rate of activation of Nb by p [0.01, 5.58]
xn0p Regulates effectiveness of activation of Nb by p (Hill-type constant) [0.03, 142.56]

kpe Production rate of p by Ed [44.02, 1.12× 104]
kpm1 Production rate of p by M1 & M1b [0.24, 412.22]

kpn Production rate of p and pb by neutrophils [1.67× 10−3, 2.95]
krm2 Production rate of R by M2 [0.02, 40.97]

µa Decay rate of a [5.16× 10−4, 5.08]
µab Decay rate of ab [0.04, 12.86]

µp Decay rate of p [2.76× 10−3, 41.04]

µpb Decay rate of pb [4.79× 10−4, 3.71]

µm0 Decay rate of M0 [0.01, 42.67]

µm0b Decay rate of M0b [7.66× 10−3, 329.59]

µm1 Decay rate of M1 [8.2× 10−3, 10.16]
µm1b Decay rate of M1b [0.03, 60.32]
µm2 Decay rate of M2 [0.27, 135.37]
µm2b Decay rate of M2b [0.02, 16.51]

µnb Decay rate of Nb [2.49× 10−3, 6.03]

µn0b Decay rate of N0b [3.94× 10−6, 2.1× 10−3]

µn Decay rate of N [8× 10−3, 4.32]
µR Decay rate of R [0.72, 761.75]

sa Source rate of background ab [5.75× 10−3, 1.11]
sd Rate of damage from ventilator 0.75

sm Source rate of M0b [1.28, 1.14× 103]
sn Source rate of N0b [0.22, 225.45]

sp Source rate of background pb [6.5× 10−4, 9.4]

Table 2: Model parameters with short descriptions and ranges used in LHS.
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2.4.1. Epithelial cells

We continue with the convention of three subpopulations of epithelial cells, as in
Equations (6) and (7) with Ee = 1−Eh−Ed. We add more details in Equations (8),
(9), and (10) to describe interactions with the immune response variables that we
now explicitly model for a more accurate representation of the response to VILI. The
first term in Equation (8) is logistic given Ee = 1− Eh − Ed, representing epithelial
cells that spread and replicate to fill the empty space left by dead epithelial cells
(Crosby and Waters, 2010; Gardner et al., 2010; Herold et al., 2011). This term
appears negated in Equation (9) modeling the removal of the empty space. The next
term in Equation (8) and the first term of Equation (9) represents repair of damaged
cells back to a healthy state. Epithelial cells are prone to self-repair (Crosby and
Waters, 2010), represented by a baseline rate br, and repair at a faster rate in the
presence of repair mediators R such as chemokines, fibronectin, and other epithelial
growth factors (Gordon, 2003; Herold et al., 2011; Robb et al., 2016). The third term
in Equation (8) and second in Equation (9) represents collateral damage to epithelial
cells by the influx and activity of the immune and is modeled via a nonlinear term,
which is dependent on macrophages and neutrophils levels (Aggarwal et al., 2014;
Kumar and Sharma, 2010; Nathan, 2006). We also model damage due to stretch
as sdEh, the fourth term in Equation (8) and fifth term in Equation (9), in which
injury occurs at a rate proportional to the amount of healthy epithelial cells at a
given time.

dEh

dt
=

Proliferation of healthy cells,
upregulated by PIM︷ ︸︸ ︷

(bp + kepp)(Eh + Ed)Ee +

Baseline
repair︷ ︸︸ ︷
Ed

(
br +

Upregulation
via repair
mediators︷ ︸︸ ︷
kerR

xer +R

)

−

Damage via
M1 & neutrophils︷ ︸︸ ︷

Eh

(
kmne(M1 +N)2

x2
mne + (M1 +N)2

)
−

Damage from
ventilator︷︸︸︷
sdEh (8)
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dEd

dt
=−

Baseline
repair︷ ︸︸ ︷
Ed

(
br +

Upregulation
via repair
mediators︷ ︸︸ ︷
kerR

xer +R

)
+

Damage via
M1 & neutrophils︷ ︸︸ ︷

Eh

(
kmne(M1 +N)2

x2
mne + (M1 +N)2

)

−

Phagocytsis
of damaged
cells by M1︷ ︸︸ ︷
kem1M1Ed

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
−

Phagocytsis
of damaged
cells by N︷ ︸︸ ︷
kenNEd +

Damage from
ventilator︷︸︸︷
sdEh −

Death︷︸︸︷
bdEd (9)

dEe

dt
= −

Proliferation of healthy cells,
upregulated by PIM︷ ︸︸ ︷

(bp + kepp)(Eh + Ed)Ee +

Phagocytsis
of damaged
cells by M1︷ ︸︸ ︷
kem1M1Ed

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)

+

Phagocytsis
of damaged
cells by N︷ ︸︸ ︷
kenNEd +

Death︷︸︸︷
bdEd (10)

M1 macrophages and neutrophils clear debris from the inflammation site to make
room for healthy epithelial cells to divide and fill the empty space (Crosby and Wa-
ters, 2010; Gardner et al., 2010; Kolaczkowska and Kubes, 2013). The third and
fourth terms in Equation (9) represents this phagocytosis of damaged cells by M1
macrophages and activated neutrophils, respectively. Regulation of M1 is modeled
by the last multiplier in the term, representing inhibition by anti-inflammatory me-
diators such as IL-10 produced by M2 macrophages (Aggarwal et al., 2014; Herold
et al., 2011; Johnston et al., 2012). The negative feedback loop of AIM inhibiting
further pro-inflammatory functions occurs frequently in our model in a number of
equations described below, and we will heretofore refer to this multiplier as inhi-
bition by AIM. Depending on the compartment, the term may include utilize the
variable ab (bloodstream) or a (local). The anti-inflammatory and regulatory role of
M2 macrophages and the balance between M1 and M2 phenotypes is critical for a
successful and rapid recovery (Herold et al., 2011; Wang et al., 2014). The last term
of Equations (9) and (10), bdEd, represents a baseline decay rate of damaged cells.

Dead epithelial cells and “empty” space are grouped together and modeled by
the variable Ee in Equation (10). In the epithelial-only model, Ee was modeled as
1− Eh − Ed. Since mass in conserved in these three equations (the sum of terms in
the epithelial differential equations is zero), Ee can be modeled either explicitly, as
we chose in Equation (10), or in terms of Eh and Ed.
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2.4.2. Pro- and anti-inflammatory mediators

As a signal to other immune cells, damaged epithelial cells release pro-inflammatory
cytokines and other mediators, including TNF-α and matrix metalloproteinases
(MMPs) (Crosby and Waters, 2010; Gardner et al., 2010; Mosser and Edwards,
2008). In our equations, we group these pro-inflammatory mediators (PIM) into two
state variables: p in the lungs and pb in the blood. The release of PIM by damaged
epithelial cells leads to diffusion of PIM into the bloodstream to recruit additional
immune cells (Gardner et al., 2010). This movement between model compartments
is driven by their difference in concentrations in both Equations (11) and (12). This
simple diffusion term will be used for other variables throughout our model.

M1 macrophages produce PIM, which upregulate the activation and migration
of macrophages to the site of injury; see the second term in Equations (11) and
(12) (Herold et al., 2011; Mosser and Edwards, 2008). The macrophage population
self-regulates by releasing anti-inflammatory mediators (AIM) such as IL-10, thus
inhibiting further production of PIM (Maiti et al., 2014). Therefore the term includes
the same inhibiting multiplier as in Equation (9), through which the rate of PIM
production by M1 macrophages decreases with increased concentrations of ab.

Neutrophils are also important producers of pro-inflammatory mediators such
as TNF-α, IL-1, IL-6, LTB4, and chemokines, which stimulate the activation of
macrophages toward an M1 phenotype (Grommes and Soehnlein, 2011; Kumar and
Sharma, 2010; Kolaczkowska and Kubes, 2013; Robb et al., 2016; Summers et al.,
2010). Low levels of PIM exist in the absence of damage, accounted for by the source
term sp, and we also model natural decay of these mediators.

dpb
dt

=

Diffusion︷ ︸︸ ︷
dp(p− pb) +

Production
via M1︷ ︸︸ ︷

kpm1M1b

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

ab
ab∞

)2

)
+

Production via
neutrophils︷ ︸︸ ︷
kpnNb

+

Background
production︷︸︸︷
sp −

Decay︷ ︸︸ ︷
µpbpb (11)
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dp

dt
=

Diffusion︷ ︸︸ ︷
−dp(p− pb) +

Production
via M1︷ ︸︸ ︷
kpm1M1

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
+

Production via
neutrophils︷ ︸︸ ︷
kpnN

+

Production via
ep. damage︷ ︸︸ ︷
kpeEd −

Decay︷︸︸︷
µpp (12)

Anti-inflammatory mediators, represented by Equation (13) in the bloodstream
and Equation (14) at the site of damage, such as the anti-inflammatory signaling
caused by IL-4 and IL-10 (Opal and DePalo, 2000). They follow the same simple
diffusion behavior as PIM, shown by the first term in each equation below. AIM
are released by both M1 and M2 macrophages (Herold et al., 2011; Johnston et al.,
2012; Mosser and Edwards, 2008). Similarly to pb, background levels of ab are present
in the absence of an immune response, represented by term four in Equation (13).
Natural decay of AIM is accounted for by the last term in each equation.

dab
dt

=

Diffusion︷ ︸︸ ︷
da(a− ab) +

Production
via M1︷ ︸︸ ︷

kam1M1b +

Production
via M2︷ ︸︸ ︷

kam2M2b +

Background
production︷︸︸︷
sa −

Decay︷ ︸︸ ︷
µabab (13)

da

dt
=

Diffusion︷ ︸︸ ︷
−da(a− ab) +

Production
via M1︷ ︸︸ ︷
kam1M1 +

Production
via M2︷ ︸︸ ︷
kam2M2 −

Decay︷︸︸︷
µaa (14)

2.4.3. Macrophages

Undifferentiated macrophages, also called naive or unactivated, are present both
locally and in the blood. The diffusion term, seen in Equations (15) and (16), repre-
sents movement between compartments, modeled in the same manner as in previous
equations. Increased PIM and AIM levels cause undifferentiated macrophages in the
bloodstream to be recruited at a higher rate to the damaged site, where they become
activated and perform phagocytic, pro-inflammatory, and pro-resolving roles (Mosser
and Edwards, 2008). This increased flux between compartments due to the presence
of pb and ab is modeled by adding terms to dm0 such that the Michaelis-Menten-type
nonlinearity prevents this rate from increasing in an uncontrolled manner.

The equations also account for early activation in the bloodstream by PIM and
AIM given a high enough concentration of these mediators (Aggarwal et al., 2014).
Although there is still debate on the types of macrophages that exist in the blood-
stream after being released from the bone marrow, there is evidence that populations
of both M1 and M2 exist in the bloodstream before being recruited to the site of
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injury (Johnston et al., 2012; Mosser and Edwards, 2008). Thus, we include this
process in our equations in the second terms of Equations (15) and (16). Undiffer-
entiated macrophages in the bloodstream can change phenotype to M1 or M2 after
interacting with PIM or AIM, respectively, modeled by a Hill-type term. This non-
linearity accounts for the sufficient amount of PIM or AIM necessary to precipitate
activation as well as a restriction on the rate of activation due to limited receptors
on the macrophage surface.

Once pro-inflammatory mediators such as TNF-α, TGF-β, and interleukins (ILs)
(Gardner et al., 2010) are released by damaged epithelial cells, undifferentiated
macrophages receive these signals and differentiate into the M1 phenotype (Vla-
hakis et al., 1999). A pro-inflammatory response characterizes the early stages of
the immune response (Herold et al., 2011; Robb et al., 2016). The second term in
Equations 15 and 16 represent activation of undifferentiated macrophages to the pro-
inflammatory phenotype, downregulated by the anti-inflammatory response through
an inhibition multiplier. Also in this term, M2 macrophages can also be activated
directly from the naive phenotype by various repair and anti-inflammatory mediators
such as TGF-β and proteases involved in the repair of epithelial cells (Gardner et al.,
2010; Herold et al., 2011).

Using the same inhibition multiplier as previously, AIM inhibit differentiation to
M1 as part of their regulatory role in the inflammatory process, although a complete
understanding of these mechanisms is yet to be uncovered (Gardner et al., 2010; Maiti
et al., 2014; Mosser and Edwards, 2008). In the absence of injury, lungs contain a low
number of undifferentiated macrophages which patrol the surrounding area (Crosby
and Waters, 2010). “Patrolling” macrophages are also prevalent in the bloodstream.
The third term in Equation (15) represents a constant source of undifferentiated
macrophages from the circulation (Herold et al., 2011). We also account for natural
decay of all macrophage phenotypes in Equations (15) through (20).
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dM0b

dt
=

Diffusion, upregulated by PIM & AIM︷ ︸︸ ︷
(M0 −M0b)

(
dm0 +

km0pdpb
xm0pd + pb

+
km0adab
xm0ad + ab

)

− M0b

[ Differentiation
to M1 via PIM︷ ︸︸ ︷(
km0pbp

2
b

x2
m0pb + p2

b

) Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

ab
ab∞

)2

)
+

Differentiation
to M2︷ ︸︸ ︷(
km0aba

2
b

x2
m0ab + a2

b

)]

+
Source︷︸︸︷
sm −

Decay︷ ︸︸ ︷
µM0bM0b (15)

dM0

dt
=

Diffusion, upregulated by PIM & AIM︷ ︸︸ ︷
−(M0 −M0b)

(
dm0 +

km0pdpb
xm0pd + pb

+
km0adab
xm0ad + ab

)

−M0

[ Differentiation
to M1 via PIM︷ ︸︸ ︷(
km0pp

2

x2
m0p + p2

) Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
+

Differentiation
to M2︷ ︸︸ ︷(
km0aa

2

x2
m0a + a2

)]

−
Decay︷ ︸︸ ︷
µM0M0 (16)

Similarly to naive macrophages, M1 macrophages move between compartments.
The presence of pro-inflammatory mediators, which act as recruiters, increases the
rate of diffusion, shown in the first term of Equation (17) (Mosser and Edwards,
2008). The second term represents differentiation from the naive state, as described
above.

Macrophages exhibit high plasticity, and based on the mediators and other im-
mune cells they encounter, they can switch phenotype and perform different or en-
hanced functions; this plasticity is not yet fully understood (Aggarwal et al., 2014;
Herold et al., 2011). M1 macrophages are primarily responsible for producing PIM,
thereby recruiting other immune cells to the damaged area (Johnston et al., 2012).
M2 macrophages are considered pro-resolving and downregulate PIM. Both M1 and
M2 macrophages phagocytize apoptotic cells such as neutrophils (Robb et al., 2016).
The shift from an overall pro-inflammatory phase to an anti-inflammatory phase in
the course of the immune response is highly dependent upon a shift in macrophage
behavior, specifically the shift from a mainly M1 response to a mainly M2 response
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(Gardner et al., 2010; Johnston et al., 2012; Mosser and Edwards, 2008).
One of the primary ways this shift is achieved is through the inhibition of M0

to M1 differentiation by anti-inflammatory mediators, as described previously. Ad-
ditionally, when pro-inflammatory macrophages phagocytize apoptotic neutrophils,
they shift towards a more anti-inflammatory phenotype through suppression of the
release of pro-inflammatory mediators and production of pro-resolving mediators
(Kumar and Sharma, 2010; Nathan, 2006). We account for this shift by including
the third term in Equation (18), proportional to apoptotic neutrophil phagocytosis
which causes M1 macrophages to shift to the M2 phenotype. This term also in-
cludes inhibition of M1 function by AIM. It has been shown in some studies that M2
macrophages can switch to an M1 phenotype (Heusinkveld et al., 2011), although
this idea is not currently widely accepted. Thus, we choose to include only the shift
from M1 to M2.

dM1b

dt
=

Diffusion, upregulated by PIM︷ ︸︸ ︷
(M1 −M1b)

(
dm1 +

km1ppb
xm1p + pb

)

+M0b

Differentiation
to M1︷ ︸︸ ︷(
km0pbp

2
b

x2
m0pb + p2

b

) Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

ab
ab∞

)2

)
−

Decay︷ ︸︸ ︷
µM1bM1b (17)

dM1

dt
=−

Diffusion, upregulated by PIM︷ ︸︸ ︷
(M1 −M1b)

(
dm1 +

km1ppb
xm1p + pb

)

+ M0

Differentiation
to M1 via PIM︷ ︸︸ ︷(
km0pp

2

x2
m0p + p2

) Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)

−

M1 switch to M2
by phagocytosis︷ ︸︸ ︷

kman(kanm1ANM1)

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
−

Decay︷ ︸︸ ︷
µM1M1 (18)

M2 macrophages, associated with an anti-inflammatory response, can be acti-
vated directly from undifferentiated macrophages by specific anti-inflammatory sig-
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nals in addition to switching phenotype from M1. They diffuse between compart-
ments as illustrated previously, shown in the first terms in Equations (19) and (20).
M2 macrophages produce anti-inflammatory mediators which recruit and promote
differentiation to more M2 macrophages, described in the second term of both equa-
tions. They release cytokines that trigger the repair phase of the immune response
(Herold et al., 2011; Mosser and Edwards, 2008). This repair phase includes repair
mediators (discussed below in Equation (25)), which play a direct role in the recon-
struction of healthy epithelial cells and resolution of damage (Herold et al., 2011).

dM2b

dt
=

Diffusion︷ ︸︸ ︷
(M2 −M2b)

(
dm2 +

km2rR

xm2r +R
+

km2aa

xm2a + a

)

+

Differentiation
to M2︷ ︸︸ ︷

M0b

(
km0aba

2
b

x2
m0ab + a2

b

)
−

Decay︷ ︸︸ ︷
µM2bM2b (19)

dM2

dt
=−

Diffusion︷ ︸︸ ︷
(M2 −M2b)

(
dm2 +

km2rR

xm2r +R
+

km2aa

xm2a + a

)
+

Differentiation
to M2︷ ︸︸ ︷

M0

(
km0aa

2

x2
m0a + a2

)

+

M1 switch to M2
by phagocytosis︷ ︸︸ ︷

kman(kanm1ANM1)

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
−

Decay︷ ︸︸ ︷
µM2M2 (20)

2.4.4. Neutrophils

Neutrophils are considered the first responders to injury (Gardner et al., 2010;
Grommes and Soehnlein, 2011). Generated in the bone marrow (Kolaczkowska and
Kubes, 2013), free-flowing neutrophils circulate in the vasculature at baseline levels,
described as N0b and represented by the first term in Equation (21) (Grommes and
Soehnlein, 2011). In the presence of injury, neutrophils are activated and recruited to
the damaged site through pro-inflammatory mediators such as TNF-α, IL-1β, and
other chemokines and cytokines (Grommes and Soehnlein, 2011; Summers et al.,
2010). This recruitment is represented by the first term in Equations (21) and (22).
On the other hand, anti-inflammatory mediators, including macrophage-produced
resolvins and protectins, inhibit further recruitment of neutrophils (Nathan, 2006).
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Similarly to the differentiation of macrophages, it is assumed that a higher concen-
tration above baseline is required for neutrophils to activate, and that this activation
rate saturates. Therefore, a Hill-type term with a maximum rate of kn0p and a
constant of xn0p is used to model activation of neutrophils by PIM. To model the
inhibition of neutrophil activation by AIM, we include the same inhibition multiplier
as previously described. The effectiveness of these AIMs to inhibit this process is
controlled by ab∞. We also account for intrinsic decay of neutrophils in the last term
of Equations (21) through (24).

dN0b

dt
=−

Activation by PIM︷ ︸︸ ︷
N0b

(
kn0pp

2
b

x2
n0p + p2

b

) Inhibition by AIM︷ ︸︸ ︷(
1

1 +
(

ab
ab∞

)2

)
+

Source︷︸︸︷
sN −

Decay︷ ︸︸ ︷
µN0b

N0b (21)

dNb

dt
=

Activation by PIM︷ ︸︸ ︷
N0b

(
kn0pp

2
b

x2
n0p + p2

b

) Inhibition by AIM︷ ︸︸ ︷(
1

1 +
(

ab
ab∞

)2

)
−

Migration︷ ︸︸ ︷
knNb −

Decay︷ ︸︸ ︷
µNbNb (22)

Neutrophils go through a multi-step process of rolling along and subsequently
adhering to the surface of the endothelium. Then neutrophils transmigrate to the
injury site either through or between endothelial cells (Grommes and Soehnlein,
2011; Kolaczkowska and Kubes, 2013). This process is assumed to be driven not
by a concentration difference in neutrophils between the compartments but rather
is a direct consequence of activation. Therefore, neutrophil transmigration, the first
term in Equation (23), is modeled from the bloodstream to the site of injury by a
linear term with rate kn. Activated neutrophils also have greater longevity and their
half-life increases significantly (Kolaczkowska and Kubes, 2013).

Activated neutrophils that have transmigrated through the endothelium and
reached the site of injury release pro-inflammatory mediators, as discussed previ-
ously in Equation (12). During infection, neutrophils play an important role by
phagocytizing pathogens (Kumar and Sharma, 2010), but during VILI a main role
of neutrophils is the recruitment of macrophages, particularly to promote a more pro-
inflammatory environment for the clearance of damaged and dead cells (Grommes
and Soehnlein, 2011).

Neutrophils become apoptotic, modeled by the second term of Equation (23)
(Gardner et al., 2010). In this state, they are phagocytized by M1 and M2 macrophages
(second and third terms of Equation (24), respectively) and no longer contribute to
the production of PIM (Kolaczkowska and Kubes, 2013; Soehnlein and Lindbom,
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2010; Robb et al., 2016). Phagocytosis by M1 macrophages is inhibited by AIM using
our standard functional form for the inhibition multiplier. AIM do not inhibit phago-
cytosis by M2 macrophages since AIM support the function of anti-inflammatory
cells. Intrinsic decay is described in the last term of Equation (23).

dN

dt
=

Migration︷ ︸︸ ︷
knNb −

Transition to
apoptotic︷ ︸︸ ︷
kanN −

Decay︷︸︸︷
µnN (23)

dAN

dt
=

Transition to
apoptotic︷ ︸︸ ︷
kanN −

Phagocytosis
by M1︷ ︸︸ ︷

kanm1ANM1

Inhibition
by AIM︷ ︸︸ ︷(

1

1 +
(

a
a∞

)2

)
−

Phagocytosis
by M2︷ ︸︸ ︷

kanm2ANM2 (24)

2.4.5. Repair mediators

The direct contribution of alveolar macrophages to the repair of epithelial cells is
not completely understood, although macrophage involvement in the repair process
has been widely demonstrated (Herold et al., 2011). M2 macrophages produce various
mediators that promote repair of epithelial cells. We do not model each of these
explicitly, instead we group them together in one variable called R. These secreted
mediators include prostaglandin E2, chemokines such as CCL2, TGF-β, fibronectin
1 and other epithelial growth factors (Gordon, 2003; Herold et al., 2011; Robb et al.,
2016). The production of R by M2 macrophages is modeled by the first term in
Equation (25). The second term models intrinsic decay of these mediators.

dR

dt
=

Upregulation
by M2︷ ︸︸ ︷
krm2M2 −

Decay︷︸︸︷
µRR (25)

With a system of ODEs that captures the most important aspects of the immune
response to VILI, the following sections demonstrate how we analyzed the model
to understand the parameter space, determine the most sensitive parameters and
other influential predictors of model output, and modulate particular cases of model-
generated dynamics to lessen long-term epithelial damage.

2.5. Sampling method for parameters: Latin Hypercube Sampling

Because of the large number of variables and parameters, mathematical and sta-
tistical techniques need to be used to analyze the system and find parameter sets that
generate biologically realistic dynamics of immune cell populations included in this
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model. Some parameters are easily obtained from the literature, such as half-lives of
immune cells. However, most of the parameters have not yet been evaluated due to
the need for experimental data or are altogether impossible to obtain through cur-
rent experimental methods. As an initial step towards determining initial conditions
and parameters for this model we use Latin Hypercube Sampling (LHS). Introduced
in 1979 (McKay et al., 1979), LHS is a sampling method which generates random,
unique parameter sets, such that the produced parameter values are selected accord-
ing to a distribution; in our case, a uniform distribution. For LHS with uniform
distributions assumed for each parameter, to generate n desired parameter sets, the
algorithm splits the determined range into n evenly-spaced subintervals and each
interval is sampled exactly once (Marino et al., 2008). This is particularly useful
for our exploratory simulations because the distributions of the parameters are un-
known. Using MATLAB functions adapted from Kirschner (2008), all parameters
were sampled except the rate of damage sd due to ventilation. Lower and upper
bounds were determined by starting with the same range for all parameters, cover-
ing several orders of magnitude. Within this range, we ensured that parameter sets
existed which covered a variety of disease progressions and we performed additional
LHS sweeps guided by these sets. Once we had parameter sets generating a wide
variety of dynamics, we fixed the range to the minimum and maximum parameter
values that achieved the steady-state condition (see Table 2 for values). The system
of ODEs was solved with each set, and we compared transients to determine which
parameter sets gave rise to biologically feasible results. First, the system ran for 800
hours without ventilator damage (sd = 0) to ensure a steady-state condition was
reached. Any parameter sets that did not result in an equilibrium state by 800 hours
were not simulated with ventilation. The others were then run for 200 hours with
damage rate nonzero for the first 2 hours, replicating experimental methods.

2.6. Cohorts: Healthy, Persistent Damage, & Dying

Simulations were separated into three categories of disease progression: 1 healthy
epithelial cells sufficiently cover the alveoli to functional normally, 2) existence of
persistent inflammation and associated tissue damage, and 3) a healthy epithelial
cell population not large enough to survive. These progressions are called Healthy,
Persistent Inflammation, and Dying, respectively.

To quantify these three different states, we divided percentages of healthy epithe-
lial cells into categories:

• Healthy: Eh ≥ 90%

• Persistent inflammation: 50% ≤ Eh < 90%
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• Dying: 5% < Eh < 50%

In this way, each parameter set can be classified into three different categories
based on their Eh steady-state values either before or after damage. Thus, sets are
classified by their initial conditions and then again after simulation with ventilation.
Cases in which Eh < 5% for the entire simulation were removed; we do not consider
these biologically realistic. These parameter sets, their corresponding transients, and
the outcomes they generate were used to develop a virtual cohort representing the
variety of immune system dynamics generated by the model (Brown et al., 2015).
The cohort was then used to compare outcomes, transient properties, underlying
parameters, and their corresponding biological mechanisms.

2.7. eFAST

We use several tools to perform a sensitivity analysis of model parameters. A
common method is calculating partial rank correlation coefficients (PRCCs), but re-
sults are only reliable for monotonic relationships between parameters and variables.
Our model output does not fit this criteria. Marino et al. (2008) suggest the extended
Fourier amplitude sensitivity test (eFAST), a variance-based method for non-linear,
non-monotonic relationships. The greatest drawback of eFAST compared to PRCC
is the computation time.

eFAST, developed by Saltelli et al. (2004), Saltelli and Bolado (1998), and Saltelli
et al. (1999) is the extended version of FAST, originally developed by Cukier et al.
(1973), Schaibly and Shuler (1973), and Collins and Avissar (1994). Parameters
are varied and the resulting variation in model output is calculated using statistical
variance. The algorithm varies each parameter at different frequencies by creating a
sinusoidal function, called a search curve, and then sampling parameter values along
the function. Fourier analysis measures the influence of the parameter’s frequency
on model output. First-order sensitivity Si for a parameter i is calculated by vary-
ing only i and leaving the rest constant. Total-order sensitivity ST i is calculated by
varying i using a unique, higher frequency and varying the other parameters using
lower non-unique frequencies. This total-order sensitivity captures non-linear inter-
actions between parameters in addition to changes in model output. We implement
a novel method by Marino et al. (2008) to calculate Si and ST i and determine their
statistical significance of for each parameter. A “dummy parameter” is included in
the parameter set and its eFAST index is compared to the other parameters found
in the model.

MATLAB functions by Kirschner (2008) are available online to perform eFAST.
We obtain 65 values on a search curve of each parameter and repeat this process for

27

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.132258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.132258


five unique search curves since different ones can generate slightly different samples.
Sensitivity can be calculated at specific time points for the desired variable.

2.8. Random forest decision tree

Aside from more conventional sensitivity analysis measures, we chose a few alter-
native methods that require less computational time and can include other features of
the model besides parameters. One of these alternatives is a random forest decision
tree. A decision tree algorithm is a classification tool that uses the given properties
of an individual or object to determine into which category it should fall (Le, 2018;
Liaw and Wiener, 2002). In this case, each parameter set in the virtual cohort has
a number of predictors and outputs: parameters and any other characteristics from
the transients that can be quantified or given a classification value. The algorithm
takes a training set, a subset of the cohort about which all predictors and outputs
are known, and can train the algorithm to classify patients into specific categories.

An output of the model that we are particularly concerned with predicting is the
patient’s outcome, as described in the previous section. The decision tree generated
from the training set makes predictions for the rest of the virtual cohort members
about whether each one will fall into one of the three outcomes: resolved to healthy,
persistent inflammation, or dying. The tree contains branches at which specific
parameters are chosen to best assist in classification. The parameter values of each
“individual” in the cohort determines the path along the tree until it reaches the
most likely outcome based on the training set.

Since a decision tree simply takes a series of values for each predictor and is
not dependent on the model itself, measures besides just parameters can be used.
We included supplementary predictors calculated from the transients, described in
Table 3. Adding these predictors allowed for the possibility that the best classifiers
of outcome could be not only parameters but also properties of the transients. This
knowledge could provide additional information about metrics for experimentalists
and clinicians to keep track of and identify early warning signs for undesirable results.

For added robustness against overfitting (?), we use a random forest decision
tree algorithm, in which a user-specified number of randomly chosen parameters are
candidates at each branch; then the algorithm selects one to be the splitting variable
from that smaller group. The rf function in R generates 500 decision trees as the
“forest” along with several other useful output metrics. One metric in particular is
the importance value of each parameter or characteristic, calculated from the Gini
Index. The importance value is a measure of how important any given parameter
was in determining the outcome of each parameter set in the virtual cohort. Be-
cause of the large number of parameters in the model, this can provide intuition on
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Predictor Comment, description

Maximum M1 percent

Maximum M2 percent

Minimum M1 percent

Minimum M2 percent

Maximum M1

Maximum M2

Minimum M1

Minimum M2

M1 peak time Time at which M1 peak occurs

M2 peak time Time at which M2 peak occurs

M2 percent at 10 hours

M1 peak ratio Ratio of M1 peak to M1 initial
condition

Eh difference Difference between first and last
time points of Eh

Eh ratio 0.5h Ratio of IC to Eh at 30 minutes

Eh ratio 2h Ratio of IC to Eh at 2 hours

Eh ratio 6h Ratio of IC to Eh at 6 hours

Fits t = 0 M0 data 0 = does not fit, 1 = does fit

Fits all data 0 = does not fit, 1 = does fit

Table 3: Additional predictors used in analysis of parameter space with descriptions if necessary.
These predictors were used with the random forest decision tree, correlations, and significance
testing.
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which parameters and other characteristics of the transients are most influential in
determining outcomes.

3. Results

Our aim is to understand how recruitment of the immune response and its in-
teractions with epithelial cells translate to specific outcomes and what dynamics are
driving this process. Therefore, we developed an ODE model of the immune response
to VILI, which explicitly tracks macrophage phenotype and epithelial cells. A fixed
point and stability analysis of the epithelial subsystem reveals the long-term stabil-
ity of a simplified version of the system under various conditions, and how changes
in those conditions affect stability. Using Latin Hypercube Sampling, we generated
parameter sets that replicate different possible responses to VILI and created a vir-
tual cohort of patients. We also perform an analysis of the large parameter space by
comparing various techniques to determine predictors of outcome and/or processes
that could be targeted to modulate outcome.

3.1. Sample Transients and Cohort Breakdown

This model can generate a variety of dynamics, similar to expected responses to
patients on a ventilator. There is significant variability between outcomes as well
as within them. Figure 4 shows examples of these different dynamics for healthy
epithelial cells and M0, M1, and M2 macrophages using a case of each of the three
outcomes: resolved to healthy, persistent inflammation, and dying. Experimental
data is shown in Figure 4 are percentages of the total amount of local macrophages.

We generated 100,000 parameter sets using LHS with parameter ranges given in
Table 2. Figure 5 shows the breakdown of these parameter sets based on whether
or not the dynamics lead to a steady-state system in the absence of ventilation,
their classification before ventilation, and the resulting outcome after a two hour
ventilation (healthy, persistent inflammation, and dying). The top number in each
box is the total number of parameter sets in that category, and that number is further
broken down by the category in which they start (column 1) and end (column 2).
For the first column, the number in parentheses is the number of sets that started in
that category but ended in a different one. Conversely, the number in parentheses in
the second column shows the sets that ended in a certain outcome but did not start
there. These numbers serve as a summary of how damage may affect outcome for
the variety of behaviors in the virtual cohort. The table also gives a breakdown of
the parameter sets that give rise to transients that fit within one standard deviation
of the M0 data point at t = 0 hours, all data points at t = 0, and all data points for
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(a) (b)

(c) (d)

Figure 4: Sample simulations; blue, orange, and green curves indicate Healthy, Persistent inflam-
mation and Dying outcomes, respectively. Black error bars represent data obtained as described
in the Experimental methods section. (a) Proportion healthy epithelial cells. (b) Percent M0
macrophages. (c) Percent M1 macrophages. (d) Percent M2 macrophages.
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t = 0 and 2 hours. Data is used to illustrate how using a cohort can be beneficial in
generating a variety of dynamics that fit the data through unique parameter sets, but
given the limited data available (few times points and only a few of the variables),
we will analyze all 22,554 sets that reach steady state whether or not they fit the
data to understand the full array of responses that could occur.

As seen in the example transients in Figure 4, our model generates a large range
of initial conditions and dynamics. However, all of the values generated may not be
biologically realistic; in vivo murine experimental data from may provide additional
information about realistic amounts of macrophage concentration and activation. As
mentioned in the description of the experimental methods, macrophages can express
M1 and M2 markers at the same time. M1 and M2 variables in the model track overall
M1 and M2 expression rather than quantities of cells, so we compare the data to our
variables as percentages of the total number of macrophages. Many of the transients
were prevented from fitting the data because of the small standard deviation for M0
data. Furthermore, the resulting M1 and M2 ranges were quite overlapped for the
two time points due to their large standard deviations; thus, many transients that
fit the data showed minimal activation although it is well known that M1 and M2
expression peaks considerably during and after injury (Aggarwal et al., 2014; Robb
et al., 2016). For these reasons and since there are only two time points available,
we focus on the first time point, specifically for naive M0 macrophages, as a starting
point. Table 4 shows a breakdown of the 466 parameter sets which resulted in an
M0 transient that fit the first data point.

Starting state Outcome Comment

Healthy 309 301 Start healthy → end pers. inf.: 8

Pers. Inf. 109 116 Start pers. inf. → end dying: 1

Dying 48 49

Table 4: A breakdown of the 466 total parameter sets that resulted in an M0 transient that fit the
data.

Because the mice from which the samples were collected were otherwise healthy
and were also sacrificed immediately after the two-hour ventilation period, their
outcomes are unknown. Table 4 shows that our model generates transients that fit
this data point and result in all three outcomes. In the following sections we use
several analysis techniques, first considering all 22,554 sets that fit the steady-state
condition, and then only the 466 sets that fit the first data point. This allows for
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Total LHS runs: 100,000

Steady-state: 22,554

IC ES
H: 15193 (415) 14781 (3)
P: 4861 (72) 5099 (310)
D: 2500 (3) 2674 (177)

Not steady-state: 77,446

Fit, t = 0/M0: 466

IC ES
H: 309 (8) 301 (0)
P: 109 (1) 116 (8)
D: 48 (0) 49 (1)

Not a fit, t = 0/M0: 22,088

IC ES
H: 14884 (407) 14480 (3)
P: 4752 (71) 4983 (302)
D: 2452 (3) 2625 (176)

Fit all, t = 0: 140

IC ES
H: 91 (1) 90 (0)
P: 27 (1) 27 (1)
D: 22 (0) 23 (1)

Not a fit, t = 0: 326

IC ES
H: 218 (7) 211 (0)
P: 82 (0) 89 (7)
D: 26 (0) 26 (0)

Fit all, t = 0 & 2: 96

IC ES
H: 54 (1) 53 (0)
P: 15 (1) 15 (1)
D: 14 (0) 15 (1)

Not a fit, t = 0 & 2: 57

IC ES
H: 37 (0) 37 (0)
P: 12 (0) 12 (0)
D: 8 (0) 8 (0)

Figure 5: Results of 100,000 LHS runs and breakdown of their initial conditions (IC) and ending
states (ES) by category healthy (H), persistent inflammation (P), or dying (D) Numbers in paren-
theses in the IC columns are the number of simulations that started in the category associated with
that row and change their state after ventilation. Numbers in parentheses in the ES columns are
the number of simulations that ended in the category associated with that row, but were not in
that category before ventilation.
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enough sets to analyze the results.

3.2. Determining Predictors and Driving Dynamics

Our model has 18 variables and 67 parameters. Using a variety of mathematical,
statistical, and computational methods, we determined the parameters and other
predictors that stand out, those to which output is most sensitive and may help
differentiate or predict what is driving outcome. In this section we explain and
compare the results of each method.

3.2.1. Correlations and significance testing highlight specific parameters

As an initial step towards understanding relationships between parameters and
model output, we calculated the correlations of parameters and predictors with out-
come. There are only a few correlations higher than R = 0.3; notable pairs are shown
in Figure 6 using random samples of each outcome for better visibility of the points.
Interestingly, the parameters br and kmne are more correlated with the ratio between
Eh at some point during ventilation and the initial Eh value than with the value
of Eh at 200 hours, i.e. how we define the transient’s outcome. Lower ratios imply
less significant of a change in epithelial health due to ventilation. For kmne, the rate
of collateral damage to epithelial cells by macrophages and neutrophils, parameter
sets that result in persistent inflammation and dying outcomes have a significant
correlation with the same Eh ratio, shown in Figure 6a. The kmne parameter has
the following correlations for each type of outcome: resolved to healthy R = 0.07
(not shown); persistent inflammation R = 0.59; dying R = 0.77. The br parameter,
representing the baseline repair rate for epithelial cells, has the following correlations
for each type of outcome, shown in Figure 6b: resolved to healthy R = 0.34; per-
sistent inflammation R = 0.35; dying R = 0.12 (not shown). Visual inspection of
both graphs show possible nonlinear behavior that should be investigated further.
The only other pair with a correlation above 0.3 is sm, the source rate for naive
macrophages, and the maximum and minimum values of M2 macrophages over the
entire simulation. The parameter sm and maximum M2 has the following correla-
tions: healthy R = 0.32; persistent inflammation R = 0.32; dying R = 0.33. Figure
6c shows the results for sm and maximum M2; sm and minimum M2 is not shown
but has similar results.

We also performed hypothesis testing for predictors (excluding binary variables).
The Kruskal-Wallis Test is an alternative to ANOVA when the variable distributions
are not normal (McKight and Najab, 2010). Due to our choice of a uniform sam-
pling distribution for LHS, parameter distributions for the 22,554 sets are roughly
uniform. We categorized all parameter sets by their outcome (healthy, persistent
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(a) (b)

(c)

Figure 6: Scatter plot of predictors with notable correlations. Points are a random sample of the
total points. (a) Parameter kmne (rate of collateral damage to epithelial cells by macrophages and
neutrophils) versus ratio of Eh at 30 minutes to initial Eh values. Correlations: resolved to healthy
R = 0.07 (not shown); persistent inflammation R = 0.59; dying R = 0.77. (b) Parameter br
(baseline rate of epithelial repair) versus ratio of Eh at 2 hours to initial Eh values. Correlations for
parameter sets in each outcome: resolved to healthy R = 0.34; persistent inflammation R = 0.35;
dying R = 0.12 (not shown). (c) Parameter sm (source rate of M0 macrophages) versus maximum
M2. Correlations for parameter sets in each outcome: resolved to healthy R = 0.32; persistent
inflammation R = 0.32; dying R = 0.33.
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Figure 7: Subset of parameters and predictors that showed a statistically significant difference
between all three outcomes: healthy, persistent inflammation, and dying, as determined by the
Kruskal-Wallis and Wilcoxon Tests. Some are shown on a log scale for better visibility. Black x’s
are outliers.

inflammation, dying) and compared them. If any of the three groups had a statis-
tically significant difference (p-value less than 0.01), a Wilcoxon test was performed
on each pair (healthy and persistent inflammation, healthy and dying, persistent in-
flammation and dying) to determine which groups were different from one another.
P-values for the Kruskal-Wallis and Wilcoxon tests were adjusted using the Ben-
jamini–Hochberg procedure to control for the false discovery rate (Benjamini and
Hochberg, 1995). Knowledge of which parameters and other predictors are different
between groups depending on the outcome provide insight into predicting outcomes
and which predictors might help influence the immune response to damage.

35 out of 81 parameters and other predictors returned results for a statistically
significant difference between at least two groups and 11 gave statistically significant
differences between all three groups. Table 5 shows a summary of the results from
the various methods used to examine predictors significance in determining of model
output. Column 1 of Table 5 shows the predictors in which all three groups were
different from one another, as determined by the Kruskal-Wallis and Wilcoxon Tests.
Results in columns 2-5 are described in the following sections. Box plots of a subset
of predictors in which all three groups are different are shown in Figure 7 to help
visualize these differences.

3.2.2. Parameter Sensitivity with eFAST

Since outcome of Eh is the metric by which we determine health of the individual,
we calculated eFAST indexes for Eh at at 30 minutes, two hours (end of ventilation),
and six hours. We calculated first-order and total-order sensitivities Si and ST i,
respectively. Figure 8 shows results for the parameters with p < 0.02. Parameters
kn (rate of migration of Nb to lung), xmne (Hill-type constant for effectiveness of
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All sets Fit M0 at t = 0h eFAST
Sig. Testing Random Forest Sig. Testing Random Forest (Ordered)
(Not ordered) (Ordered output) (Not ordered) (Ordered output) 0.5h 2h 6h

kmne kmne kmne kmne kn kn xm0a

Eh ratio 6h xmne xmne µp xmne

xmne xmne Eh ratio 6h xm0a ken
Eh ratio 2h Eh ratio 2h Eh ratio 2h xmne br
Eh ratio 0.5h Eh ratio 0.5h Eh ratio 0.5h ken xnup
br br dp br xm0a

Min M1 a∞ µm1 sp
ken ken xm2r kam1 µp

kep ken kpe
Min M1% Min M1% µm2b µR

µp

kem1

M1 peak ratio
M1 peak time

Table 5: Summary of three different methods used to determine the most influential predictors,
including parameters and other factors. Those that occurred most frequently are colored for better
visibility. Columns 1 & 2 show results for all 22,554 parameter sets and columns 3 & 4 show
results for the 466 parameters that fit the M0 data point at 0h. Columns 1 & 3: significance
testing results for predictors in which all three outcome groups are statistically different (column
1 p < 0.01; column 3 p < 0.05). For ease of comparison between columns, the predictor is listed
next to its counterpart in the random forest list, if listed in that column. Columns 2 & 4: average
importance values determined by random forest decision trees. The top ten are ordered from highest
to lowest importance. Columns 5-7: eFAST results (ordered by p-value, with p < 0.02) for three
time points.
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macrophages and neutrophils to damage epithelial cells), xm0a (Hill-type constant
for effectiveness of differentiation of M0 by a), br (baseline repair of damaged cells),
and ken (phagocytosis of damaged cells by N) are sensitive for several time points.
Comparing Si and ST i in Figure 8, it is possible that nonlinear interaction between
parameters affects model output more at 6 hours than at 2 hours. Parameters with
a significant Si may also be better candidates for treatment than those with a sig-
nificant ST i because first-order sensitivity measures sensitivity of Eh based only on
fluctuations in a single parameter. For this reason and since many of the same pa-
rameters are significant in for first-order and total-order sensitivity, we show results
for first-order sensitivity in Columns 5-7 of Table 5, ordered from lowest p to highest
and for the three time points specified.

3.2.3. Random forest algorithm to determine predictors

The randomness of the decision tree algorithm means that each random forest
generated and its resulting importance values will be slightly different. To offset any
unusual results generated by the randomness, we replicated the process of choosing
a training set, determining the number of parameters from which to select at each
branch, and generating importance values from the random forest 1000 times. Fig-
ure 9 shows the average and standard deviations of the top ten importance values
generated.

Notice that the standard deviations are small enough so that although some of
the top importance values may change order in different random forest simulations,
in general the most important predictors will remain the same across numerous
simulations. Furthermore, several of the top ten predictors except Eh difference were
also found to be significant by the Kruskal-Wallis Test and br and kmne are shared by
random forest and eFAST. (see Table 5). The consistency of the importance of these
predictors using different methods supports the idea that they play a significant role
in determining or differentiating outcomes and the sensitivity of model output to
specific parameters.

3.2.4. Analysis of parameter sets that fit data

Using the same analysis techniques as with all 22,554 parameter sets, we re-
analyzed only the sets that fit the M0 data point at the start of ventilation (t = 0h)
to determine if fitting any of the data provides new information. First, correlations
were re-calculated with only sets that fit the first data point for the M0 variable.
Correlations change slightly for each outcome, though br and Eh ratio, kmne and Eh

ratio, and sm and M2 max/min still have consistently high correlations. Figure 10
shows these results. Correlation between kmne and Eh ratio decreases slightly for the
persistent inflammation outcome, from 0.59 when considering all parameter sets to
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(a)

(b)

Figure 8: Parameters determined by eFAST to be most sensitive, with p-values calculated by
comparing eFAST sensitivity indexes to a dummy variable. (a) First-order sensitivity, also shown
in Table 5. (b) Total-order sensitivity. Results are given for each of the time points tested: 0.5
(red), 2 (blue), and 6 hours (purple).
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Figure 9: Mean and standard deviation of importance values for the top ten highest predictors from
1000 random forest decision trees.
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0.45 for just those that fit the data, while the correlation for the healthy outcome
increases slightly from 0.07 to 0.13 (Figure 10a). For br, shown in Figure 10b, the
healthy and persistent inflammation outcome correlations are about the same and
the dying outcome correlation decreases from 0.12 to 0.05. Finally, for sm and max
M2 (Figure 10c), correlation increases slightly for the healthy outcome.

We performed the Kruskal-Wallis Tests (and Wilcoxon Tests when necessary)
for the parameter sets that fit the first M0 data point to determine which groups
(healthy, persistent inflammation, dying) are statistically significantly different from
one another. Only the parameters kmne and xmne gave results with p < 0.05 for a
difference between all outcomes. Column 3 of Table 5 and Figure 11a show these
results.

We calculated the average importance values for the parameter sets that fit the
M0/t = 0 data point using 1000 random forests. Results are shown in Figure 11b.
Six of the top ten factors from the random forest for all parameter sets are in the
top ten for the selected sets.

The parameter xmne increased in average importance relative to the other top
importance values while the random forest algorithm determined that other param-
eters including dp, a∞, and xm2r are more important for the sets that fit the first
M0 data point. We do not perform a second eFAST sensitivity analysis since eFAST
uses the model equations to calculate indexes, not parameter sets.

Table 5 shows a summary of the results from significance testing, eFAST, and
random forest decision tree. Many of the same predictors are highlighted by the
different methods, including Eh ratio at 0.5, 2, and 6 hours, M1 metrics, kmne, xmne,
ken and br.

3.3. Modulating recovery: a case study of select transients

Out of the 466 parameter sets that fit the first data point, nine sets result in Eh

transients that start within one category of disease progression and end in another,
shown in Figure 12. We used the information gained in the parameter analysis to
identify key targets for treatment that could modulate damage, especially in the case
of a patient starting in one state and after ventilation ending in a different, negative
outcome.

Our analysis shows that the parameters br, the rate of self-repair of healthy ep-
ithelial cells, kmne, the rate of collateral damage by macrophages and neutrophils
to epithelial cells, xmne, the Hill-type constant which regulates the effectiveness of
macrophages and neutrophils to damage epithelial cells, and ken, the rate of phago-
cytosis of damaged cells by neutrophils, are some of the most influential parameters
and thus could inform targets for treatment. It is also important to note that differ-

41

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 4, 2020. ; https://doi.org/10.1101/2020.06.03.132258doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.03.132258


(a) (b)

(c)

Figure 10: Scatter plots updated to include only data points that fit M0 data point at t = 0. (a)
Parameter kmne versus ratio of Eh at 2 hours to Eh initial condition. Correlations: resolved to
healthy R = 0.13 (not shown), persistent inflammation R = 0.45, dying R = 0.78. (b) Parameter
br versus same Eh ratio. Correlations: resolved to healthy R = 0.33, persistent inflammation
R = 0.38, dying R = 0.05 (not shown). (c) Parameter sm versus maximum M2. Correlations:
resolved to healthy R = 0.44, persistent inflammation R = 0.33, dying R = 0.30.
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(a)

(b)

Figure 11: Results from analysis of parameter sets which generate transients that fit within one
standard deviation of the M0 data point at the beginning of the simulation. (a) The two parameters
that are statistically significantly different for all three outcomes (p < 0.05) based on the Kruskal-
Wallis and Wilcoxon Tests. Shown on a log scale for ease of comparison. (b) Mean and standard
deviation of importance values from 1000 random forests.
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(a) (b)

Figure 12: (a) Transients of Eh that start at one state and end at a lower one. (b) Corresponding
transients of M1. Solid lines represent transients that start healthy and ends in persistent inflam-
mation; the dotted line represents the transient that starts in persistent inflammation and ends
dying.

ent interventions could begin and end at any time during or after ventilation, so we
examined interventions at several different time points (see Figure 13).

The first case in which we intervene is the one that starts healthy and ends in
a persistent inflammation outcome. Note in Figure 13, the original Eh transient
begins recovery to healthy after the two-hour ventilation period, but decreases to
a new, lower steady-state. This is coupled with a transient for M1 in which the
pro-inflammatory phenotype increases to 40-45% and stays in this range.

Increasing br by various amounts has increasingly positive effects on long-term
epithelial health. Lower values of br increase the steady-state slightly and an earlier
intervention can generate a higher peak of Eh around five hours, but the end steady-
state is the same regardless of intervention time. If br is increased substantially
for a significant duration of treatment time, healthy epithelial cells reach a higher
steady-state value after ventilation and do not decrease again. Shown in Figures
13a and 13d, doubling br to 0.66 is not enough to generate recovery, but increasing
br by a factor of four to 1.32 does result in a healthy outcome. For an insufficient
treatment duration and value of br, levels of Eh will be higher until treatment ends
and then decrease back to the same level as the original simulation. For a long enough
treatment duration, the steady-state of healthy epithelial cells will remain high even
after treatment ends. For br = 0.66, the intervention time does not affect health in
the long run, whereas for br = 1.32, intervention at 0 and 2 hours is sufficient to
bring about recovery while intervention at 4 hours is not.
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The parameter kmne has an inverse relationship with epithelial health; thus, de-
creasing the parameter provides better results. Decreasing kmne slightly can increase
the epithelial steady-state slightly but not enough to change the outcome to re-
solved. However, with a significant enough decrease of kmne, M1 activation peaks
around hour 10 and decreases back to its original levels whereas the original sim-
ulation shows M1 activation leveling off at a high percentage of activation (Figure
13e). The modulated return to baseline levels is paired with a healthy outcome for
epithelial cells (Figure 13b). For higher values of kmne, results are about the same
for any intervention time 4 hours or less after the beginning of ventilation. Note in
Figure 13 that the time at which intervention begins matters somewhat for changes
in br but not for kmne. Figures 13b and 13e show that half of the original value
of kmne (0.38 to 0.19) is not low enough to change the outcome; multiplying by a
factor of 0.1 to kmne = 0.04, on the other hand, is sufficient to change the outcome
to healthy.

We also increase the parameter xmne. Increasing this value causes the presence of
macrophages and neutrophils to be less effective in damaging epithelial cells. Simi-
larly to the other treatments, sufficient changes to xmne bring about long-term recov-
ery and the time at which intervention begins is not as important. Figures 13c and
13f show doubling xmne to 1.85, insufficient to change the outcome, and increasing
xmne by a factor of four to 3.69, which is sufficient.

Finally, we increase ken. This increases the rate at which neutrophils phagocytize
damaged cells, making room for new, healthy cells. Interestingly, although ken is
shown to be an important parameter in our parameter analyses, even increasing the
parameter by a factor of ten to 1.52 is insufficient to make any real changes in the
epithelial and macrophage populations. Since there was no significant change, we do
not show this treatment in Figure 13.

We also examine the results of combination therapy that could include regulation
of two or three parameters. Together, changes in parameter values that would be
insufficient on their own are able to regulate macrophage activation and bring ep-
ithelial cells back to a healthy state. Additionally, higher values of br and xmne and
lower values of kmne precipitate a quicker recovery from damage. Intervention time
is important for parameter values near the baseline, but not for parameter values
sufficiently above or below the threshold. Intervention time may make a difference
in the ending steady-state values of Eh or M1, depending on the parameter values.
Many combinations could be formulated; Figure 14 shows two cases in which two
parameter changes were insufficient to bring about recovery individually but are suf-
ficient when combined. The orange curves show br = 0.99 and kmne = 0.19 and the
blue curves show xmne = 2.31 and ken = 1.52, which bring about long-term recovery
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(a) (b) (c)

(d) (e) (f)

Figure 13: Starting with a parameter set that gives rise to an Eh transient that starts healthy
and ends in a persistent inflammation state, we applied various treatment strategies by changing
three key parameters, br (rate at which healthy epithelial cells self-repair), kmne (rate of collateral
damage to epithelial cells by macrophages and neutrophils), and xmne (Hill-type constant which
regulates the effectiveness of macrophages and neutrophils to damage epithelial cells). Results for
various changes are shown for healthy epithelial cells (a, b, c) and percent of M1 macrophages (d,
e, f). Treatment was started at 0, 2, or 4 hours after the start of ventilation, denoted by solid,
dotted, and dot-dashed lines, respectively, and lasted for 48 hours. The original parameter values
are br = 0.33, kmne = 0.38, and xmne = 0.92. Black transients show the original dynamics without
intervention. Orange transients represent values of each parameter that are insufficient to mediate
prolonged macrophage activation. Blue transients show values that are sufficient to bring about
resolution, depending on intervention time.
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(a) (b)

Figure 14: Changes in br, kmne, xmne and ken that are insufficient on their own (Figure 13) result
in a change in outcome when combined. Orange curves show a combination treatment of br = 0.99
and kmne = 0.19 and blue curves show that of xmne = 2.31 and ken = 1.52. Duration of treatment
in each case is 48 hours, and all intervention times are successful in a long-term recovery.

for all three intervention times.
For other cases that change steady-state (those starting in a healthy state and

ending in persistent inflammation or starting in persistent inflammation and ending
in a dying state) a high enough br can bring about resolution in some cases, with
earlier intervention times resulting in a higher steady-state, but there are varied
responses to changes in kmne, xmne, and ken. In fact, a higher ken can be detrimental.
Even for transients with similar Eh and M1 dynamics, reactions to treatments are
very different, reinforcing the uniqueness of each individual member of the virtual
cohort.

To examine different responses to treatments, we compare 48-hour treatments
in two different cases: one begins in a persistent inflammation disease progression
and ends in a dying state, and the other begins healthy and ends in a persistent
inflammation state. We tested treatments using the four parameters from the first
case study multiplied by different factors: br multiplied by a factor of 20, kmne

multiplied by a factor of 0.05, xmne multiplied by a factor of 20, and ken multiplied
by a factor of 0.05. Additionally, since kn was identified by eFAST as being a
parameter to which Eh is sensitive, we also included kn multiplied by a factor of 20
as a treatment.

One case, shown in Figures 15a and 15c, started with br = 1.22, kmne = 0.005,
xmne = 2.71, ken = 2.31, and kn = 0.43. Changes to xmne and ken made no substantial
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impact on the percentage of healthy epithelial cells; thus, they are not shown in the
figures. Figure 15c shows a spike in M1 due to the change in kn; this is paired with
an increase in Eh, but after the treatment ends at the 48-hour mark, the rate of
recovery of healthy epithelial cells decreases to about the same rate as that of the
original transient.

The other case, shown in Figures 15b and 15d, responds differently to the treat-
ments. Original parameter values were br = 0.010, kmne = 0.015, xmne = 24.67,
ken = 0.011, and kn = 0.02. Multiplying br by a factor of 20 is the most effective
treatment, bringing Eh above 90% into the healthy outcome category. Higher values
of br increase Eh further. In this case, Eh does not respond to changes in kmne or
xmne. Similarly to the previous case, the kn intervention changes M1 dynamics the
most but does not have a meaningful effect on healthy epithelial cells. Decreasing
ken has somewhat of an effect on Eh, in contrast to the case study shown in Figure 13
in which multiplying ken by a factor greater than one increased Eh. Phagocytosis of
damaged cells by neutrophils can make space for healthy epithelial cells to proliferate
and fill the empty space, but neutrophils can also prevent these damaged cells from
repairing on their own. We hypothesize that the latter is the reason for this inverse
reaction from Eh.

A noticeable difference between the first case studied and the second two is M1
activation. In the first case, M1 macrophages reach almost 45% of total macrophages
at the site of inflammation, whereas in the other two cases, there is barely any M1
activation at all. A successful intervention in the first case is paired with a lower peak
in M1 and return to baseline. In the second case (Figure 15c), the only parameter
that increases M1 levels above a negligible amount is kn, but this does not translate
to a change in outcome for Eh. The third case (Figure 15d) shows a variety of peaks
depending on the intervention, but the y-axis reveals that the transients are below
half a percent at their maximum. This points to the need for proper macrophage
activation for epithelial health.

We are able to identify interventions that increase Eh back to a healthy state for
two cases that start in a healthy state and end in persistent inflammation. Some
treatments prove to be less effective in some scenarios and more effective in others.
In the first and third cases, treatments change the steady-state so that the virtual pa-
tient stayed healthy after the intervention ended; in the second case, one intervention
helped somewhat, but only lasted as long as the treatment period. One important
distinction between all three cases is the variety in M1 activation. Furthermore, the
case that responded the least to treatment is the one that started with persistent
inflammation and ended in a dying disease progression. This may point to the idea
that some cases are beyond intervention, or that further work on finding alternative
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(a) (b)

(c) (d)

Figure 15: Possible intervention strategies for two additional case studies. (a, c): Eh and M1,
respectively, for a case that begins in persistent inflammation and ends in a dying state. Original
parameter values: br = 1.22, kmne = 0.005, xmne = 2.71 (not shown), ken = 2.31 (not shown), and
kn = 0.43. (b, d): Eh and M1, respectively, for a case that begins healthy and ends in persistent
inflammation. Original parameter values: br = 0.010, kmne = 0.015 (not shown), xmne = 24.67
(not shown), ken = 0.011, and kn = 0.02. Five different interventions to increase Eh are as follows:
br multiplied by a factor of 20 (orange), kmne multiplied by a factor of 0.05 (blue), xmne multiplied
by a factor of 0.05 (not shown), ken multiplied by a factor of 0.05 (red), and kn multiplied by a
factor of 0.05 (purple). Interventions lasted for 48 hours, starting either at the beginning (0h) or
end (2h) of ventilation.
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interventions is needed.

4. Discussion

The spectrum of macrophage activation has been a recently growing field of
research (Aggarwal et al., 2014; Mosser and Edwards, 2008; Torres et al., 2019).
Mathematical models have studied a host of causes of lung inflammation including
bacterial and viral infections and allergic reactions (Brown et al., 2011; Day et al.,
2009; Manchanda et al., 2014; Smith et al., 2011). Models have also been studied
to examine the effects of biomechanical strain on the lungs (Pidaparti et al., 2013).
Our model combines the varied effects of macrophage activation with a more detailed
epithelial subsystem. These features help to provide a better understanding of how
the different macrophage phenotypes work together to bring about resolution after
damage and how imbalances can cause a decline in health after ventilation.

We also examine how the recruitment of circulating immune cells from the blood-
stream contributes to the immune response using a two-compartmental model. Our
model incorporates a number of factors involved in the immune response, includ-
ing naive M0, pro-inflammatory M1 and anti-inflammatory M2 macrophages, three
states of epithelial cells (healthy, damaged, dead), activated and unactivated neu-
trophils, and various mediators used to signal between cells.

The model consists of 18 state equations and 67 parameters. Because of its large
size, various methods were used to find biologically meaningful parameter sets that
also made sense mathematically. Using Latin Hypercube Sampling, we found ranges
of parameters that produced a variety of dynamics and used these ranges to produce
22,554 parameter sets. This “virtual cohort” reveals the variety of dynamics that can
be generated by the model as well as the unique characteristics and properties of the
transients that respond differently to treatments. We classified parameter sets into
categories of healthy, persistent inflammation, and dying based on the percentage of
healthy epithelial cells at the beginning or end of the simulation.

We then utilized several methods to determine the most important parameters
for model output, particularly epithelial health. Using eFAST, a sensitivity analysis
method for non-linear, non-monotonic ODEs, we found parameters that, when fluc-
tuated, caused a statistically significant difference in output than that generated by
a dummy parameter. We then compared these results with more non-conventional
and less computationally intensive methods. The random forest decision tree algo-
rithm was used to determine the importance of parameters and other predictors on
epithelial health and is particularly useful for large data sets, such as the parameter
sets in our virtual cohort. Additionally, significance testing was used to determine
statistically significant differences in parameters grouped by outcome.
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We were able to not only include parameter values but also other predictors later
found to be important, including the M1 peak ratio and the difference between Eh

initial condition and ending value. Three of the most important parameters were br,
the rate of self-repair of epithelial cells, kmne, the rate at which macrophages and
neutrophils cause collateral damage to epithelial cells, xmne, the Hill-type coefficient
that regulates the effectiveness of that collateral damage, and ken, the rate of phago-
cytosis of damaged epithelial cells by neutrophils. These important parameters and
predictors were confirmed by at least two of the methods used.

Analysis showed that properties and parameters related to epithelial repair and
M1 activation and de-activation were especially predictive of outcome. We used br,
kmne, xmne, ken, and kn to simulate treatments for specific parameter sets in the
virtual cohort that started in one disease progression state and ended in a lower
one. Experimental data is limited for VILI, but we were able to use data from
Misharin et al. (2013) as an initial starting point for biologically feasible dynamics.
We found that modulating br is effective in most cases, and the other four can be
helpful in some. Each of the three cases responded differently to treatment and
these differences were paired with different M1 activation dynamics, indicating that
macrophage activation is tied to epithelial health in VILI.

Further experimental data is necessary to better understand the dynamics of
the immune response to VILI. The data available was a helpful starting point, but
because of the experimental methods used, we were only able to use the data in
terms of percentage of overall macrophages instead of concentrations. In the future,
concentrations of macrophages and neutrophils, as well as a way to experimentally
measure epithelial health at multiple time points would be extremely beneficial.

Another area of further study is determining why some virtual patients can re-
cover with a short intervention while others need indefinite treatment. We hypoth-
esize that this has to do with the initial conditions of the patient but more work
should be done to obtain a definite answer. This would be helpful to better under-
stand patients who undergo VILI since patients generally need ventilation because of
a preexisting condition, and do not begin ventilation in a completely healthy state.
In fact, this model could be extended to include other types of injury such as a
bacterial or viral infection to study the interactions between the different types of
injury and how they contribute to patient outcome.

In conclusion, our model contributes to the current understanding of macrophage
activation in the context of lung inflammation, and is an especially important first
step for VILI. Our parameter analysis using a variety of methods provides new insight
into potential interventions during and after ventilation to mediate VILI. Additional
experimental data will greatly improve our ability to suggest treatments. Further-
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more, the model can be extended to include other types of injury that create the
need for mechanical ventilation in the first place.
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