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Abstract

Many genetic mutations affecting phenotypes are presumed to do so via altering gene
expression in particular cells or tissues, but identifying the specific genes involved has
been challenging. A transcriptome-wide association study (TWAS) attempts to identify
disease associated genes by first learning a predictive model on an eQTL dataset and
then imputing gene expression levels into a larger genome-wide association study
(GWAS). Finally, associations between predicted gene expressions and GWAS
phenotype are identified.

Here, we compared tree-based machine learning (ML) method of random forests
(RF) with more widely used linear methods of lasso, ridge, and elastic net regression, for
prediction of gene expression. We also developed a multi-task learning extension to RF
which simultaneously makes use of information from multiple tissues (RF-MTL) and
compared it to a multi-dataset version of lasso, the joint lasso, and to a single tissue RF.
We found that for prediction of gene expression, RF, in general, outperformed linear
approaches on our chosen eQTL dataset and that multi-tissue methods generally
outperformed their single-tissue counterparts, with RF-MTL performing the best.
Simulations showed that these benefits generally propagated to the next steps of the
analysis, although highlighted that joint lasso had a tendency to erroneously identify
genes in one tissue if there existed a disease signal for that gene in another.

We tested all four methods on type 1 diabetes (T1D) GWAS and expression data for
several immune cells and found that 46 genes were identified by at least one method,
though only 7 by all methods. Joint lasso discovered the most T1D-associated genes,
including 15 unique to that method, but this may reflect its higher false positive rate
due to “overborrowing” information across tissues. RF-MTL found more unique
associated genes than RF for 3 out 5 tissues. Compared to lasso-based analysis, the RF
gene list was more likely to relate to T1D in an analysis of independent data types. We
conclude that RF, both single- and multi-task version, is competitive and, for some cell
types, superior to linear models conventionally used in the TWAS studies.

Author summary

A transcriptome-wide association study (TWAS) is a way of integrating expression data
and genome-wide association studies (GWAS), which allows for discovery of genes,
rather than mutations, associated to traits of interest. In the TWAS framework, we first
train predictive models on an eQTL dataset, then use these models to impute gene
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expression into a GWAS dataset. Finally, we look for significant associations between
predicted gene expression and a GWAS trait. In this work, we compare non-linear
method of random forests (RF) to linear models, customarily used in TWAS.
Furthermore, we demonstrate that TWAS framework can naturally be extended to, and
potentially benefit from, a multi-tissue setting, thereby taking advantage of the
correlation between gene expression in different tissue types. We applied the RF, a
selection of linear models, and the multi-tissue approaches to an eQTL dataset of
monocytes and B cells and a large T1D GWAS. We found that RF outperform lasso in
terms of predictive accuracy and the number of differentially expressed genes found, and
that multi-dataset version of lasso discovered the most T1D-associated genes. Analysis
of the gene lists produced for each method in independent data types (excluding genetic
association data) showed all related to T1D, but that the RF methods ranked T1D
higher in their lists than the linear methods. We conclude that RF is a useful addition
to the TWAS tool box.

Introduction

Genome-wide association studies (GWAS) have been hugely successful over the last
decade, transforming genetic association testing into a reproducible science [1] and
identifying tens of thousands of variants associated with more than a thousand traits [2].
However, lack of interpretability remains a criticism of GWAS [3]—most
disease-associated variants lie in regulatory regions [4, 5] but have not yet been
convincingly linked to the genes they regulate. It has been noted that eQTLs are
over-represented among trait-associated SNPs uncovered by GWAS [6,7]. This has
motivated development of different methods to link GWAS variants to genes by
integrating GWAS and eQTL datasets [8–10], and one promising approach, referred to
as transcriptome-wide association study (TWAS), is to use an eQTL dataset to learn
rules with which to impute gene expression in GWAS samples. Predicted gene
expressions can then be used in place of genotypes within the standard GWAS
framework, enabling gene-based instead of variant-based, case-control comparisons [11].

Previously proposed approaches for learning the imputation rules are based on
regularized linear models [11–14], polygenic risk scores [11] and using the top SNP to
predict expression levels [12]. However, the machine learning literature has shown that
alternative approaches such as random forests (RF), which allow naturally for
non-linear and non-additive effects, can produce more accurate predictions in model
organisms [15,16]. We set out to explore whether using RF could also lead to better
gene expression predictions in humans and, if so, whether that could be translated into
a more powerful TWAS.

We also sought to take advantage of the fact that expression levels of a given gene in
different cell types can be correlated by considering expression values across multiple
cell types simultaneously in a multi-task framework. This has been shown to improve
multi-trait predictions in yeast [16] and in applications to real and simulated data in
marker-assisted selection for several related traits [17–19] or populations [20].
Multi-trait approaches have also been used to analyse eQTL datasets [21,22]. We
adapted standard RF for this purpose and compared it to the joint lasso of Dondelinger
and Mukherjee [23], as well as to the linear and RF models trained on data from single
tissue only.

We compared linear and RF models for single-tissue and multi-tissue learning and
studied how their performance translated into TWAS using simulated data and a real
data example. For this, we chose to consider eQTL data from multiple immune cell
types (B cells and monocytes [24,25]) for a large type 1 diabetes (T1D) study [26].
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Results

Random forests allow improved predictions of gene expression
in single tissues

We began by comparing the predictive power of different methods of eQTL prediction in
a microarray gene expression dataset of monocytes and B cells from 430
individuals [24, 25] (Table 1). For each probe, SNP markers within 1 Mbp of that probe
(cis-SNPs) were used to train a predictive model for each cell type. Only probes which
have at least one cell type with a nominally associated cis-SNP (p-value < 10−7; see )
were considered (4,288 probes resulting in 21,440 probe-cell regressions; see Methods for
more details)

Models were trained on a training set and evaluated on a test set, comprising
roughly 70% and 30% of the data, respectively. Predictive accuracy was assessed by
calculating R2 on the test set. In order to avoid information leaking in the MTL set-up,
described later, all samples from the same individual were designated to either the
training or the test set.

Dataset Cell type Samples SNPs Probes

Fairfax et al

CD14+ 413

588,141
47,230CD14+ LPS2 260

CD14+ LPS24 321

CD14+ IFN 366

B cell 284 47,231

Table 1. Summary of eQTL datasets used in this study. Expression data of Fairfax et
al [24, 25] includes B cells and monocytes, unactivated and activated—response to
interferon-γ (IFN) and lipopolysaccharide after 2 (LPS2) and 24 (LPS24) hours.

We compared performance of RF [27] to three regularised regressions: lasso [28],
ridge [29] and elastic net [30], motivated by their popularity in the literature. Lasso and
ridge regressions differ by their use of an L1 or L2 penalty parameter, respectively, with
elastic net being a mixture of the two.

Amongst the linear methods ridge regression strictly underperformed compared to
lasso and elastic net which performed similarly to each other, with lasso slightly
preferred (Fig S2 (a)), suggesting that eQTL prediction benefits from sparsity
introduced by the elastic net and lasso regression. Moreover, once sparsity is introduced,
varying the mixing parameter hardly affected performance of elastic net (Fig S2 (b)).
We therefore dropped ridge regression and elastic net from further analysis.

RF outperforms lasso in the overwhelming majority of regressions with mean
advantage (see Methods) of RF over lasso of 5.9%, compared to 3.5% of mean advantage
of lasso over RF (Figure 1). Moreover, for 1,927 out of 11,814 probe-cell pairs with any
signal, RF beat lasso by more than 10%. A cluster of points near the origin and along
the x-axis in the second quadrant of the RF-lasso graph demonstrates that RF detected
signal in some of the regression problems for which lasso only sees noise (Fig 1).

Combining information from multiple cell types using
multi-task learning

Multi-task learning (MTL) leverages similarities between targets of several regression
problems by learning these targets simultaneously [31,32]. Moreover, it is known that
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many eQTLs are active across multiple cell types [33]. We, therefore, examined whether
MTL could improve performance of both RF and lasso using data from multiple cell
types sampled from the same individuals. For this, we trained RF on all five cell types
simultaneously and tested performance of an MTL version of lasso—joint lasso of
Dondelinger and Mukherjee [23]. We compared the two to each other and to the
reference models fitted on individual tissue types (single-task learning; STL). We
considered the same 4,288 probes for which at least one cell type has a nominally
associated cis-SNP (p < 10−7) p-value, resulting in the same number of regressions
(each able to predict expression for five cell types).

To implement an MTL version of RF (we refer to it as RF-MTL), for each probe we
pooled expression levels across all cell types into one large regression problem, adding a
categorical variable indicating tissue of origin as an extra variable. Note that this
variable was included as a candidate for splitting at each split and for each tree. The test
set consisted of the same 30% of the samples used for testing in the single-task setting.

For RF, the pooled approach above should cater for situations when the underlying
sub-datasets have a varying degree of similarity. Pooling completely homogeneous (or
even identical) datasets, should not adversely affect performance as the tissue id
variable, although available as a splitting variable at every split, does not have to be
used if it does not help reduce residual variance for a given tree. Strong differences
between sub-groups, on the other hand, should be handled by the use of the tissue id
variable at various splits, effectively separating samples from heterogeneous sub-groups.
This, of course, stems from the assumption that similarities/dissimilarities between
different sub-groups are reflected in similarities/dissimilarities of their respective
distributions over features. Joint lasso handles multiple datasets simultaneously by
estimating different regression coefficients for different tissues while encouraging
coefficients of similar tissues to be closer. This is done by introducing an extra
regularisation term penalising difference between coefficients of different sub-groups (L1

or L2 penalty) depending on how similar these sub-groups are with respect to a given
dissimilarity measure.

Comparing joint lasso to standard lasso (Fig 1) we see that the former outperforms
the latter in the absolute majority of cases. However, joint lasso significantly
underperforms in a handful of cases, against lasso as well as RF and RF-MTL. RF-MTL
and RF are relatively evenly matched, although RF-MTL performs slightly better in
more regressions. RF-MTL outperforms joint lasso substantially more often than the
other way around (in 9,161 and 5,918 regressions, respectively) and tends to have a
larger advantage (5.4% compared to 2.9%). Overall, RF-MTL, on average, is the most
accurate predictive model for our eQTL dataset. Additionally, only one regression has
to be fitted to cater for all cell types instead of one per cell type.

Simulation-based comparison of learning methods for TWAS

To complete a TWAS analysis, we need to not simply detect associated genes, but also
remove cases where the associations result from distinct eQTL and GWAS variants in
LD. For this, we add as a second stage a filtering step. If causal variants are shared, we
expect the pattern of association for the two traits will mirror each other, such that
coefficients will be proportional across SNPs in the region [34]. We therefore use a
proportional colocalisation test [35] to filter out TWAS-significant associations that are
not consistent with proportionality. We define a TWAS-significant association as a
cell-probe-method triplet for which predicted expression has a significant fold change (as
assessed by the FDR-adjusted Cochran-Armitage test p-value).

To assess the performance of the four methods as part of the complete two-stage
TWAS procedure we simulated GWAS-trait and gene expression data for five cell types
under several genetic causal scenarios. One of the cell types was designated “test”,
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while the other four cell types were designated as “background”, and either all or none
of the “background” cell types shared causal variants with either “test” cell type and/or
the GWAS trait. For each replicate, we trained all four predictive models above,
predicted expression for the “test” cell type in the GWAS dataset, and tested
association between GWAS-trait and predicted expression. For identified associations,
we also tested for proportionality of genetic effects on GWAS and expression in the
associated cell type [35]. This test is expected to preferentially filter out significant
TWAS results that result from an eQTL variant distinct from, but in LD with, a GWAS
causal variant. We evaluated the methods based on the proportion of TWAS-significant
calls in different scenarios before and after filtering.

Generally, when colocalised GWAS and eQTL signals were simulated, multi-trait
methods outperformed single-trait methods when eQTL variants were shared between
the test and background expression traits, and single-trait methods performed slightly
better when there was no sharing, though the difference was more pronounced in the
former versus the latter (Fig. 2, top panels). However, the situation was very different
when background expression traits shared a variant with the GWAS but the test
expression trait did not. Here, we might expect an increase in false positives due to
occasional LD between GWAS-trait variants and test-expression-trait variants, possibly
explaining the higher false positive rate for unfiltered RF-MTL compared to RF (0.14
and 0.10, respectively). However, joint lasso performed particularly poorly in this
scenario, with a false positive rate of 0.58 compared to 0.040 for single-task lasso.
Testing proportionality was successful at preferentially filtering out false positives,
reducing type 1 error rates to at or below their nominal value with the exception of the
joint lasso case, where the false positive rate was only reduced to 0.37. Proportionality
filtering also removed between 7.5% and 10.5% of true positives, fairly evenly across
methods.

Overall, this suggests that the benefits of RF-MTL over RF, and of RF over lasso for
prediction transfer to TWAS. On the other hand, they warn that joint lasso may have a
high false positive rate if interpreted in a tissue specific manner. A more detailed
comparison of single-task RF and lasso showed that the effects of regularisation on lasso
caused systematic over-estimation of the causal effect of expression on the GWAS trait
with lasso (S5 Fig).

46 genes show predicted differential expression in T1D

To compare performance of the predictive methods in a real-world dataset, we retrained
the models on the whole eQTL data (as opposed to 70% training set) and used them to
impute (predict) gene expression into a large T1D GWAS cohort [26] (5,913 cases and
7,341 controls). We tested for a difference in mean predicted gene expression between
cases and controls using a Cochran-Armitage test, stratified by the two studies the data
is comprised of (see Table S1).

Overall, 62 distinct TWAS-significant genes were identified by at least one of the
four methods with joint lasso identifying the most (see Table 2, column 4). Filtering for
proportionality left 46 distinct genes (Table 2, Figure 3). We call TWAS-significant hits
passing the proportionality filter SP-hits (significant and proportional). There is a
substantial overlap between the four methods but each also identified unique hits not
discovered by the others (Figures 4 and S6). RF finds an equal or greater number of
unique SP-hits than lasso in all but one cell type. Likewise, RF-MTL finds at least as
many or more unique SP-hits than single-tissue RF in three out of five tissue types.
Joint lasso identifies the most TWAS-significant and SP genes for each cell type but the
heatmap of results 5 shows that joint lasso genes tend to be significant in three and
more tissue types. Indeed, multiple full vertical lines designate instances when a gene is
significant in all the cell types (see Discussion).
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Method Cell N TWAS-significant (unique) SP-hits (unique)

Lasso BCELL 1155 25 (18) 10 (8)
RF BCELL 4103 17 (10) 8 (6)
Joint lasso BCELL 3886 44 (36) 22 (19)
RF-MTL BCELL 4103 17 (11) 6 (5)
Lasso CD14+ 1962 14 (11) 8 (6)
RF CD14+ 4103 15 (12) 8 (6)
Joint lasso CD14+ 3485 32 (26) 19 (15)
RF-MTL CD14+ 4103 20 (15) 10 (7)
Lasso IFN 1919 14 (10) 5 (4)
RF IFN 4103 30 (24) 13 (11)
Joint lasso IFN 3494 40 (32) 22 (18)
RF-MTL IFN 4103 23 (18) 10 (9)
Lasso LPS2 1317 10 (8) 5 (3)
RF LPS2 4103 11 (10) 5 (4)
Joint lasso LPS2 3762 33 (29) 17 (15)
RF-MTL LPS2 4103 21 (16) 11 (9)
Lasso LPS24 1525 16 (13) 4 (3)
RF LPS24 4103 13 (11) 6 (5)
Joint lasso LPS24 3645 35 (31) 21 (19)
RF-MTL LPS24 4103 19 (15) 10 (9)
Total (unique) 449 (62) 220 (46)

Table 2. Table of results of the TWAS analysis. Non-null regressions (N) refer to the
expression prediction models taken through to the GWAS imputation state, i.e. lasso
and joint lasso models which identify no useful SNPs, and hence offer only constant
predictions, are dropped. TWAS-significant hits refer to predicted gene expressions
passing the Cochran-Armitage test (5% with Benjamini-Hochberg adjustment) for
differential expression in T1D. Finally, last column is the number of TWAS-significant
hits passing the proportionality filter (at 5%)—SP-hits.

As the complete list of true T1D genes is not known, we decided to compare the
results from the different methods by passing the gene list to the Target Validation web
analysis platform (https://www.targetvalidation.org/) and searching for
associated diseases, excluding genetic association data from the data types included to
avoid circular reasoning. We ranked the diseases listed according to their relevance
p-value, and found that the RF-based gene lists ranked more obviously T1D-related
diseases higher than lasso-based gene lists (table S2). Indeed, the term “type I diabetes
mellitus” was the second ranked for RF and the third ranked for RF-MTL, but only the
19th for lasso (19th) and 45th for joint lasso (45th), supporting that RF-based TWAS
was identifying disease-relevant genes identified by methods independent from genetic
association data.

Discussion

The aim of TWAS is to associate genes and diseases. Although association can be
thought necessary for causation, it is not sufficient [36]. We use colocalisation analysis
to determine whether, for a TWAS-significant gene, the same genetic signal underlies
the eQTL and a trait-association, or whether two (or more) distinct signals exist in
some linkage disequilibrium (LD). We do this via testing for proportionality of SNP
regression coefficients for the two traits in question [35]. This alternative framing of the
null hypothesis differs from the more widely known enumeration method for

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.201111doi: bioRxiv preprint 

https://www.targetvalidation.org/
https://doi.org/10.1101/2020.07.13.201111
http://creativecommons.org/licenses/by-nc/4.0/


7

colocalisation [37] (where the null hypothesis is no association for either trait) and is a
more natural way to approach this question once a joint association has been found.
Our approach is thus related to the two-stage HEIDI/SMR approach proposed by Zhu
et al [9]. Colocalisation validation was also used in [10,13]. However, recently other
methods of validating/fine-mapping TWAS signals have been proposed—Mancuso et
al. [38], for example, extend probabilistic SNP-level fine-mapping approaches to create
credible sets of genes which explain a given TWAS signal with a given probability.

We note that associated genes filtered for lack of proportionality would be expected
to be differentially expressed in healthy individuals at different risks of disease (those
who carry greater or lesser burdens of disease-predisposing variants). Thus, we might
expect them to also be differentially expressed between cases and controls in a
hypothetical study in which expression is measured directly. Therefore, we suggest such
genes might be considered as biomarkers rather than red herrings. Even SP-hits can be
validated only through practical lab-based experiments.

The current ubiquity of linear methods in eQTL studies reflects both the speed and
flexibility of these methods, but also the prevailing dogma that gene expression is
influenced additively over variants and alleles at those variants. This expectation
reflects the lack of evidence from human studies directly targeting epistatic
effects [39–41]. However, this lack of evidence could also reflect a lack of power [42].
While exploiting RF was not unreservedly a more powerful method for TWAS, the fact
the RF predictions were generally better than those from lasso suggests that
non-additive effects make an important contribution in gene expression. Such
non-linearity has been detected in detailed molecular studies of individual genes [43],
and in large scale studies of model organisms [44]. It also motivates wider development
and adoption of methods that can exploit non-additivity where it exists, even in
samples insufficiently large for non-additivity to be robustly detected.

It is important to understand the reasons behind differences in performance of the
four methods, both in terms of predictive accuracy and the number of TWAS-significant
hits discovered. Both tree-based methods outperformed their linear counterparts on
average, with the RF-MTL being the most accurate overall. Clearly, whilst the lasso
methods are competitive, RF-based methods successfully exploit the supposed
non-linear relationships in the data. For T1D, however, this predictive advantage did
not translate into more TWAS-significant hits consistently across different tissue types.
The reason for may lie in the fundamental differences in the properties of the two
models. Lasso (and so, joint lasso) produces biased solutions (unlike standard linear
regression) with the resulting coefficients biased towards zero, accepting this cost in
order to generate predictions with lower variance. Random forest, on the other hand,
produces a low-bias model but higher variance predictions (see Figures S3 and S4). As a
consequence, even lasso predictions resulting in very small fold changes can lead to
TWAS-significant hits through incorporating few (sometimes just one) but important
SNPs in predictive models (i.e. highly biased but low variance predictions). This results
can be seen most clearly comparing the shape of the volcano plots (Figure 3), where the
expected dip in the middle is not evident in lasso. Overall lower variance of RF-MTL
predictions but similar size of predicted fold change, as compared to RF, might also
explain why RF-MTL does better in the TWAS framework.

Multi-tissue methods demonstrated their applicability to TWAS both in terms of
accuracy of models constructed on the eQTL dataset and the number of unique
TWAS-significant genes and SP-genes associated to TID identified. Indeed, Hu et
al. [22] found that their multi-tissue method UTMOST outperformed single-tissue
elastic net (PrediXcan [11]) in both stages of the TWAS framework. Like joint lasso,
the UTMOST predictive model is a type of regularised regression with several penalty
terms in addition to the standard least squares loss. The two penalties used in
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UTMOST are: L1 for effect sizes within each tissue for variable selection and effect size
shrinkage, and L2 grouped lasso penalty for effect sizes across tissues to encourage
cross-tissue eQTLs. RF-MTL, on the other hand, uses expression data from different
tissues in a flexible non-parametric manner, exploiting similarities where they exist.

The effects of regulatory variation have been shown to vary between cell types [24],
and cell type specific chromatin accessibility has been used to associate multiple
immune cell types to autoimmune disease GWAS [45]. Hence, for a given disease, it is
important not only to identify potential genes of interest but also the relevant tissue(s).
Simulations showed that the two multi-tissue methods we studied tend to “overborrow”
information across tissues, i.e. find significant hits for tissues without one if there is a
real signal in another tissue. This was mostly a problem suffered by joint lasso and, to a
much smaller extent, by RF-MTL. It is harder to identify this behaviour in real data.
However, the number of TWAS-significant hits identified by joint lasso in our T1D data
and the fact that it was much more likely to find signal in 3 or more tissues for a given
gene than the other methods, suggests similar behaviour. Moreover, calculated standard
deviation of predicted fold change for different cell types for each probe (for lasso
methods, for probes with at least three cell types with non-null predictions) reveal that
joint lasso has the least variation in fold change predictions between different tissue
types (see Figure S7). Hence, whilst outperforming single-tissue lasso on average in
terms of prediction accuracy, joint lasso seems to suffer from lower prediction specificity
and, as a result, a higher rate of false positive TWAS-hits in the TWAS framework.

In this study, we demonstrated applicability of non-linear and multi-tissue methods
in the TWAS framework. Both real data and simulation studies showed, in particular,
that RF is at least as competitive and, for some tissue types, superior to lasso.
Similarly, RF-MTL is superior to RF for some tissue combinations. Our results
highlight the potential to exploit multiple tissue-eQTL studies in TWAS but we expect
this to be most useful when tissues are closely related, so that information may be
legitimately borrowed between tissues.

Methods

Measure of accuracy

Throughout the paper we use R2 (R-squared) as a measure of predictive accuracy of
different models. For a predictive model f , R2 is informally known as the ‘proportion of
the variance explained’ by f and is defined as:

1−
∑

i(yi − f(xi))
2∑

i(yi − ȳ)2
≈ 1− MSE

σ̂2
,

where f(xi) is prediction at point xi, ȳ is sample mean of outcome y, σ̂2 is y’s sample
variance and MSE is mean square error. Note that the above fraction is a measure of
how well f does compared to the ‘base’ constant model g(xi) = ȳ, ∀i. One would expect
a ‘good’ model to have small MSE compared to σ̂2, and hence larger R2. Conversely, a
‘bad’ model will have a larger MSE and smaller R2, with a truly hopeless model
performing en par with a constant mean predictive function. Note also that, whilst the
phrase ‘proportion of variance explained’ would entail a value of R2 in the interval [0, 1],
in reality the definition above does not put any such restriction on R2. Indeed, a heavily
overfitting model, or that trained and tested on data coming from vastly different
distributions, can produce large negative R2 values.

For two methods, m1 and m2, trained and validated on the same datasets with
respective R-squared, R2

m1
and R2

m2
, we say that m1 has an advantage over m2 if

R2
m1

> 0 and R2
m1

> R2
m2

. This advantage is quantified by R2
m1
−max{0, R2

m2
}.
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Average advantage of m1 over m2 is calculated over a set of regression problems to
which both methods are applied and m1 has an advantage over m2. In case of Pearson
correlation being used as an accuracy method, average advantage is defined analogously.

Selection of probes for study

For efficiency, the first step of our analysis is to filter probes with no genetic
predictability. Even though standard univariate eQTL association analysis, by virtue of
its linearity, does not show the full picture of relationships between SNPs and
expression, it is fast and can help us to gauge the strength of genetic signal for each
probe. We, therefore, only keep those probes that have at least one cis-SNP with a
p-value of less than 10−7 for at least one cell type. Additionally, we excluded the HLA
region (chr6:20mbp-40mbp). Probe positions, originally on build 38 (GRCh38), were
lifted over to build 18 (NCBI Build 36.1) to match the genotypic data. Some probes
could not be matched and were discarded. Hence, out of the original 47,231 probes
25,005 survived the liftovers, and only further 4,288 passed the p-value thresholding and
were retained for analysis.

eQTL prediction

All expression values used in the STL models (elastic net, RF) were standardised to
have mean 0 and variance 1, individually for each cell type. For the MTL framework
(joint lasso, RF-MTL), for each eligible probe, we centered the expression values to have
mean 0 (but did not standardise them) for each cell type individually.

Elastic net

Lasso and ridge regression do not require explicit tuning: the complexity parameter λ is
chosen via internal cross-validation when the model is fit. Elastic net, being a mixture
of the two, has an additional parameter α ∈ [0, 1] with α = 1 corresponding to full lasso
and α = 0 to full ridge. Usually, the mixture parameter α is also tuned via
cross-validation, but often a fixed value is chosen, e.g. Gamazon et al [11] simply use
α = 0.5. However, in our experience predictive accuracy of elastic net is a monotonic
function of α (when complexity parameter λ is tuned through cross-validation
separately for each value of α, as opposed to doing a two-dimensional grid search).
Usually the best performance is exhibited by one of the extremes, 0 (ridge) or 1 (lasso),
with the performance for 0 ≤ α ≤ 1 being very similar to that of the model with the
winning α parameter. We demonstrate this here for the eQTL dataset of Fairfax et al
(using all five tissue types). We assessed performance of the elastic net model for a
range of the mixture parameter α evenly spaced between 0 and 1. Figure S2 depicts
violin and boxplots of R2 on a test set for each α for each probe/cell pair.

Joint lasso

We opted for the L2 fusion version of the joint lasso as it requires less tuning compared
to the L1 fusion, and the original paper [23] reported a similar performance for both.
We tuned the L2 joint lasso for the fusion parameter γ via external 5-fold
cross-validation and for the general penalty parameter λ via in-built internal 10-fold
cross-validation (i.e. within each fold of the γ-tuning fold, lasso would tune for λ via
another cross-validation routine). For any probe and two tissues i and j we set group
specific penalty τij to ρij/maxk 6=l{ρkl}, where ρij is the correlation between expression
of i and j in the Fairfax dataset. However, in [23], authors remark that in practice using
non-constant (unity) τ ’s didn’t improve predictive performance of joint lasso. The joint
lasso was implemented using the fuser package.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.201111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201111
http://creativecommons.org/licenses/by-nc/4.0/


10

Random forest

RF requires relatively little tuning: the optimal number of trees is determined by
assessing out of bag error as the forest is grown (we grew 500 trees which was sufficient
for convergence) whilst it has been suggested that regulating depth of the trees (via
minimum number of observations in terminal nodes) has limited benefits [46,47]. We
incline to agree, as tuning RF simultaneously both for tree depth and the number of
variables considered for splitting at each split made little difference to the accuracy of
the resulting model (results not shown). We thus used the default parameter values:
minimum number of observations in terminal notes at 5 (resulting in deep trees), and
the number of random variables considered at each split at a 1/3 of all SNPs
(parameters min.node.size and mtry, respectively). We used the ranger function in
the ranger R package to fit RF.

RF-MTL

To implement multi-trait prediction in RF, we simply combined (stacked) expression
matrices for the five tissue types into one tall matrix. Then, each individual could have
up to five associated sample points. Genotypic matrices were similarly stacked and an
id variable indicating which tissue/dataset each point came from was added. This
variable was available for splitting at each iteration of the RF algorithm
(always.split.variables = "id" in the ranger function). This way the size of the
training data was increased and the underlying structure could be taken advantage of,
or ignored, depending on its presence.

Gene expression imputation

The four predictive models (lasso, RF, joint lasso, RF-MTL) are trained on the full
eQTL datasets but only using those cis-SNPs that also feature in the corresponding
GWAS T1D dataset. For some probes no SNPs are shared between the two datasets, so
out of the initial 4,288 probes we are left with 4,103. We then test for association
between these imputed expression levels and the disease status of the individuals in the
GWAS dataset, to see which probes/genes are differentially expressed—we use the
Cochran-Armitage [48] test (with Mantel adjustment to account for stratification; see
Table S1). To account for multiple testing, the resulting p-values are adjusted using the
Benjamini-Hochberg [49] method (separately for each method and cell type). Note that
for the two lasso methods the total number of fitted models, as opposed to just the
non-null ones, were used for the p-values adjustment. This was done to avoid giving
lasso and joint lasso an unfair advantage over the two forest models. TWAS-significant
hits are those probe/cell pairs with adjusted p-value< 0.05.

Proportionality filtering

To reduce the degrees of freedom of the test, proportionality testing works by first
finding principal components (PCs) of the genotype matrix accounting for the majority
of the variation (usually 80%), regressing the two traits on these PCs, and comparing
the corresponding coefficients. Finally, a null hypothesis that the two sets of coefficients
are proportional (there is a colocalisation) is tested. To reduce the number of PCs used,
we only used SNPs with p-values< 10−4 and all the SNPs in their LD pockets (r2 > 0.2
with selected SNPs). We then use the PCs accounting for at least 80% of the variation,
or the first 6 PCs, whichever number is the smallest. 13 out of 224 TWAS-significant
probe/cell pairs (6 probes) did not have enough SNPs with sufficiently small p-values
and were dropped.
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Simulations

We sampled independently 400 pairs of haplotypes from the 1000 Genomes EUR subset
to generate genotype data, and sampled causal variants independently from amongst
the SNPs according to the scenarios described in Figure 2.

6 quantitative traits were simulated as Gaussian variables with variance 1 and mean∑
i βiGi where i indexes causal variants, βi is the effect size and Gi the genotype. To

avoid too many simulations with small beta and non-significant effects, βi was sampled
as the maximum of 5 Gaussians with variance 0.04. The first trait was assigned as a
GWAS trait, the second the expression trait to be tested via TWAS, and the remainder
as additional “background” expression traits. Each expression trait was regressed
against all SNPs, and the simulation retained if the minimum p-value over all SNPs and
expression traits was less than 10−7. TWAS was conducted with each of the 4 methods
described above, and the p-value retained. We also ran proportional filtering, as
described above, and stored its p-value.

We assessed TWAS performance according to the proportion of simulations that
gave a TWAS p-value < 0.05, before and after filtering.

Software

All analysis was done in R using glmnet for lasso and elastic net, ranger for RF and
RF-MTL, and fuser and bespoke helper functions
https://github.com/stas-g/fuser_helper for the joint lasso. coloc package was
used for the post-hoc colocalisation analysis. All simulation code is available from
https://github.com/chr1swallace/twas-sims.
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Fig 1. Pairwise comparison of performance of the MTL and STL expression prediction
methods—R2 on a test set. Each point represents a probe-cell pair. Points above the
blue line show increased performance for the method to the left of each plot, while
points below the blue line show increased performance for the method underneath the
plot. The three numbers represent, clockwise: points with positive R2 above x = y line
for the x-axis method, points with positive R2 below the line for the y-axis method,
points with negative R2 for both methods. Numbers in brackets represent the
corresponding advantage of one method over the other, in terms of R2 (for this
calculation negative R2 are taken to be 0). For example, comparing lasso and RF, lasso
outperformed RF in 2,148 regressions with an advantage of 3.5%, while RF
outperformed lasso in 9,667 with an advantage of 5.9%, and for 9,625 probe-cell pairs
neither method achieved a positive R2.
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Fig 2. Power of different methods to detect TWAS association. In the top row, the
GWAS and test eQTL traits share causal variant A, while the causal variant for the four
background eQTL traits varies (left-right) from none, to B to A. The bottom row is the
same, except the GWAS and eQTL-test causal variants are different. The total shaded
column height is the proportion of TWAS tests that pass p < 0.05, with lighter shading
used to indicate the proportion of tests which would be filtered out proportionality
testing at p < 0.05.The horizontal dotted line is at y = 0.05, the proportion of false
positives expected in a well controlled testing procedure in the bottom row.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.201111doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201111
http://creativecommons.org/licenses/by-nc/4.0/


14

Fig 3. Volcano plots for testing association between the gene expression predicted by
the four methods and the T1D status. Grey points are not TWAS-significant, blue
points are TWAS- but not passing proportionality test, and orange points are both
TWAS- and proportionality-significant (SP-hits).
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Fig 4. Unique TWAS-significant hits passing proportinality filtering, by method: lasso
(13), RF (21), joint lasso (36), and RF-MTL (18).
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Fig 5. A heatmap of genes identified by the four methods after proportionality filtering
(top), integrated with a manhattan plot of T1D GWAS. Arrows point to GWAS peaks
(red stars) in the vicinity of which (1 mb either way) a gene (or several genes, grouped
by a bracket) lies. Vertical dotted lines indicate positions of genes; horizontal dotted
line is at y = 5, corresponding to a GWAS significant level; green and purple colours in
the manhattan plot designate alternating chromosomes. Note that the genes in the
heatmap are ordered according to their positions, so for any two genes (or groups of
genes) an arrow form a leftmost one would point to a peak left of the peak pointed at
by the rightmost gene. Any intersection between the arrows is due to the fact that they
might point to peaks of vastly different heights.
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Supplementary Tables and Figures

Fig S1. Performance of the four expression prediction methods, as assessed by R2 on a
test set, plotted against the minimum p-value of the eligible (cis) SNPs for each
probe/cell pair on chromosome 22 (3040 regressions for each method). The vertical
dashed line is at x = 7sed (i.e. minimum p-value = 10−7).

T1DGC WTCCC Total
Cases 3999 3342 7341
Controls 3983 1930 5913
Total 7982 5272 13254

Table S1. T1D data of Barrett et al [26] comprising Wellcome Trust Case Control
Consortium (WTCCC) [50] and Type 1 Diabetes Genetics Consortium (T1DGC)
samples.
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(a) (b)

Fig S2. (a) Pairwise comparison of performance (R2 on a 30% test set) of elastic net
for α = 0, 0.5, 1. Each point represents a probe-cell pair. Points above the red line show
increased performance for the method to the left of each plot, while points below the
red line show increased performance for the method underneath the plot. The three
numbers represent, clockwise, starting top left: points with positive R2 for the x-axis
method above the x = y line, points with positive R2 for the y-axis method below the
line, points with negative R2 for both methods; average advantage in brackets. (b)
Performance of elastic net for varying values of α, evenly spaced between 0 and 1, on
the eQTL dataset of Fairfax et al (R2 on a 30% test set). Note that the values 0 and 1
correspond to the ridge regression and lasso, accordingly. Each violin plot, with the
embedded boxplot, aggregates all regressions for a given α. The purple and orange lines
are mean and median values of R2, respectively.
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Fig S3. Pairwise comparison of variance of imputed expression values for the four
methods. The blue dashed line is the x = y line. Numbers above and below the line
correspond to the number of regressions for which the y-axis method has larger variance
for the imputed predictions than the x-axis method and vice versa, respectively.
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Fig S4. Pairwise comparison of predicted fold change for the four methods. The blue
dotted line is the x = y line. In the positive, quadrant the numbers above and below the
line designate the number of regressions for which the y-axis has a larger predicted fold
change than the x-axis method, and vice versa. Likewise for the numbers in the
negative quadrant, except here the numbers relate to absolute fold change.
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Fig S5. Effects of lasso regularisation on TWAS. a Lasso-TWAS p-values amongst
simulations with shared eQTL/GWAS causal variants show a spike at p=1, and a longer
tail than RF, indicating that weaker effects are missed by lasso, but that stronger
effects can show greater significance compared to RF. b TWAS effect estimates
(estimated causal effect of expression on GWAS trait) are underestimated for weak
effects for RF, tending to 1 for stronger effects. For lasso, TWAS effect estimates are
systematically over estimated, even for well-powered studies.
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Method Disease Rank
Joint Lasso hematological measurement 1
Joint Lasso measurement 2
Joint Lasso large intestine disease 3
Joint Lasso intestinal disease 4
Joint Lasso musculoskeletal system disease 5
Joint Lasso type I diabetes mellitus 45
Joint Lasso diabetes mellitus 54
Joint Lasso Permanent neonatal diabetes mellitus 1139
Joint Lasso autoimmune type 1 diabetes 1254
Lasso type II hypersensitivity reaction disease 1
Lasso reproductive system or breast disease 2
Lasso carcinoma 3
Lasso epithelial neoplasm 4
Lasso autoimmune disease of endocrine system 5
Lasso type I diabetes mellitus 19
Lasso diabetes mellitus 29
Lasso Permanent neonatal diabetes mellitus 66
Lasso autoimmune type 1 diabetes 731
RF autoimmune disease of endocrine system 1
RF type I diabetes mellitus 2
RF small intestine disease 3
RF glucose metabolism disease 4
RF endocrine pancreas disease 5
RF diabetes mellitus 6
RF autoimmune type 1 diabetes 388
RF Permanent neonatal diabetes mellitus 558
RF-MTL ulcerative colitis 1
RF-MTL autoimmune disease of endocrine system 2
RF-MTL type I diabetes mellitus 3
RF-MTL autoimmune disease 4
RF-MTL glucose metabolism disease 5
RF-MTL diabetes mellitus 12
RF-MTL Permanent neonatal diabetes mellitus 248
RF-MTL autoimmune type 1 diabetes 415

Table S2. Target Validation analysis of TWAS genes by method. The top 5 diseases
ranked by relevance p value, and the rank of four type 1 diabetes-related terms are
shown.
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Fig S6. Venn diagrams showing unique SP-genes identified by the four methods for the
five cells considered.
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Fig S7. Violin plots (with inscribed boxplots) of standard deviations of predicted fold
change for different cell types for each probe, per method. For each method, only
probes with predictions for at least three cell types were considered.
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