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Abstract 
 

 

Available methods to detect molecular quantitative trait loci (QTL) require study individuals to be 

genotyped. Here, we describe BaseQTL, a Bayesian method that exploits allele-specific 

expression to map molecular QTL from sequencing reads even when no genotypes are 

available.  When used with genotypes, BaseQTL has lower error rates and increased power 

compared with existing QTL mapping methods. Running without genotypes limits how many 

tests can be performed, but due to the proximity of QTL variants to gene bodies, the 2.8% of 

variants within a 100kB-window that could be tested, contained 26% of QTL variants detectable 

with genotypes. eQTL effect estimates were invariably consistent between analyses performed 

with and without genotypes. Often, sequencing data may be generated in absence of genotypes 

on patients and controls in differential expression studies, and we identified an apparent 

psoriasis-specific effect for ​GSTP1​ in one such dataset, ​providing new insights into 

disease-dependent gene regulation. 

 

Introduction 
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Genome-wide association studies (GWAS) have identified thousands of genetic variants 

associated with human disease, but their individual mechanisms remain largely unknown. The 

majority of variants are located outside coding regions, and are presumed to have regulatory 

function ​1​. Thus mapping these variants to their direct target gene(s) is instrumental to 

understand the molecular mechanisms that predispose to disease. Direct regulatory effects 

result when the genetic variant and the target gene are located on the same chromosome, 

typically less than 1 MB apart, and the genetic variant only affects the expression of the gene 

copy on its same chromosome. Common biological processes regulated by such variants 

include transcription, RNA stability or splicing. These variants are commonly referred as 

cis-QTLs, for example cis-eQTL for those which regulate expression.  

 

Mapping the causal genes should be possible by testing whether these variants have an effect 

on gene expression and large studies have been established to map regulatory variants across 

a diverse range of tissues. Nonetheless, multiple studies have failed to enumerate more than a 

minority of genes regulated by disease-associated variants​2–4​. This is likely due to the highly 

context-specific effects of genetic variants on gene expression ​5,6​  and that most eQTL studies to 

date have focused on healthy individuals and bulk tissues ​7​. Gene expression data from specific 

cell types in disease contexts appear to be more informative for interpreting disease-associated 

variants,​8,9​ but such datasets have often been generated in the context of biomarker studies or 

in efforts to understand the disease process rather than the genetics of gene expression. 

Therefore such datasets are commonly small (<100 samples), may be designed to compare the 

same tissue in different contexts (e.g. disease activity) and/or may have no genotype data 

available. 

 

Standard eQTL studies estimate average fold change in expression according to allelic dose by 

comparing expression between genotyped individuals.  eQTL methods are typically embedded 

within broader statistical analysis environments, so that custom analyses comparing fold change 

estimates between sample contexts can be explored. Power can be improved by approaches 

which additionally exploit imbalance in gene expression between chromosomes within 

heterozygous individuals, so-called allele specific expression (ASE). However, ASE software is 

generally limited to detecting eQTLs so that it is difficult to extend to related questions such as 

comparing effects between conditions.  To the best of our knowledge, all ASE methods to date 

require study subjects to be genotyped. 
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Here, we propose a new method, BaseQTL, for ASE analysis. By adopting a Bayesian 

approach, we can incorporate information from existing large eQTL studies which allow us to 

shrink extreme fold change estimates and improve accuracy in a way analogous to moderation 

of variance estimates in differential expression analyses ​10​. We embed this within a standard 

Hamiltonian Monte Carlo (HMC) environment ​11​, allowing researchers to develop flexible 

analytic approaches appropriate to their data. The phase of regulatory SNPs and the genic 

SNPs at which allelic imbalance is measured is unknown, and standard ASE methods infer 

phase from the individuals within each study. Using a Bayesian approach, we also exploit 

external reference genotype panel data to improve phasing accuracy. Our model treats phase 

as latent (unknown), and we extend this latent structure to also treat candidate regulatory SNP 

(cis-SNP) genotype as unknown, allowing us to analyse studies without separate genotype 

data.  

 

We used 86 LCL samples from GEUVADIS​12​ for whom genotypes and RNA-seq data are 

publicly available, to benchmark BaseQTL against standard eQTL and ASE methods and to 

compare the results of BaseQTL run with genotypes either available or masked.  

 

We then used our method to call eQTLs in a publicly available RNA-seq data from 94 psoriasis 

and 82 normal skin samples​13​. The ability to call eQTLs in existing patient RNA-seq datasets, 

even when no genotypes are available, may help us better understand the mechanism 

underlying established GWAS signals for complex diseases. 

 

  

Results 
 
Basic model to detect cis-eQTL 
 

To detect cis-QTL using RNA-seq data, standard methods test the association between a 

genotyped variant within a specific distance of a genome feature (gene, ChIP-peak, etc) and the 

total count of short reads mapped to the feature. ASE models additionally exploit the knowledge 

that, if the cis-SNP was associated with expression, we would expect this to result in 

imbalanced expression between the two chromosomes in individuals heterozygous at the 
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cis-SNP. Phase-aware cis-QTL methods such as RASQUAL ​14​, WASP​15​ or TReCASE​16,17 

substantially improve the power of sequencing-based QTL mapping by jointly modelling the 

differences in total read counts mapping to the feature ​between​ individuals, and the allelic 

imbalance at phased heterozygous feature SNPs (fSNPs) ​within​ individuals, as functions of the 

genotype at the candidate cis-SNP (Fig. 1a).   RASQUAL models total gene counts with a 

negative binomial (NB) distribution, WASP with a beta negative binomial and TReCASE with a 

Poisson-NB mixture. For allele-specific signals, RASQUAL, WASP and TReCASE all use a 

beta-binomial model, with some differences, compared in ​14​. We begin by describing the 

TReCASE model ​16​; ​17​ which expresses the likelihood as a product of between- and 

within-individual components. 

 

Between-individual signals were modelled by negative binomial regression of the total read 

counts on the genotype of the cis-SNP = 0,1,2)  allowing for additional covariates (libraryG( i  

size, principal component loadings, etc.).  This is a standard eQTL model. TReCASE assumes 

that the phase at the cis-SNP and any heterozygous fSNPs is known, so that the number of 

reads mapping to the haplotype carrying the alternative allele for the cis-SNP, out of the total 

number of ASE mapped reads can be modelled using a beta binomial distribution. Between and 

within individual components are connected by a single parameter , which corresponds toβ 
aFC  

the expected log-allelic fold change (aFC) between individuals homozygous for the alternative 

and reference alleles at the tested cis-SNP (​Fig. 1a​ and Online methods). We use the same 

model and introduce a series of novel extensions which are described in the coming sections. 

We assessed each extension using a modest sample size of 86 RNA-seq lymphoblastoid cell 

lines (LCLs) from European individuals (GBR) generated by the GEUVADIS project, for which 

genotypes are available.​12​ This sample size was chosen to match the anticipated scale of 

real-world datasets where samples < 100 are common. To limit computational load, we 

restricted our analysis to all 264 expressed genes on  chromosome 22 and cis-SNPs within 1 

MB of each gene, thinned to r​2​<0.9.  

 

Accommodating unknown phase 
With short read data, phase cannot be known with certainty and our first extension was to treat 

phase as latent. We replaced the within-individual component of the TReCASE likelihood by a 

sum of beta binomial contributions conditional on haplotype phase, weighted by their respective 

probabilities conditional on the unphased genotypes at the fSNPs and cis-SNPs (​Fig. 1b ​and 
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Online methods). We calculate these probabilities from 5008 phased haplotypes from the 

cosmopolitan 1000 Genomes phase-3 reference panel to calculate possible phased haplotype 

pairs and their relative probabilities.  Consistent with previous reports that cosmopolitan 

reference haplotype panels are preferred,​18​ we found that our method is generally robust to 

perturbations in the reference panel but, when mismatches between samples and reference 

panel are extreme, there is loss of power rather than any increase in false positives 

(​Supplementary Table 1 ​). 
 

Modelling reference sequence mapping bias 
Reference sequence mapping bias - the tendency of reads to map more easily to the reference 

sequence allele - can cause  allelic imbalance to be overestimated in favour of the reference 

allele, and hence false positive ASE results ​19​;​20​; ​21​; ​15​. As expected, raw estimates of allelic 

imbalance in our GEUVADIS data subset were indeed skewed towards over-representation of 

the reference allele, consistent with reference mapping bias (​Fig. 2b and Supplementary Fig. 
4c​).  
 

Previous approaches to mitigate this phenomenon remove reads with evidence of mapping 

bias, while recognising that discarding data is expected to reduce power​15​.  Instead of 

discarding reads, we model bias explicitly using a random intercept per fSNP. We modified the 

procedure used by WASP​15​ to identify reads susceptible to mapping bias. Reads are mapped to 

the genome to identify reads overlapping known SNPs. For each such read, we generate a new 

pseudo read in which the observed alleles in the read are swapped to the unobserved allele of 

the SNPs (​Fig. 2a ​). The union of these observed and pseudo reads have exactly equal 

representation of reference and alternative alleles for each fSNP. We favoured this approach 

over simulating reads as we expect to have a more accurate representation of the variables that 

affect mappability such as genotype errors, base quality or number of polymorphisms per read.  

 

We realigned this union of reads, and found estimated allelic imbalances showed similar skew 

towards the reference allele, but with much greater consistency between SNPs (​Fig. 2c​). This is 

due to leveraging many more reads compared to raw estimates (twice the total mapped reads 

compared to the subset of reads mapped to heterozygous individuals) as well as removing 

random noise due to true ASE (​Fig. 1a,​ ​2b and c ​). We used these estimates of allelic 

imbalance in these union of reads to define the parameters of a prior distribution for the random 
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intercept, and found that adjusting for estimated reference mapping bias this way resulted in a 

small attenuation of eQTL effect estimates, with log fold changes on average 0.3% smaller (​Fig. 
2d​). 
 

 

Levering information on eQTL effect sizes in external datasets 
We leveraged fold change estimates from a study of Epstain-Barr virus transformed 

lymphocytes with 147 individuals from GTEx​22​ to train our prior on  by fitting a Gaussianβ 
aFC  

mixture model (see Online Methods). This identified a mixture of a narrow distribution (97%, 

sd=0.03) and a broader distribution (3%, sd=0.35), both centered on 0 (​Supplementary Fig.1​). 
Similar results were obtained when we used GTEx blood or skin samples (​Supplementary 
Table  2) ​. This informed prior shrunk 99.7% of  estimates under an uninformed priorβ 

aFC  

towards 0 whilst preserving a strong correlation (rho=0.98, p<10 ​-16​) between eQTL effects at 

signals that were significant under the informed prior (​Supplementary Fig.1​). Moreover, the 

positive predictive value (PPV, proportion of significant hits detected by each method also 

detected in the gold standard), measured against a “gold standard” of a published list generated 

by conventional eQTL analysis called at 1% FDR from 462 GEUVADIS individuals,​23​ increased 

from 0.25 to 0.9. 

 
Benchmarking of BaseQTL against standard methods 
 
We benchmarked BaseQTL against two other methods: standard linear regression, widely used 

in eQTL analysis, and RASQUAL ​14​ representative of methods that jointly model between and 

within individual variation in a frequentist framework.  As BaseQTL shrinks eQTL effects via a 

prior distribution, we also run BaseQTL modelling between individual variation only (negative 

binomial distribution) to disentangle the effect of  the prior from the ASE modelling. For the 

same gene-SNP associations we compared eQTL calls by the four methods against the “gold 

standard” analysis of 462 GEUVADIS individuals.​23​ For each method we used a range of 

significance thresholds (Online Methods) to calculate the “sensitivity” (proportion of gold 

standard hits detected by each method) and the PPV for eQTLs or eGenes. We selected the 

same samples and genes as in the previous section but decreased the cis-window to 100kB as 

54/264 genes could not be run by RASQUAL within a 1MB window. Using the smaller 

cis-window only 5 genes failed with RASQUAL. For the same gene-SNP associations (35,083 

 

6

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.203851doi: bioRxiv preprint 

https://paperpile.com/c/BTB9NY/v3Zv
https://paperpile.com/c/BTB9NY/czHx
https://paperpile.com/c/BTB9NY/coxD
https://paperpile.com/c/BTB9NY/czHx
https://doi.org/10.1101/2020.07.16.203851
http://creativecommons.org/licenses/by/4.0/


over 259 genes), BaseQTL outperformed both other methods (​Fig. 3a,c​) achieving the highest 

PPV and sensitivity trade-off. For example, for a 0.1% FDR, BaseQTL called 23 eGenes of 

which 22 were also called in the gold standard, linear model 14 out of 14 and RASQUAL 36 of 

which 22 were called by the gold standard.  Expanding the cis-window to 1 MB allowed us to 

test 199,563 gene-SNP associations over 264 genes, showing a similar trend with BaseQTL 

outperforming the linear model (​Fig. 3b,d​). Interestingly, the improvement of BaseQTL over 

other methods appears to be due to ASE modelling as running BaseQTL only modelling 

between individual variation had similar performance to the linear model (Fig. 3). 

 

From now on we refer to significant associations to those in which 0 was excluded from the 

posterior 99% credible interval, which corresponded to the highest PPV for BaseQTL in ​Fig 3​. 
Overall, using BaseQTL on chromosome 22 (264 genes) we detected 192 eQTLs associated 

with 30 genes. Of those, 172 (90%) were replicated in the analysis of our gold standard 

GEUVADIS dataset corresponding to 24 eGenes (80%). 
 
Detecting cis-eQTLs in datasets with no genotypes 
 

To the best of our knowledge, all ASE models to date require genotypes for the candidate 

cis-SNP and the fSNPs to be known, but this prevents their use in many patient datasets 

originally collected for other purposes. BaseQTL can be used for RNA-seq only datasets. We 

called fSNP genotypes by mapping feature reads to the reference genome and extended our 

latent model structure to treat the genotype at the candidate cis-SNP as latent, inferred 

probabilistically from the fSNP genotypes at the same time as haplotypes (​Fig. 1b ​and Online 

Methods). For simplicity, we shall refer to “observed genotypes” when genotypes are measured 

by DNA-sequencing, and “hidden genotypes” when we only use RNA-seq for mapping eQTLs.  

 

Genotyping error could have a major impact if not adequately controlled. In particular, 

homozygous fSNPs miscalled heterozygous may lead to false positives because those 

mis-typed fSNPs will show strong allelic imbalance. We took multiple approaches to controlling 

genotyping errors (​Supplementary Note​). Of the 498 fSNPs called in the 86 samples by 

DNA-seq (42,828 calls), 219 were excluded, and we were able to call 17,268 genotypes over 

279 fSNPs with a 0.7% mismatch error (​Supplementary Fig. 2-3, Supplementary Table 3 and 
Supplementary Note) . ​While small, the mismatch rate is slightly higher than the error rate 
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reported for short-read DNA sequencing, ​0.1% to 0.6%, depending on the platform and the 

depth of coverage ​24​. 

 

We assessed the impact of using RNA-seq to call fSNPs by running BaseQTL with hidden 

genotypes for the cis-SNPs and the same fSNPs either genotyped by RNA-seq (RNA-fSNP) or 

by DNA sequencing (DNA-fSNP). Estimated effects were strongly correlated (rho=0.89, 

Supplementary Fig. 4a ​),​ ​and all the ​ ​eGenes detected with RNA-fSNPs were also called using 

DNA-fSNPs. We expect loss of power due to missing calls but overall these results indicate that 

our method is robust to genotyping errors from RNA-seq.  

 
Next, we examined the effect of cis-SNP imputation by running BaseQTL with observed 

genotypes for fSNPs and with observed or hidden genotypes for the cis-SNP.  We use a 

standard measure to assess imputation quality (Online Methods) and limited the analysis to 

cis-SNPs with imputation r​2​ ≥0.5. The imputation of the cis-SNP produces more variability on the 

eQTL effects than genotype errors on the fSNPs (​Supplementary Fig. 4b ​).  
 
Finally, we conducted parallel analyses by BaseQTL either with DNA-seq genotypes or 

RNA-seq only. Of the 264 genes on chromosome 22 tested with observed genotypes, we were 

able to impute genotypes for 75 (28%). We selected a smaller cis-window than before (100 kb) 

becuase our method for hidden genotypes strongly relies on accurate haplotype phasing, which 

decreases with distance. Further quality control aiming to reduce false positive rate by 

examining the consistency of the ASE signal across fSNPs for those genes with significant 

associations (Online Methods) excluded 2 genes as possible false positives. Thus, within 100 

kb, we were able to assess only 1,257 gene-SNP associations with hidden genotypes compared 

to ~45,000 with observed genotypes (2.8%). However, both testable gene-SNP pairs with 

hidden genotypes  and significant associations seen with observed genotypes tended to be 

closer to genes (​Fig. 4a​), in line with previous reports ​25​, so that the proportion of significant 

associations discovered with hidden genotypes (40 significant out of 1,257 [3%]) was ten-fold 

that with observed genotypes (153 significant out of 45,000 [0.3%]).  

 

In some occasions, for a given gene, the selection of cis-SNPs run with hidden genotypes and 

with observed genotypes may differ due to the different selection criteria in each method 

(​Figure 4b ​). To maximise the number of comparisons, we matched gene-SNP associations with 
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r​2​≥ 0.9 ​ ​between cis-SNPs​ ​ run with different models, when possible. Thus, we compared 1032 

gene-SNP associations over 73 genes. The direction of the estimates for the eQTL effect was 

invariably consistent with that obtained when using observed genotypes (correlation 0.3, ​Fig. 
4b​). With hidden genotypes we detected 3 eGenes, out of the 10 with observed genotypes (​Fig. 
4c​). We also checked whether the significant associations detected with hidden genotypes were 

also  reported in our gold standard GEUVADIS dataset​23​ . We found  80% of the significant 

gene-SNP associations (32/40) detected with hidden genotypes (2/3 eGenes) were also 

significant in the gold standard, though the imputation quality score had only limited influence in 

the positive predictive value (​Supplementary Fig.5​). However, for ​NDUFA6​ the same cis-SNP, 

rs55816780,​ is an eQTL in larger studies (>2000 individuals) in blood ​26​, which may reflect gain 

of power from ASE.  ​An example of an eQTL signal that was successfully captured with no 

previous knowledge of genotypes is shown in ​Fig. 4d​.  
 

Novel skin eQTL in psoriatic and normal skin  
Finally, we used our method to find eQTLs in a publicly available RNA-seq data set of 94 

psoriasis skin samples and 82 controls​13​. To maximise discoveries relevant to psoriasis, we 

selected genes upregulated in psoriasis versus normal skin (51 genes​13​ and Online Methods), 

and/or within 100 kB of a psoriasis GWAS hit​27​ (380 genes). From the 429 unique selected 

genes, we were able to test ASE for 138, with 118 tested in both skin types, 16 in psoriasis only 

and 4 in normal skin only. After  post-analysis QC which excluded putative hits for ​SBSN​ and 

KRT6A​ because the ASE signal was inconsistent across fSNPs (​Supplementary Figs. 9,11,12​, 
Online Methods), we found significant eQTLs for 21 genes: 8 in both conditions, 9 in psoriasis 

and 4 in normal skin only (​Fig. 5a​).  Associations across 10 genes for the same SNPs were 

previously described in healthy skin ​22​ or were previously reported eQTLs in psoriasis​28​ (​Fig. 5a 
and Supplementary Table 4) ​, including  ​ERAP1​, ​FUT2 ​ and ​RASIP1​ which have eQTLs which 

are psoriasis GWAS-hits (rs30187 for ​ERAP1​, rs492602 for ​FUT2​ and ​RASIP1​)​27​, ​22​ (rs469758 

and rs281379 proxies with r​2​=1 and 0.8, respectively).  

 

We exploited the flexibility available through using a standard statistical modelling language to 

jointly model eQTL effects in normal and psoriasis tissues in order to determine whether 

apparent psoriatic-specific effects reflected a lack of power in normal skin samples or were truly 

specific to psoriasis tissue (Online Methods). We restricted the analysis to 23 genes which were 

run in both skin types with significant associations at least in one (​Figure 5a​). Our joint model 
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estimates two parameters: β ​a​ which corresponds to the addition of the coefficients for the allelic 

fold-change in each skin and β ​d ​which corresponds to their difference (Online Methods). We are 

particularly interested in β ​d  ​for assessing whether there is a difference in effects across 

conditions. Our prior for β ​d ​ expects half of eQTL signals shared in both tissues (1.5% weight) 

and half tissue specific (2 tissues, 1.5% weight on each), with 95.5% of null associations (Online 

Methods).  All of the eGenes with common signals across skin types assessed with separate 

models were also shared with the joint model (Figure 5b). For the 9 specific psoriasis eGenes 

we detected with independent models, the joint model reported signals in both tissues for 6 of 

them, with ​GSTP1 ​ and ​KRT14​ specific for psoriatic skin, while eQTLs for ​SPRR1A​ were no 

longer significant (​Fig. 5b​). ​PI3 ​ is ​an antiproteinase and antimicrobial molecule highly 

upregulated in psoriasis ​13,29,30​13​ We detected an eQTL for ​PI3 ​ in psoriasis only when we ran 

separate models but the low expression in normal skin meant the joint model could not 

convincingly reject a common effect in both skin types (​Fig. 6a​). ​GSTP1 ​ is a representative 

example of a gene which appears specific for psoriasis skin. It is moderately upregulated in 

psoriasis (fold change = 1.7), so the psoriasis specific effect is unlikely to reflect lack of power 

on control samples (​Fig. 6b​). ​ ​Of the 4 eGenes identified in normal skin only when running in 

separate models, the joint model confirmed specific signals in healthy skin for ​SPRR1B​ (​Fig. 6c ​) 
and ​DDR1​ (​Fig. 5b ​). The ​SPRR1B​ eQTL was also found in healthy skin samples from GTEx. Its 

strong upregulation in psoriasis (fold change 12) is therefore likely to be driven by an eQTL 

independent mechanism. Detailed plots for each gene can be found in ​Supplementary Fig. 
6-11​ and summary results from the joint model can be found in ​Supplementary Table 5. 
 

 

Discussion 
 

We have developed a novel statistical model, BaseQTL, for mapping genetic variants that 

regulate sequence-based molecular phenotypes. BaseQTL has increased power and positive 

predictive value over existing methods when tested for eQTL analysis and it is especially 

suitable for modest sample sizes. 

 

Important differences between BaseQTL and alternative methods include the use of a 

reference panel for inferring haplotype phase and the use of a regularizing prior for shrinkage of 

effect estimates, to mitigate ​spurious extreme estimates which can arise from small sample 
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sizes.​10,31​ ​In addition, contrary to WASP and ​RASQUAL which model ASE from haplotype pairs 

formed by the cis-SNP and each fSNP assuming independence, we aggregate haplotypic 

counts which may enable us to more faithfully model haplotype phase by accounting for the LD 

structure within genes. Last, we use a novel modelling strategy to account for reference 

mapping bias with the flexibility to model each fSNP independently without the need of 

simulations or discarding reads. All these factors may contribute to the improved performance of 

BaseQTL.  

 

A major strength of BaseQTL is the ability to map eQTL in samples with no genotypes. Calling 

variants from molecular sequenced features combined with the use of an external reference 

panel for imputation allowed us to extract meaningful genetic signals from data sets of modest 

sample size. Although we expected the performance to be lower than with genotypes, when 

tested on a sub-sample of the GEUVADIS dataset we achieved 80% positive predictive value, 

assuming no false negatives in the full GEUVADIS analysis, with genotype imputation at the 

cis-SNP being the main source of false positives.  

 

While BaseQTL provides strong flexibility with regard to cis-SNPs or fSNPs to run different types 

of sensitivity analysis and adapt to different analytical designs, it is computationally intense, with 

a median time of 6 and 10 minutes per gene for observed genotypes and hidden genotypes, 

respectively, using a cis-window of 1MB (​Supplementary Fig. 14)​. Thus, BaseQTL is 

particularly suited for targeted genomic regions to identify eQTL or condition specific eQTLs. 

 

When we applied BaseQTL to skin we were able to validate associations for 10 out of 23 genes 

in normal skin from GTEx​7​ (Fig. 5a). Additionally, the signals we observed for ​CAST, ​and 

GAPDH a​lthough not reported in normal skin, have been reported in blood ​26​, for ​PPIF ​ in T cells 
32​ and for ​KRT16 ​in adipose tissue (GTEx) (​Supplementary Fig.8​), composed of adipocytes, 

myeloid and lymphoid cells, among other cell types.  

 

GSTP1 ​ is highly expressed in monocytes, dendritic cells and PBMC as a whole ( 

https://www.proteinatlas.org/ENSG00000084207-GSTP1/tissue)​ and the signals we observed 

were specific to psoriasis and strongly significant in blood ​33​ ​and neutrophils ​32​. Psoriatic skin is 

characterized by the proliferation of activated keratinocytes and infiltration of lymphocytes and 

myeloid cells ​34​. The fact that some of the eQTLs we observed were replicated in larger studies 
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of blood but not in GTEx for normal skin could reflect gain of power from ASE modelling in our 

method, infiltration of immune cells driving psoriasis signals, or a combination of both. Further 

experiments using purified cell types from normal and psoriasis tissues will be instrumental to 

address these issues.  

 

The flexibility offered by embedding our method within standard statistical software allowed us 

to disentangle condition specific effects. Overall, although our eQTL search was targeted 

psoriasis specific effects through its gene selection, joint modelling did not generally support 

condition specific effects identified by running psoriatic and normal skin samples separately, in 

agreement with recent studies showing substantial eQTL sharing among related cell types or 

tissues ​9,35​. This included putative psoriasis-specific effects from the separate models for ​KRT6C 

and ​RASIP1​, which have  reported signal in normal skin in GTEx. In addition, we found a novel 

eQTL for ​PI3 ​, produced by epithelial and immune cells which regulates proliferation and 

inflammation ​36​. It is secreted by keratinocytes in response to IL-17 ​37​ or IL-beta and TNF-alpha 
38​, with  protective functions against epidermis damage ​38​. PI3 levels in blood correlate with 

psoriasis severity ​39​. 

 

BaseQTL can extract meaningful genetic signals from data sets of small sample size even 

without genotypes. We expect our method will facilitate discovery of cell type and 

disease-dependent eQTLs hidden in a wealth of RNA-seq data to unravel molecular 

mechanisms that contribute to disease. 
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Figure 1 ​ Schematic representation of BaseQTL with observed genotypes. RNA-seq reads 

overlapping the reference or the alternative allele for a SNP are depicted in blue or red, 

respectively; gray reads do not overlap SNPs. (a) Joint model combining  between and within 

individual variation when genotypes are observed and phase known. The top panel illustrates 

the “true” haplotype pair formed by a cis-SNP and 3 fSNPs within a gene in a heterozygous 

individual for the cis-SNP. Allele specific expression (ASE) is measured as the proportion of 

reads mapping fSNPs within the haplotype carrying the cis-SNP alternative allele (

). The total counts mapped to the gene are indicated by c​i.​. The lower panel =  n1i
n + n1i 0i

=  11
6 + 11  

shows how between and within individual expression are connected for cis-eQTLs. μ ​0/0​ and μ ​1/1 

correspond to the expected total reads ( ) in homozygous individuals for the reference orci  

alternative allele respectively, whereas  π corresponds to the expected mean for the ASE 

proportion. The model estimates β ​aFC​=μ ​1/1​ / μ ​0/0​ . (b) We extend this model to account for 

unknown phase by assuming that  β ​aFC​ follows a mixture distribution conditional on phase, which 

is treated as a latent variable. Phase probabilities are estimated from a large external reference 

panel conditional on the observed genotypes.  

 

 

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.203851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.203851
http://creativecommons.org/licenses/by/4.0/


 

Figure 2  ​Reference mapping bias correction (a) Schematic representation of our method to 

correct for reference panel bias. For each read that maps to an fSNP we create a new read in 

which the allele of the fSNP is swapped (represented as a blue dot in a red read (alt -> ref) or a 

red dot in a blue read (ref -> alt). The pooled reads, which have a 50:50 ratio of reads carrying 

the reference or alternative alleles at each fSNP, are remapped, and  the  number of reads 

mapping to each allele stored. (b). For each fSNP we calculated the proportion of reads 

overlapping the alternative allele across all heterozygous individuals, which we refer to as the 

raw estimate of allelic imbalance (AI). The plot shows logit transformed raw estimates for AI 

against depth for each fSNP; mean AI is -0.05 and appears unrelated to depth. The horizontal 

line indicates no allelic imbalance, the gray vertical line is displayed to ease comparison with c 

and d. (c) Logit AI estimates obtained  as described in a, have a similar mean to raw estimates 
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(-0.06), but much smaller variance. The vertical line indicates the read threshold selected for 

including estimates for inference (minimum 100 reads across all samples, Online Methods). (d) 

The effect of reference panel bias correction is a small attenuation in effect estimates. Each 

symbol corresponds to a gene-SNP association comparing the eQTL estimates (log ​2​ allelic 

fold-change) obtained with or without applying our reference bias panel correction. 
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Figure 3 ​ Benchmarking BaseQTL with observed genotypes using published analysis of all 462 

individuals from GEUVADIS dataset as a gold standard. Analysis was performed with BaseQTL, 

BaseQTL modelling between individual signals only (BaseQTL-NB), linear model and when 

possible with RASQUAL using a sub-samples of 86 individuals from the GEUVADIS project. For 

each method, significant eQTLs were called for a range of FDR and positive predictive value 

and sensitivity were calculated relative to the gold standard. In addition, we calculated the 

number of eGenes called by each method by counting the number of genes with at least one 

significant association. The total number of significant associations or eGenes are shown at 

each point.  ​a,c​ A total of 35,083 cis-SNPs within 100kB of 259 genes on chromosome 22 were 
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analysed with the indicated method, of which 1477 (133 eGenes) were significant in the gold 

standard. ​b,d​ As in (a,c) except that a wider cis-window of 1MB within 264 genes in 

chromosome 22 was used. RASQUAL was excluded from the analysis as 54 genes failed to run 

due to the larger numbers of regulatory SNPs. Under these conditions we analysed 199,563 

gene-SNP associations of whom 2168 were significant in the gold standard corresponding to 

140 eGenes.  
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Figure 4 ​eQTL effects estimated with BaseQTL with observed or hidden genotypes. With 

hidden genotypes only cis-SNPs with imputation score ≥0.5 were tested. (a) For each cis-SNP 

the distance to the gene was calculated: for those upstream of the gene, as distance to the start 

of the gene; for those dowsntream of the gene, as distance to the end of the gene and for those 

within the gene, as 0. cis-SNPs tested with hidden hidden genotypes (blue) were concentrated 

closer to genes than observed genotypes (yellow), but the loss of information is much smaller 

amongst significant cis-SNPs because these are also concentrated near genes (right panel). (b) 

Each symbol corresponds to a gene-SNP association tested with observed or hidden genotypes 

respectively. For running BaseQTL with observed gentoypes, cis-SNPs are selected based on 

proximity to the gene under analysis as well as by having a minimum of 5 heterozygous 
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individuals for the cis-SNP in the study sample. For running BaseQTL with hidden genotypes we 

selected proximal cis-SNPs with a minor allele frequency of at least 5% in the reference panel 

(1000 Genomes phase 3). As a result, in some occasions, for a given gene, the selection of 

cis-SNPs run with hidden genotypes and with observed genotypes may differ. To maximise the 

number of comparisons, we matched gene-SNP associations with r​2​≥ 0.9 ​ ​between cis-SNPs 

run with different models, when possible.  For simplicity only significant associations in at least 

one condition are shown, with the inset table summarising all associations tested. Dashed lines 

show 99% credible intervals. (c) Out of 73 genes tested, 10 had significant eQTLs with 

observed genotypes and 3 with hidden genotypes, all also significant with observed genotypes. 

(d) Example of a signal detected from 462 GEUVADIS individuals analysed by linear model ​23 

captured with 86 samples and observed genotypes (upper panel) or hidden genotypes (lower 

panel) using BaseQTL. In each plot each symbol corresponds to a ​MAPK1​ cis-SNP within a 

100KB window. The x-axis indicates the cis-SNP position and the y-axis corresponds to the 

-log ​10​(p-value) reported for the 462 samples in GEUVADIS.  Points are colored by significance. 

Associations not reported in the analysis of 462 individuals in the GEUVADIS study were 

considered not significant.  To ease visualization, no significant associations in both datasets 

(“None”) are plotted with a p-value of 10 ​-4​ and those only called significant by BaseQTL with a 

p-value of 5x10 ​-5​. Using a linear model on the 86 samples tested by BaseQTL would have 

detected no significant results (minimum p=0.001). 
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Figure 5 ​ eQTLs in skin (a) Of 19 eGenes detected in analysis of either normal or psoriatic skin, 

only 8 were significant in both. For genes in pink, the same gene-SNP associations were also 

significant in GTEx for healthy skin (GTEx analysis V7). Moreover, associations for ​ERAP1​ and 

FUT2 ​ have been observed in a previous study of eQTLs in psoriasis​28​. (b) Sankey plot 

comparing results from running psoriasis and normal skin samples is separate models or jointly 

modelling eQTL effects. All the genes shown in (a) were run with the joint model except for 

CSTA​ which was excluded because only one cis-SNP was tested with normal skin and the 

significant signal observed in psoriasis could not be assessed in control samples 

(​Supplementary Table 5 ​). All 7 genes for which we observed signals in both tissues when run 

independently remained significant in both conditions with the joint model, and for eight of the 

13 genes with apparent condition-specific effects, the joint model favoured a shared signal. Note 

that one psoriasis specific gene in the individual models (​SPRR1A​) was no longer significant in 

the joint model.  
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Figure 6 ​ Disentangling condition specific eQTLs. eQTL estimates obtained from the joint or 

single models in normal or psoriasis skin (left and right sides). For each skin type we plotted the 
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eQTL effect illustrating the two components of our likelihood: between and within individual 

variation (top and bottom panel,respectively). Between-individual plots show the genotype of the 

cis-SNP (x-axis) against the total gene counts per million reads, adjusted by GC-content (Online 

Methods) in log ​2​ scale (y-axis). As genotypes are unobserved, for each individual we estimated 

the probability of each genotype and each point corresponds to the indicated genotype with the 

size and transparency indicating the probability. To represent within individual variation only 

heterozygotes are considered. The y-axis corresponds to the logit of the proportion of 

aggregated reads across fSNPs mapping the haplotype containing the alternative allele of the 

eQTL (as represented in ​Fig.1​). The light and dark blue lines correspond to the mean effect 

obtained with the single or joint model, respectively. ​a ​PI3 ​ ​b ​ ​GSTP1 ​ ​c ​ ​SPRR1B​. 
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Online Methods

Code and URLs

The source code and documentation for BaseQTL are open source available at https://gitlab.com/evigorito/baseqtl_pipeline

which includes a pipeline to process RNA fastq files and genotypes, if available, to prepare for running

BaseQTL (Supplementary Fig.13).

GEUVADIS samples were accessed from E-GEUV-1, ftp://ftp.sra.ebi.ac.uk/vol1/fastq Psoriasis and nor-

mal skin samples were accesed from E-GEOD-54456,

ftp://ftp.sra.ebi.ac.uk/vol1/fastq

GTEx associations for skin, blood and lymphoblastic cell lines corresponding to Analysis V7 were down-

loaded from https://gtexportal.org/home/datasets .

Deferentially regulated genes between psoriasis and normal skin were downloaded from https://ars.els-

cdn.com/content/image/1-s2.0-S0022202X15368834-mmc2.xls

Data samples

We downloaded RNA-seq data from 86 GEUVADIS samples with EUR ancestry (GBR code) from Ar-

rayExpress (E-GEUV-1, Supplementary Table 6). We also analysed 94 and 90 RNA-seq normal and

psoriasis skin samples [1] obtained from ArrayExpress (E-GEOD-54456, downloaded 2/11/2018). For

the analysis of psoriasis eQTL we selected up-regulated in psoriasis versus normal skin (51 genes

based p≤10-6 (corresponding to family-wise error rate < 0.025) and a median expression of at least

500 RPKM in psoriasis samples (data extracted from https://ars.els-cdn.com/content/image/1-s2.0-

S0022202X15368834-mmc2.xls ,[1]) , and/or within 100 kB of a psoriasis GWAS hit [2] (380 genes).

RNA-seq preprocessing

For the psoriasis and normal skin RNA-seq data quality control using FASTQC indicated a high number

of reads with Ns, which were filtered out using Prinseq [3]. All samples were aligned to the human

genome assembly GRCh37 using STAR [4], but 3 of the normal samples failed alingnment and were

excluded from downstream analysis. We calculated gene expression abundance by overlapping reads

to an union of annotated Ensembl exons, excluding reads overlapping different genes as we did not

have strand information.

Calling genotypes from RNA-seq and phasing

For calling SNPs we fed the aligned files into bcftools [5] selecting uniquely mapping reads with a qual-

ity score of at least 20. We kept variants with read depth at least 10 that were also reported in the 1000

Genome project version 3 (haplotypes from 2504 individuals in NCBI build 37 (hg19) coordinates from
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mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html downloaded on 26/1/2018), with minor allelic fre-

quency at least 0.05 in European individuals.

We assessed genotype errors in the fSNPs by comparing the genotype frequency of each fSNP

in the samples relative to samples of same ethinicity in the reference panel by Fisher’s exact test.

We report the p-value for each fSNP. Moreover, we discard SNPs with minor allele frequency below

0.05 and we set a cut-off of at least 100 reads before second alignment, but those are user defined

thresholds.

Quantifying the number of reads overlapping fSNPs

We adapted phASER [6] to count the number of reads overlapping each fSNP. We followed the guide-

lines for ASE quantification suggested by Castel et al (genome biology 2015 16:195), by restricting the

analysis to uniquely mapped reads with base quality for fSNPs ≥ 10. We first used the ’phaser.py’

command that count reads overlapping SNPs. Phaser requires phased genotypes as input, so we

used SHAPEIT2 [7] using the 1000 Genomes phase3 reference panel of haplotypes. Next, we adapted

phASER function ’phaser_gene_ae.py’ to count only once reads overlapping two or more heterozygous

variants.

We implemented the following QC steps to minimise false calls: first, when no strand information

is available from RNA-seq we only considered fSNPs uniquely mapped to one gene. Second, we only

use reads uniquely mapped reads to a locus and we correct for double counting of reads overlapping

more than one fSNP.

Statistical model

Our model maps QTLs for genetic variants (cis-SNPs) within a chosen distance to a feature (gene,

isoform, ChIP-peak). For each feature, we consider all SNPs within it together with one potential regu-

latory SNP (cis-SNP), we jointly modelled the total read counts in the feature and the allelic imbalance

between the chromosomes carrying the cis-SNP and the fSNPs. Our model builds up from the TrecASE

model [8] by allowing phasing uncertainty, modelling reference panel bias and unobserved genotypes

in a Bayesian framework.

Basic model: known phase and genotypes

We begin by summarising our implementation of the TRecASE model [8] with observed genotypes and

fixed phasing (Fig. 1a). The likelihood can be decomposed into a product of contributions from between

individual (Lbetween) and within individual (Lwithin) likelihoods.

Let ci be the total read counts at the specific feature for individual i (i=1,...,N),Gi the number of alter-

native alleles at the cis-SNP (0,1,2) and xi a vector of p covariates. We used the same parametrization
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as in TRecASE. We modelled total gene counts ci by a negative binomial distribution (fNB) to allow for

over-dispersion of RNA-seq reads:

ci|Gi,xi ∼ fNB(µi, φ)

log(µi) = γ0 +

j=p∑
j=1

γjxij + g(βaFC , Gi),

Where do we say what covariates are used in the real data analysis? where g(βaFC , Gi)

models the genetic effect and βaFC corresponds to the expected log-allelic fold change of individuals

homozygous for the alternative allele to those homozygous for the reference allele for the tested cis-

SNP, as defined by the TReCASE model (ref):

g(βaFC , Gi) =


0 if Gi = 0

log(1 + exp(βaFC))− log(2) if Gi = 1

βaFC if Gi = 2

To model allele-specific expression (ASE) we assume initially that we observe for each individual

i their complete haplotypes formed by the cis-SNP and fSNPs. We distinguish these as (h0i, h1i)

according to the haplotype carrying the reference and alternative alleles at the cis-SNP, respectively

for individuals heterozygous at the cis-SNP, or arbitrarily for homozygous individuals. We count reads

mapping to each haplotype by aggregating the counts across heterozygous fSNPs, according to their

phase, in each individual. Of mi ≤ ci reads which overlap at least one heterozygous fSNP, we denote

by n1i the number which map to h1i. We model ni1|mi by a beta-binomial distribution with π being the

expected proportion of ASE and θ the overdispersion parameter as follows:

ni1|mi, (h0i, h1i) ∼ BB (ni1;π, θ,mi|(h0i, h1i))

π =


exp(α0i + βaFC)

1 + exp(α0i + βaFC)
Gi heterozygous

exp(α0i)

1 + exp(α0i)
Gi homozygous

(1)

where α0i is a random intercept parameter which depends on (h0i, h1i) (although we drop the depen-

dence in the notation above for simplicity) and which would be 0 in the absence of reference sequence

mapping bias. Homozygous individuals for the cis-SNP carrying heterozygous fSNPs contribute infor-

mation for estimating the overdispersion parameter θ. The within-individual likelihood can therefore be

expressed as:

Lwithin =

N∏
i=1

fBB(ni1;πi, θ,mi|h0i, h1i)
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We put uninformative priors on the standard regression parameters

γ0 ∼ N(6, 2)

γ1−p ∼ Cauchy(0, 2.5)

φ ∼ Γ(1, 0.1)

θ ∼ Γ(1, 0.1)

and describe informative priors for α0i and βaFC in sections below.

Extension 1: Modelling phasing uncertainty

We now relax the assumption that (h0i, h1i) are observed and known. We denote by Fi the unphased

genotypes across the fSNPs for individual i, and by Gi their genotype at the cis-SNP. We account

for phasing uncertainty by averaging over the likelihood of n1i|(h0i, h1i) over all possible (h1i, h0i) =

(h∗1, h
∗
0), weighted by a simple maximum likelihood estimate of P [(h1i, h0i) = (h∗1, h

∗
0)|Gi, Fi] estimated

from 1000G reference panel phase 3. Thus the likelihood contribution becomes

Lwithin =

N∏
i=1

∑
(h∗

1,h
∗
0)

fBB(ni1;πi, θ,mi|h0i, h1i)× P [(h1i, h0i) = (h∗1, h
∗
0)|Gi, Fi]

Extension 2: Unknown cis-SNP genotypes

We use the same idea to consider Gi latent, deriving the haplotype pair probabilities conditional only

on the observed Fi, since Gi is directly specified by any haplotype pair.

Lwithin =

N∏
i=1

∑
(h∗

1,h
∗
0)

fBB(ni1;πi, θ,mi|h0i, h1i)× P [(h1i, h0i) = (h∗1, h
∗
0)|Fi]

but we also need to adjust

Lbetween =

N∏
i=1

∑
g∗

fNB(ci;βaFC , γ, φ,X|Gi = g∗)× P (Gi = g∗|Fi)

We use a standard measure of imputation quality (r2) [9]. If Gi ∈ {0, 1, 2} and pik = P (Gi = k|Fi)

is the probability obtained by imputation that the genotype of the i th individual is k (section Extension

2: Unknown cis-SNP genotypes), the expected allele dosage for individual i is E(Gi) = pik=1 + 2pik=2.

The information metric is defined as

r2 =
V (E(Gi))

V (GRPi)

31

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.203851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.203851
http://creativecommons.org/licenses/by/4.0/


with GRPi the genotype for the cis-SNP for individual i in the reference panel. We report this value

in the summary output.

Extension 3: jointly modelling different conditions in unpaired samples

We describe this in context of our application to psoriatic and normal skin, but the same method applies

to compare unpaired data from any two conditions or cell types. We can write the between individual

component of independent models for normal (N) and psoriasis (P) skin as:

log(µiP ) = γ0P +

j=p∑
j=1

γjxij + g(βaFCP
, Gi)

log(µiN ) = γ0N +

j=p∑
j=1

γjxij + g(βaFCN
, Gi)

We can jointly model total gene counts from normal and psoriasis skin as follows:

log(µi) = γ0N ∗ IN + γ0P ∗ IP +

j=p∑
j=1

γjxij + g(βaFCA
, Gi) + g(βaFCD

, Gi) ∗ I

With:

βaFCA
= βaFCP

+ βaFCN

βaFCD
= βaFCP

− βaFCN

And:

IN

1 = Normal skin

0 = Psoriasis skin
IP

1 = Psoriasis skin

0 = Normal skin
I

1 = Psoriasis skin

−1 = Nornal skin

Rather than the more usual treatment contrasts, using zero/one dummy variables, we use sum-to-

zero contrasts for the group variable. Mathematically the models are identical, there is only a change in

interpretation of the resulting coefficients. As a difference in conditions is our primary focus, the sum-to-

zero contrast will directly assess whether there is any condition difference (regardless of direction/sign

and interactions).
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Prior specifications

Modelling reference mapping bias, prior on α0i

To estimate expected reference panel bias at each fSNP k, we pooled observed and pseudo reads

across all individuals. Let rk and tk be the number of reads re-aligned to the alternative allele and the

total number of re-aligned reads, respectively. Thus, π̂k = rk/tk is the proportion of reads mapping to

the alternative allele. On rare occasions we observed π̂k higher than 0.5. Often when this happened,

two or more SNPs were close to each other and shared overlapping reads with some alleles being

reference and other alternative in the original read. We apply a binomial test assessing whether the

bias estimate is significantly higher than 0.5 and discard those fSNPs with p < 0.01 because this pattern

was not observed in the distribution of bias estimated from the observed reads only.

When βaFC = 0, then logit(π) = α0i (1). Note that the effect of any bias in our likelihood will

depend on how the alternative allele at the fSNP is phased with the alternative allele at the cis-SNP. Let

α̂k = logit(π̂k), and define

α̃k(h∗1) =

α̂k fSNPk alternative allele is in h∗1

−α̂k fSNPk reference allele is in h∗1

We assume that log(α0i|(h0i, h1i)) is normally distributed, with expected value a weighted average

of α̃k

E(log(α0i)|(h1i, h0i) = (h∗1, h
∗
0)) =

∑k=K
k=1 sikα̃k(h∗1)∑k=K

k=1 sik

where sik is the number of reads in sample i overlapping fSNP k, and variance

V (log(α0i)) =

∑K
k=1 s

2
ik

(
1

rk
+

1

tk − rk

)
(∑K

k=1 sik

)2
This is then an informative prior for α0i that captures both local sequence effects and variable

coverage between individuals and between SNPs, derived from observed data and its counterfactual

alternative.

Informative prior on βaFC

We also use a data-derived prior on βaFC , building on information amassed from large eQTL studies.

We used estimates of eQTL effects from cis-SNPs in GTEx, assuming true eQTL effects, νk at each
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SNP k, come from a mix of Gaussian distributions

νk ∼

N(0, σ20) with probability 1− p1
N(0, σ21) with probability p1,

where σ21 > σ20 , and that estimated eQTL effects are unbiased, i.e. ν̂k ∼ N(νk, τ̂
2
k ) where τ̂2k is

the standard error of the eQTL effect such that for SNP/gene pair k, ν̂k. We took a sample of 106

(ν̂k, τ̂
2
k ) values for unlinked SNPs within 1 Mb of the target gene’s transcription start site. We estimated

σ20, σ
2
1, p1 by Metropolis-Hastings, and code to run this analysis is available at https://github.com/

chr1swallace/fitmix.

Informative priors on βaFCA
and βaFCD

We can express the prior for βaFC as:

βaFC ∼ N(0, σ20) ∗ (1− w) +N(0, σ21) ∗ w

When jointly modelling normal (N) and psoriasis (P) skin we have:

βaFCA
= βaFCP

+ βaFCN

βaFCD
= βaFCP

− βaFCN

Under independence:

var(βaFCA
) = var(βaFCD

) = var(βaFCP
) + var(βaFCN

)

The priors for βaFCA
and βaFCD

can be expressed as a mixture of Normal distributions with the

following components:

eQTL effect Mean Variance Weight

Neither 0 2σ20 95.5
Either 0 σ20 + σ21 3
Both 0 2σ21 1.5

Running linear model RASQUAL and BaseQTL

We ran the linear model in R using "lm" function regressing the logarithm of total gene counts on

genotypes.
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For RASQUAL we created a VCF file with allele specific counts using the tools provided in https://github.com/kauralasoo/rasqual/.

We run RASQUAL with normal settings or the permutating test.

BaseQTL inputs were prepared as detailed above and at https://gitlab.com/evigorito/baseqtl_pipeline.

All three models were adjusted by GC-corrected library size as implemented in the library rasqual-

Tools.

Calculation of FDR

For the linear model we calculated FDR using the R function "p.adjust" with method "BH". For RASQUAL

we used the method provided by RASQUAL itself [10], namely to generate a single p value from per-

muted data, and defining

FDR(α) =
#pperm < α

#p < α

where pperm corresponds to the permutation p values, p to observed data p values, and α the signifi-

cance threshold.

For BaseQTL, we calculated FDR as described in [11]. Briefly, they define FDR as:

FDR =
∑

δi(1− ri)/D

where δi is an indicator for rejecting the i-th eQTL comparison, D =
∑
δi corresponds to the number of

rejections and ri ∈ {0, 1} denotes the unknown truth for a SNP being (1) or not (0) a cis-eQTL. While

ri is unknown, we can calculate vi = P (ri = 1|data) from our posterior samples by calculating the

proportion of times that 0 was excluded from credible intervals of specific size (α′ = 85%, 90%, 95%

and 99%). (To do this with a manageable number of samples, we used normal approximations to the

marginal posterior distribution of the eQTL effect). Under those conditions using a cis-window of 1MB

or 0.1MB we observed the following FDR:

FDR = E(FDR|data) =
∑

(1− vi)δi/D

Decision rule D (1MB) D (0.1MB) FDR

null /∈ 99% CI 193 153 0.001
null /∈ 95% CI 347 262 0.013
null /∈ 90% CI 846 511 0.051
null /∈ 85% CI 2084 977 0.097
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Definition of significant associations using BaseQTL

We defined significant associations those for which 0 was excluded from the 99% credible intervals of

the posterior distribution, unless otherwise stated. This threshold was a good compromise between

positive predictive value and sensitivity (Fig.3).

Consistency of the ASE signal across fSNPs

We implemented a quality control measure aiming to exclude potential false positive calls. Given f

fSNPs within a gene, for each fSNP we extracted the number of reads mapping the alternative allele

in each individual (ni) and the total number of reads mapping the fSNP (mi). We then fit the following

models:

m0 : ni|mi BB(ni;π, θ,mi|fSNP )

m1 : ni|mi BB(ni;π, θf ,mi|fSNP )

We use an anova test to compare the models and set a p-value threshold of 0.05 to exclude genes

from analysis if there is evidence of difference in the over-dispersion parameters across fSNPs. We run

the analysis using the "betabin" function from the "aod" R library.

References

[1] Li, B., Tsoi, L. C., Swindell, W. R., Gudjonsson, J. E., Tejasvi, T., Johnston, A., Ding, J., Stuart,

P. E., Xing, X., Kochkodan, J. J., et al. Transcriptome analysis of psoriasis in a large case–control

sample: Rna-seq provides insights into disease mechanisms. Journal of Investigative Dermatology

134(7), 1828–1838 (2014).

[2] Tsoi, L. C., Stuart, P. E., Tian, C., Gudjonsson, J. E., Das, S., Zawistowski, M., Ellinghaus, E.,

Barker, J. N., Chandran, V., Dand, N., et al. Large scale meta-analysis characterizes genetic

architecture for common psoriasis associated variants. Nature communications 8(1), 1–8 (2017).

[3] Schmieder, R. and Edwards, R. Quality control and preprocessing of metagenomic datasets.

Bioinformatics 27(6), 863–864 (2011).

[4] Dobin, A. and Gingeras, T. R. Mapping rna-seq reads with star. Current protocols in bioinformatics

51(1), 11–14 (2015).

[5] Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and pop-

ulation genetical parameter estimation from sequencing data. Bioinformatics 27(21), 2987–2993,

09 (2011).

36

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.203851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.203851
http://creativecommons.org/licenses/by/4.0/


[6] Castel, S. E., Mohammadi, P., Chung, W. K., Shen, Y., and Lappalainen, T. Rare variant phasing

and haplotypic expression from rna sequencing with phaser. Nature communications 7(1), 1–6

(2016).

[7] Delaneau, O., Marchini, J., and Zagury, J.-F. A linear complexity phasing method for thousands of

genomes. Nature methods 9(2), 179–181 (2012).

[8] Hu, Y.-J., Sun, W., Tzeng, J.-Y., and Perou, C. M. Proper use of allele-specific expression im-

proves statistical power for cis-eqtl mapping with rna-seq data. Journal of the American Statistical

Association 110(511), 962–974 (2015).

[9] Marchini, J. and Howie, B. Genotype imputation for genome-wide association studies. Nature

Reviews Genetics 11(7), 499–511, July (2010). Number: 7 Publisher: Nature Publishing Group.

[10] Kumasaka, N., Knights, A. J., and Gaffney, D. J. Fine-mapping cellular qtls with rasqual and

atac-seq. Nature genetics 48(2), 206–213 (2016).

[11] Muller, P., Parmigiani, G., and Rice, K. Fdr and bayesian multiple comparisons rules. Johns

Hopkins University, Dept. of Biostatistics Working Papers 115 (2006).

Supplementary note

Mitigating genotype errors

To minimize genotype errors performed the following steps: First, we called variants using a base quality

threshold above 20 and limiting the analysis to uniquely mapped reads. Second, we filtered out called

variants not annotated in the external reference panel (1000 Genomes phase3). Third, by excluding

variants according to a depth threshold. Ideally, we would be calling genotypes for the same fSNPs that

were used for inference with observed genotypes, which were 498 fSNPs across 86 samples, adding

to 42,828 calls calls . We have chosen to limit RNA-seq calls to those fSNPs with depth ≥10, as this

value provided a good trade-off between error rate and missing calls (Supplementary Fig. 2a). Last,

by excluding fSNPs with different rates of heterozygosity across study samples compared to European

samples from 1000 Genomes when performing a Fisher exact test (Online Methods). We selected a p

value of 0.01 as a good compromise to exclude fSNPs with a high proportion of errors (Supplementary

Fig. 2b). Using this threshold we excluded 2 fSNPs with 33 errors out of 82 with 4 missing calls and

8 out of 20 with 66 missing calls. Last, we looked at whether fSNPs with a higher number of missing

calls across samples were associated with higher error rates. This was not the case (Supplementary

Fig. 3a), so we did not exclude fSNPs based on the number of missing calls.
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Supplementary Figure 1 ​Shrinkage effect of prior on eQTL estimates. (a) we learnt an 

informative prior on eQTL effect sizes from GTEx LCL which is a mixture of a narrow (97%) and 

a wider (3%) central normal distributions, with sd=0.03 and 0.35 respectively.(Online Methods). 

(b) BaseQTL was run twice, once with this informative prior and once with an uninformative prior 

(N(0, 100)). The informative prior shrinks 92% (1682/1834) of significant effects so they are no 

longer significant, which changes the positive predictive from 0.25 to 0.90 when using the larger 

GEUVADIS dataset of 462 individuals as gold standard. Each point point corresponds to the 
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eQTL effect (log ​2​ allelic fold-change) running BaseQTL with observed genotypes for expressed 

genes in chromosome 22 (264) with the informative prior we derived (y-axis) or an uninformative 

(x-axis) prior. The gray lines indicate 99% credible intervals. 
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Supplementary Figure 2 ​Quality control of RNA-seq genotyping errors. ​(a) ​Trade-off between 

genotype accuracy and number of variants called. Genotype concordance for calling fSNPs with 

RNA-seq or short read DNA genotyping increases with read depth for homozygous or 

heterozygous SNPs (red and blue lines with left y axis), while the proportion of variants with 

genotype calls decreases (black line with y right axis). ​(b) ​Each symbol corresponds to a fSNP 

genotyped across the 86 samples. The x-axis shows the -log10 p-value obtained by comparison 

of the frequency of heterozygous individuals relative to a reference panel of the same ethnicity 

(Online methods). The y-axis indicates the proportion of genotyping errors across samples 

when calling genotypes with RNA-seq relative to DNA sequencing. The labels indicate the total 

number of samples with genotypes called by RNA-seq for the fSNPs with the highest proportion 

of errors. The dashed vertical line at x-axis=2 (p-value = 0.01) is the threshold we selected. 
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Supplementary Figure 3 ​ Genotyping fSNPs by RNA-seq. (a) Each symbol corresponds to a 

fSNP. The plot shows the proportion of samples with same genotype calls in DNA-seq and 

RNA-seq (x-axis) relative to the proportion of individuals with missing genotypes in RNA-seq 
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calls (y-axis). As genotype errors were independent of missing values, we did not apply a 

threshold based on the number of missing genotypes (b) RNA-seq genotyping reduces  the 

number of available fSNPs per gene. For each gene, the number of fSNPs used for inference 

was categorized as 1 , 2-5, 6-10, 11-15, 16-20, 21-25, 26-30 both for observed or hidden 

genotypes.  The bars correspond to the number of genes for a given number of fSNPs. (c) 

Distribution of raw AI estimates at each fSNP are similar between DNA-seq or RNA-seq. The 

dashed line at logit AI=0 corresponds to no imbalance. 
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Supplementary Figure 4 ​Dissecting the effect of genotyping errors on eQTL estimates. When 

running BaseQTL with hidden genotypes for the cis-SNP we restricted the analysis to cis-SNPs 

with a quality of imputation ≥ 0.3. (a) BaseQTL was run with fSNPs genotyped by 

DNA-sequencing or by RNA-seq. In both cases the same fSNPs were used for inference and 

the cis-SNP was imputed. Each symbol corresponds to the eQTL effect (log2) comparing both 

conditions with the dashed lines indicating the 99% credible intervals. (b) Same as (a) except 

that BaseQTL was run with fSNPs genotyped by DNA-sequencing and the genotype for the 

cis-SNP was either observed or imputed. 
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Supplementary Figure 5 ​Comparing associations detected with hidden genotypes on a 

sub-sample of 86 individuals relative to a large GEUVADIS study of 462 samples. At each 

threshold of imputation quality (x axis) the PPV for associations (a) or eGenes (b) is shown. The 

values on the graph correspond to the total number of associations (a) or eGenes (b) called 

significant with hidden genotypes. 
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Supplementary Figure 6 ​. eQTL examples for the indicated genes. Same analysis as in  Figure 

6. 
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Supplementary Figure 7. ​ eQTL examples for the indicated genes. Same analysis as in  Figure 

6. 

 

46

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.203851doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.203851
http://creativecommons.org/licenses/by/4.0/


 

Supplementary Figure 8 ​. eQTL examples for the indicated genes. Same analysis as in  Figure 

6. 
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Supplementary Figure 9 ​. eQTL examples for the indicated genes. Same analysis as in  Figure 

6. 
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Supplementary Figure 10 ​. eQTL examples for the indicated genes. Same analysis as in 

Figure 6. 
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Supplementary Figure 11 ​. eQTL examples for the indicated genes. Same analysis as in 

Figure 6. 
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Supplementary Figure 12 ​. ​SBSN ​ failed a post-hoc quality control measure testing 

homogeneity of variance of the raw allelic imbalance across fSNPs. Each plot corresponds to a 

skin type. For each fSNP (x-axis) the logit of the proportion of reads mapping the alternative 

allele for each individual (n/m) is shown in the y-axis. The p-value corresponds to a likelihood 

ratio test fitting beta binomial models allowing the overdispersion parameter to change across 

fSNPs or not. 
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Supplementary Figure 13. ​BaseQTL pipeline. Schematic diagram illustrating the different steps 

for input preparation and running BaseQTL.  
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Supplementary Figure 14 ​BaseQTL running time. The plot on the left shows the running time 

for the 264 genes run using the GEUVADIS dataset with observed genotypes, whereas the plot 

on the right corresponds to the 84 genes run with hidden genotypes. Each gene was run 

assessing candidate cis-SNPs within 1MB of gene using 16 cores. The median time was 6 and 

10 minutes per gene for observed genotypes and hidden genotypes respectively, using a 

cis-window of 1MB. 
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