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Abstract

Biochemical interactions in systems and synthetic biology are often modeled with

Chemical Reaction Networks (CRNs). CRNs provide a principled modeling environ-

ment capable of expressing a huge range of biochemical processes. In this paper, we

present a software toolbox, written in python, that complies high-level design specifica-

tions to CRN representations. This compilation process offers four advantages. First,

the building of the actual CRN representation is automatic and outputs Systems Biol-

ogy Markup Language (SBML) models compatible with numerous simulators. Second,

a library of modular biochemical components allows for different architectures and im-

plementations of biochemical circuits to be represented succinctly with design choices

propagated throughout the underlying CRN automatically. This prevents the often

occurring mismatch between high-level designs and model dynamics. Third, high-level

design specification can be embedded into diverse biomolecular environments, such

as cell-free extracts and in vivo milieus. Finally, our software toolbox has a param-

eter database, which allows users to rapidly prototype large models using very few

parameters which can be customized later. By using BioCRNpyler, users can easily
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build, manage, and explore sophisticated biochemical models using diverse biochemical

implementations, environments, and modeling assumptions.

1 Introduction

Chemical Reaction Networks (CRNs) are the workhorse for modeling in systems and syn-

thetic biology.1 The power of CRNs lies in their expressivity; CRN models can range from

physically realistic descriptions of individual molecules to coarse-grained idealizations of

complex multi-step processes.2 However, this expressivity comes at a cost. Choosing the

right level of detail in a model is more an art than a science. The modeling process requires

careful consideration of the desired use of the model, the available data to parameterize the

model, and prioritization of certain aspects of modeling or analysis over others. Addition-

ally, Biological CRN models can be incredibly complex including dozens or even hundreds or

thousands of species, reactions, and parameters . Maintaining complex hand-built models is

challenging and errors can quickly grow out of control for large models. Software tools can

answer many of these challenges by automating and streamlining the model construction

process.

Due to CRN’s rich history and diverse applications, the available tools for a CRN mod-

eler are vast and includes: extensive software to generate and simulate CRNs, databases of

models, model analysis tools, and many more.3–7 However, relatively few tools exist to aid in

the automated construction of general CRN models from simple specifications. For example,

even though synthetic biologists have adopted a module and part-driven approach to their

laboratory work8, models are still typically built by hand on a case-by-case basis. Recog-

nizing the fragile nature of hand built models, several synthetic biology design automation

tools have been developed for specific purposes such as implementing transcription factor

or integrase-based logic.9,10 These tools indicate a growing need for design and simulation

automation in synthetic biology, as part and design libraries are expanded.
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As the name would suggest, the BioCRNpyler (pronounced bio-compiler) package is a

Python package that compiles CRNs from simple specifications of biological motifs and con-

texts. This package is inspired by the molecular compilers developed by the DNA-strand

displacement community and molecular programming communities which, broadly speaking,

aim to compile models of DNA circuit implementations from simpler CRN specifications11–13

or rudimentary programming languages.14,15 However, BioCRNpyler differs from these tools

for two main reasons: first, it is not focused only on DNA implementations of chemical

computation, and second, it does not take the form of a traditional programming language.

BioCRNpyler combines specifications consisting of synthetic biological parts and systems

biology motifs that can be reused and recombined in diverse biochemical contexts at cus-

tomizable levels of model complexity. In other words, BioCRNpyler compiles detailed CRN

models from abstract specifications of a biochemical system. Importantly, BioCRNpyler is

not a CRN simulator—models are saved in the Systems Biology Markup Language (SBML)16

to be compatible with the user’s simulator of choice. Figure 1 provides motivating examples

for the utility of BioCRNpyler by demonstrating the rapid construction of diverse CRNs by

reusing common parts and modifying the modeling context.

There are many existing tools that provide some of the features present in BioCRNpyler.

Systems Biology Open Language (SBOL)17 uses similar abstractions to BioCRNpyler but

is fundamentally a format for sharing DNA-sequences with assigned functions and does not

compile a CRN. The software package iBioSim18,19 compiles SBOL specifications into SBML

models and performs analysis and simulation. Although BioCRNpyler is capable of similar

kinds of compilation into SBML, it is not a simulator. Importantly, BioCRNpyler does

not hard code how models are compiled—instead it should be viewed as a customizable

software compilation language that can be applied to compile many kinds of systems beyond

genetic networks. The rule-based modeling framework BioNetGen20 allows for a system to

be defined via interaction rules which can then be simulated directly or compiled into a

CRN. Internally, BioCRNpyler functions similarly to this rule based-modeling compilation.
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Similarly to PySB21, BioCRNpyler provides a library of parts, mechanisms, and biomolecular

contexts that allow for models to be succinctly produced without having to manually specify

and verify many complex rules. Finally, the MATLAB TX-TL Toolbox22 can be seen as

a prototype for BioCRNpyler but lacks the objected-oriented framework and extendability

beyond cell-free extract systems.

BioCRNpyler is a purposefully suited to in silico workflows because it is an extendable

objected-oriented framework that integrates existing software development standards and

allows complete control over model compilation. Simultaneously, BioCRNpyler accelerates

model construction with extensive libraries of biochemical parts, models, and examples rele-

vant to synthetic biologists, bio-engineers, and systems biologists. The BioCRNpyler package

is available on GitHub23 and can be installed via the Python package index (PyPi).

2 Motivating Examples

This section highlights the ease-of-use of BioCRNpyler through several well-known synthetic

biology examples. As a summary, Figure 1 demonstrates the utility of compiling CRNs

with BioCRNpyler. The names of python classes are highlighted typographically and are

defined more thoroughly in later sections. Time-course simulations in Figure 1 were done

with Bioscrape24 and circuit diagrams were created with DNAplotlib.25

2.1 Inducible Repression, Toggle Switch and Repressilator

Models A, B, and C show three archetypal motifs from synthetic biology: inducible repres-

sion, a bistable toggle switch26, and the repressilator27. All three of these examples are

created by reusing the same Components wired together in different ways as described in

Section 6. The ability to reuse Components allows for convenient design-space exploration

of different circuit architectures. Furthermore, as explained in Section 2.2 and 2.4, examples

D, E and F show how these Components can be tested in different contexts by chang-

4

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.02.233478doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.233478


Inducible
Repression

Idealized
Toggle
Switch

Idealized
Repressilator

dCas9
Repression

RNAase
Toggle
Switch

Multi-Occupancy
Repressilator

0

100

200

300

400

500

600

4 4 4 6 6 10 10 7 9 15 15 11 28 36
64

10 28 38
68

11

180

337

587

14

G. Comparative Model Complexity

Number Species in Model
Number of Reactions in Model
Number of ODE Terms in Model
Lines of Code to Create Model

A. Inducible Repression

Repressor Reporter

[Repressor Assembly]

[R
ep

or
te

r S
te

ad
y 

St
at

e]

Idealized Repression Behavior

D. dCas9 Repressor & Guide 
 Coexpressed with Reporter

guideRNA dCas9 Reporter

0 10−4 10−2 100 102

[guide RNA Assembly]

0

10−4

10−2

100

102

[d
Ca

s9
 A

ss
em

bl
y]

Reporter Steady State Heatmap
(model includes reotractivity)

10−1 101 103

B. Bistable Toggle Switch

A B

100 101 102 103

100

101

102

103

Idealized Toggle Switch Phase Portrait

Stable Fixed Point A
Stable Fixed Point B
Unstable Fixed Point

E. Targeted RNAase
Toggle Switch

A B

10−2 10−1 100 101 102

10−2

10−1

100

101

102

RNAase Toggle Phase Portrait
(model includes cellular machinery)

Stable Fixed Point A
Stable Fixed Point B
Unstable Fixed Point

C. Repressilator

A B C

Time

10−1

100

101

102

Idealized Repressilator Dynamics

Protein A
Protein B
Protein C
Transcript

Time
10−4

10−3

10−2

10−1

100

101

102

F. Multiple Ribosome Occupancy
Repressilator Dynamics

Protein A
Protein B
Protein C
Free Transcript
Bound Transcript
Ribosomes (unbound)
RNAase (unbound)

Figure 1: Motivating Examples. The idealized models (A, B, and C) do not model the cellu-
lar environment; genes and transcripts transcribe and translate catalytically. A. Schematic and
simulation of a constiutively active repressor gene repressing a reporter. B. Schematic and simu-
lations of of a toggle switch created by having two genes, A and B, mutually repress each other.
C. Schematic and dynamics of a 3-repressor oscillator. The detailed models (D, E, & F) model
the cellular environment by including ribosomes, RNAases and background resource competition
for cellular resources. D. A dCas9-guideRNA complex binds to the promoter of a reporter and
inhibiting transcription. Heatmap shows retroactivity caused by varying the amount of dCas9 and
guide-RNA expressed. The sharing of transcription and translational resources gives rise to in-
creases and decreases of reporter even when there is very little repressor. E. A proposed model for
a non-transcriptional toggle switch formed by homodimer-RNAase; the homodimer-RNAase made
from subunit A selectively degrades the mRNA producing subunit B and visa-versa. F. A model
of the Repressillator exploring the effects of multiple ribosomes binding to the same mRNA. G.
Histogram comparing the sizes of models A-F and the amount of BioCRNpyler code needed to
generate them.
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ing the Mechanisms and Mixtures used to compile the Components resulting in nuanced

implementation-specific and context-specific models.

2.2 dCas9 Repressor and Guide RNA Coexpressed with Reporter

Figure 1D builds upon the repression Model A by modeling an implementation consisting

of a guide-RNA and dCas9 ChemicalComplex that also acts as a repressor by inhibiting

RNA-polymerase binding to the reporter DNAassembly.28 Model A also includes more intra-

cellular context such as nucleases and ribosomes. By including cellular machinery in the

model, the co-expression of dCas9 and the guide RNA is able to influence the reporter

via loading effects and retroactivity, which can cause unintended increases and decreases in

reporter expression29 even when only the guide-RNA or dCas9 is present.

2.3 Targeted RNAase Toggle Switch

Figure 1E models a hypothetical toggle switch that functions at the RNA level instead of the

transcriptional level. Each DNAassembly expresses a subunits A and B of two homodimer-

RNAase. The homodimer-RNAase made from subunit A selectively degrades the mRNA

producing subunit B and visa-versa. Such a system could potentially be engineered via

RNA-targeting Cas930 or more complex fusion proteins.31

2.4 Multiple Ribosome Occupancy Repressilator Dynamics

Figure 1F illustrates how BioCRNpyler can be used to easily generate more realistic and

complex models of biochemical processes in order to validate if model simplifications are

accurate. It is common practice in transcription and translation models to use an enzymatic

process consisting of a single ribosome (R) to a transcript (T ) which then produces a single

protein (P ). This translation Mechanism could be written as: R+T ↼−−⇁ R : T → R+T +P .

Indeed, both example models D and E use such a simplification. However, experiments show
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that in fact many ribosomes can co-occupy the same mRNA.32 By changing the underlying

translation Mechanism to model multiple ribosomal occupancy of a single mRNA, a con-

siderably more complex Repressilator model was created. Importantly, this model exhibits

very similar behavior to the simpler model, suggesting that multi-occupancy of ribosomes

on mRNA can be neglected in these kinds of genetic regulatory circuits.

2.5 Network complexity

Finally, the bottom histogram Figure 1G shows that even as the size of the underlying

CRN grows, the amount of BioCRNpyler code that is needed to generate the model re-

mains very small. This enables the generation of large and complex models with greater

accuracy and lower chance of human error. For example, imagine writing down ODEs with

hundreds of terms and then trying to systematically modify the equation: human error is

nearly inevitable. By using CRN compilation, models can be easily produced, modified, and

maintained.

2.6 Parameter Database

Importantly, all these examples in this Section make use of the same underlying set of 10-

20 default parameters demonstrating how BioCRNpyler’s ParameterDatabase makes model

construction and simulation possible even before detailed experiments or literature review.

3 Framework and Compilation Overview

BioCRNpyler is an open-source Python package that compiles high-level design specifica-

tions into detailed CRN models, which then are saved as an SBML files.33 BioCRNpyler

is written in python with a flexible object-oriented design, extensive documentation, and

detailed examples which allow for easy model construction by modelers, customization and

extension by developers, and rapid integration into data pipelines. As Figure 2 shows, un-
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Figure 2: The hierarchical organization of python classes in the BioCRNpyler. Arrows
represent direction of compilation: from high-level design specifications (Components) in a
modeling context (Mixtures) and biochemical processes (Mechanims) to a CRN representa-
tion.

derlying BioCRNpyler is a comprehensive ChemicalReactionNetwork class allowing for the

direct creation and manipulation of Reactions and the participating Species to represent

molecular interactions at many levels of complexity. For example, an entire gene may be

modeled as a single Species or as an OrderedPolymerSpecies with multiple binding specific

sites.

BioCRNpyler also compiles ChemicalReactionNetwork objects from high-level specifi-

cations defined by modular Components combined together in a Mixture representing a

biochemical context (e.g. cell lysate extract). Modeling assumptions and specific knowledge

of biochemical processes are defined via Mechanisms which can be placed inside Components

and Mixtures. This class structure allows for the biochemical parts (e.g. Components) to

be reused to quickly produce numerous different architectures and implementations, such as

those described in the motivating examples. These different architectures and implemen-

tations can further be tested in different contexts providing easily customizable levels of
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biochemical and modeling complexity represented by Mixtures and Mechanisms.

The Mixture, Component, and Mechanism classes are hierarchical. Mixtures represent

biological context by containing Components to represent the biochemical environment and

Mechanisms to represent the modeling detail. For example, the TxTlExtract subclass of

Mixture represents bacterial cell extract and contains Ribosomes, RNA Polymerase, and

RNAases Components as well as transcription, translation, and RNA-degredation Mechanisms

(illustrated in the gray box of Figure 3). Additionally, Components can be added to a Mixture

to produce a particular biochemical system of interest in a particular context. For example,

a DNAassembly Component representing a piece of synthetic DNA encoding a circuit could be

added to the TxTlExtract. During compilation Components represent biochemical function-

Cell Extract Mixture

Mechanisms: 
Transcription, Translation, 
mRNA Degradation

Parameters:

Machinery Concentrations 
(e.g.  [Ribosome], [RNAP])

𝑘𝑡𝑥, 𝑘𝑡𝑙, 𝛿𝑅𝑁𝐴, etc. 

Components:

Ribosomes, Polymerases, 
RNAases

PLac-GFP Assembly Component

Mechanisms:
Inherits: Translation, mRNA 
Degradation

Overwrites: Transcription

Parameters:

Inherits: 𝑘𝑡𝑥, 𝑘𝑡𝑙, 𝛿𝑅𝑁𝐴

Loads: Promoter and RBS 
Binding Constants

Repressed Transcription 
Mechanism

Input Species: Gene G, Repressor R, Transcript T

Input Parameters: binding rates, transcription rate

Outputs Reactions:

𝐺 + 𝑛𝑅 ⇌ 𝐺: 𝑅

𝐺 + 𝑅𝑁𝐴𝑃 ⇌ 𝐺:𝑅𝑁𝐴𝑃 → 𝐺 + 𝑇 + 𝑅𝑁𝐴𝑃

Figure 3: A schematic of the high level specifications used by BioCRNpyler. A Mixture

(gray) contains Mechanisms (green), Parameters (blue) and Components (orange). Each
Component may also contain its own Mechanisms and Parameters. Mechanism are chemical
reaction schemas (yellow) and represent specific models of biochemical processes in order to
output Species and Reactions which are compiled into a CRN.

ality by calling Mechanisms to produce Species and Reactions. The Components class may

use the Mechanisms in their Mixture or have their own Mechanisms to have more differenti-

ated functionality. For example, a RepressiblePromoter (a subclass of Component) might

rely on the Mixture for its translation Mechanism but use a custom transcription Mechanism
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to represent genetic regulation (illustrated in the orange box of Figure 3.). Finally, BioCRN-

pyler uses flexible ParameterDatabases contained in both Mixtures and Components to

allow for rapid model prototyping using just a few default parameters, which can later cus-

tomized for each Component and Mechanism.

3.1 Internal CRN Representation

Formally, a CRN is a set of species S = {Si} and reactions R : {I ρ(s;θ)−−−→ O} where I and

O are multisets of species, ρ is the rate function or propensity, s is a vector of species’ con-

centrations (or counts), and θ are rate parameters. Typically, CRNs are simulated using as

ordinary differential equations (ODEs) and numerically integrated.2 A stochastic semantics

also allows CRNs to be simulated as continuous-time Markov chains.34 Besides their preva-

lence in biological modeling, there is rich theoretical body of work related to CRNs from the

mathematical35, computer science36, and physics communities.37 Despite these theoretical

foundations, many models are phenomenological in nature and lack mechanistic details of

various biological processes. The challenge of constructing correct models is compounded by

the difficulty in differentiating between correct and incorrect models based upon experimen-

tal data.38–40

BioCRNpyler is designed to compile CRNs that can be saved as SBML16 for simulation

with many different simulators. The CRN classes inside BioCRNpyler provide useful func-

tionality so that users can easily modify CRNs produced via compilation, produce entire

CRNs by hand or interface hand-produced CRNs with compiled CRNS. These functional-

ities include the classes to represent Species bound together as ComplexSpecies, lists of

Species organized as OrderedPolymerSpecies and many more. Additionally, user-friendly

printing functionality allows for the easy visualization of CRNs in multiple text formats or

as reaction graphs formatted and drawn using Bokeh and ForceAtlas2.41,42
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3.2 Mechanisms are Reaction Schemas

When modeling biological systems, modelers frequently make use of massaction CRN kinet-

ics which ensure that parameters and states have clear underlying mechanistic meanings.

However, for the design of synthetic biological circuits and analysis using experimental data,

phenomenological or reduced-order models are commonly utilized as well.2 Empirical phe-

nomenological models have been proven to be successful in predicting and analyzing complex

circuit behavior using simple models with only a few lumped parameters.43–45 Bridging the

connections between the different modeling abstractions is a challenging research problem.

This has been explored in the literature using various approaches such as by direct mathemat-

ical comparison of mechanistic and phenomenological models46–48 or by studying particular

examples of reduced models.2 BioCRNpyler provides a computational approach using re-

action schemas to easily change the mechanisms used in compilation from massaction to

coarse-grained at various level of complexity.

Reaction schemas refer to BioCRNpyler’s generalization of switching between different

mechanistic models: a single process can be modeled using multiple underlying motifs to

generate a class of models. Mechanisms are the BioCRNpyler objects responsible for defining

reaction schemas. In other words, various levels of abstractions and model reductions can

all be represented easily by using built-in and custom Mechanisms in BioCRNpyler. For

example, to model the process of transcription (as shown in Figure 4), BioCRNpyler allows

the use of various phenomenological and massaction kinetic models by simply changing the

choice of reaction schema. Notably, this provides a unique capability to quickly compare

system models across various levels of abstraction enabling a more nuanced approach to

circuit design and exploring system parameter regimes.

The ability to generate chemical Species and Reactions via customizable Mechanisms

is one of the key features making BioCRNpyler distinct from other frameworks. Hierarchical

SBML and supporting software provide 49 a noteable exception—however BioCRNpyler con-

tains library of reusable chemical reaction motifs, while Hierarchical SBML is a standard for
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Figure 4: Mechanisms (Reaction Schemas) representing transcription.

describing embedded CRN models. Formally, reaction schemas are functions that produce

CRN species and reactions: f : (S ′, θ)→ (S,R). Here the inputs S ′ are chemical species and

θ are rate constants. The outputs S ⊇ S ′ is an increased set of species and R is a set of re-

actions. Figure 4. gives different examples of a reaction schema’s representing transcription.

This functionality allows modelers to generate CRNs at different levels of complexity and

reuse CRN motifs for some Components while customizing Mechanisms for others. Impor-

tantly, BioCRNpyler contains a large and growing library of existing Mechanisms extensively

documented via examples making them easy to use and repurpose without extensive cod-

ing. Developing custom Mechanisms is also as easy as making a subclass of Mechanism and

defining three functions to produce the desired CRN:

class CustomMechanism(Mechanism):

def __init__(self, ... ):

Mechanism.__init__(self, name = "name", mechanism_type = "type", **kwargs)

# python code to set internal variables

def update_species(self, ... ):
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# python code to create Species objects

return species_list

def update_reactions(self, ... ):

# python code to create Reaction objects

return reaction_list

Internally, each Mechanism class has a type (e.g. transcription) which defines the input and

output species it requires. GlobalMechanisms are a special subclass of Mechanism called

at the end of compilation to represent processes which act on large subsets of CRN Species

such as dilution in cellular models.

3.3 Components Represent Functionality

In BioCRNpyler, Components are biochemical parts or motifs, such as promoters, enzymes

and chemical complexes. Components represent biomolecular functionality; a promoter

enables transcription, enzymes perform catalysis, and chemical complexes must bind to-

gether. Components express their functionality by calling particular Mechanism types during

compilation. Importantly, Components are not the same as CRN Species; one Species

might be represented by multiple Components and a Component might produce multiple

Species! Components are very flexible and can behave differently in different contexts or

behave context-independently. For dynamic-context behavior, define Components to use

mechanisms and parameters provided by the Mixture. For context-independent behav-

ior, define Components to have their own internal Mechanisms and (ParameterDatabases).

The BioCRNpyler library includes many Component subclasses to model enzymes (Enzyme),

chemical complexes (ChemicalComplexes) formed by molecular binding, Promoters (Promoter),

Ribosome Binding Sites (RBS), complex genetic architectures (such as DNA construct illus-

trated in Figure 5), and more. It is also very easy to make custom Components: simply

subclass Component and define three functions:
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class CustomComponent(Component):

def __init__(self, ... ):

Component.__init__(self, ... , **kwargs)

# python code to set internal variables

def update_species(self):

# python code calls mechanism.update_species( ... )

return species_list

def update_reactions(self):

# python code calls mechanism.update_reaction( ... )

return reaction_list

3.4 Mixtures Represent Context

Mixtures are collections of default Components, default Mechanisms, and user-added Components.

Mixtures can represent chemical context (e.g. cell extract vs. in vivo), as well as modeling

resolution (e.g. what level of detail to model transcription or translation at) by containing

different internal Components and Mechanisms. Mixtures also control CRN compilation

by requesting Species and Reactions for each of their Components. After receiving all

these Species and Reactions, Mixtures then apply GlobalMechanisms which act on all

the Species produced by Components. BioCRNpyler comes with a variety of Mixtures to

represent cell-extracts and cell-like sysetems with dilution with multiple levels of modeling

complexity. Making custom Mixtures is also easy - it can be done via simple scripts by

adding Components and Mechanisms to a Mixture object:

MyMixture = Mixture("customized mixture",

components = [List Components],

mechanisms = dict("mechanism_type":Mechanism))

The Mixture class can also be easily subclassed by rewriting the constructor:
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RNA1

RNA2

DNAB

GFP RFPCFP

CFP
Ptet

P2

DNA

RNA1RNA2

A TetR GFP
RFPCFP

DNA
RNA
NA + Protein complex
TetR

Ribosome
RNA Polymerase
GFP
RFP

Reac�on
Flow

CFP

Other Protein

Nothing (degrada�on)

Figure 5: Using the DNA construct class, DNA parts (a subclass of Component) can be
arranged in the same order as they would be in a DNA molecule and compiled into a CRN. A.
A complicated DNA construct contains two transcriptional units in different directions, one
of which makes a bicistronic mRNA that makes GFP and RFP, and can be repressed by TetR.
B. A directed graph representation of the compiled CRN from the DNA construct. Species
represented by circles participate in Reactions represented by squares. Circled groups of
Species and Reactions involve the DNA construct labeled “DNA”, or the RNA constructs
labeled “RNA1” or “RNA2”. The DNA construct class creates all the necessary Species

and Reactions to simulate transcription and translation from linear and circular DNA,
taking into account the compositional context of DNA parts.
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class CustomMixture(Mixture):

def __init__(self, ... , **kwargs):

#python code to set up internal variables,

# create Components, and default Mechanisms

Mixture.__init__(self, mechanisms = dict("mechanism_type":Mechanism),

components = [List of Components], **kwargs)

3.5 Flexible Parameter Databases

BioCRNpyler Parameter Hierarchy
(mechanism_name, part_id, param_name)

• ParameterKey(Michaelis-Menten Transcription, J23119, kb)

(mechanism_type, part_id, param_name)

• ParameterKey(Transcription, J23119, kb)

(None, part_id, param_name)

• ParameterKey(None, J23119, kb)

(mechanism_name, None, param_name)

• ParameterKey(Michaelis-Menten Transcription, None, kb)

(mechanism_type, None, param_name)

• ParameterKey(Transcription, None, kb)

ParameterKey(None, None, param_name) 

• ParameterKey(None, None, kb)

Su
cc

e
ss

iv
e

 D
ef

au
lt

in
g

Figure 6: BioCRNpyler Parameter Defaulting Heirarchy. If a specific ParameterKey (or-
ange boxes) cannot be found, the ParameterDatabase automatically defaults to other
ParameterKeys. This allows for parameter sharing and rapid construction of complex models
from relatively relatively few non-specific (e.g. lower in the hierarchy) parameters.

Developing models is a process that involves defining then parameterizing interactions.

Often, at the early stage of model construction, exact parameter values will be unavailable.

BioCRNpyler has a sophisticated parameter framework which allows for the software to

search user-populated ParameterDatabases for the parameter that closest matches a spe-

cific Mechanism, Component, and parameter name. This allows for models to be rapidly

constructed and simulated with ”ball-park” parameters and then later refined with specific
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parameters derived from literature or experiments later. This framework also makes it easy

to incorporate diverse parameter files together and share parameters between many chemical

reactions.

4 Building an Open-source Community

BioCRNpyler aims to be a piece of open-source community driven software that is easily ac-

cessible to biologists and bioengineers with varying levels of programming experience as well

as easily customizable by computational biologists and more advanced developers. Towards

these ends, the software package is available via GitHub and PyPi , requires very minimal

software dependencies, contains extensive examples and documentation in the form of in-

teractive Jupyter notebooks , and automated testing to ensure stability. Furthermore this

software has been extensively tested via inclusion in a bio modeling course and bootcamp

with dozens of users ranging from college freshmen and sophomores with minimal coding

experience to advanced computational biologists. Developing new software functionality is

also a simple process documented on the GitHub contributions page.

4.1 Integrated Testing

BioCRNpyler uses Travis-CI50 and Codecov51 to automate testing on GitHub. Whenever the

software is updated, a suite of tests is run including extensive unit tests and functional test-

ing of tutorial and documentation notebooks. Automated testing unit testing ensures that

changes to the core BioCRNpyler code preserve functionality of the package. The integration

of Jupyter notebooks into testing allows users to easily define new functionality for the soft-

ware and document that functionality with detailed explanations which are simultaneously

tests cases.
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4.2 Documentation and Tutorials

The BioCRNpyler GitHub page contains over a dozen tutorial Jupyter notebooks and pre-

sentations explaining everything from the fundamental features of the code to specialized

functionality for advanced models to how to add to the BioCRNpyler code-base. This doc-

umentation has been used successful in multiple academic courses and is guaranteed to be

up-to-date and functional due to automatic testing.

5 Future Directions

BioCRNpyler is an ongoing effort which will grow and change with the needs of its community

and extending this community via outreach, documentation, and an ever expanding suite of

functionalities is central to the goals of this project. In the immediate future, we aim to add

SBOL compatibility so BioCRNpyler can automatically compile models of circuits designed

and built in a laboratory setting. This approach will be generalization and extension of52

- in particular due to the modular BioCRNpyler compilation process, it will be possible

have programatic control over the SBML model produced from BioCRNpyler. We also

plan on extending the library to include more realistic Mixtures (particularly experimentally

validated models of circuits in E. coli and in cell extracts), advanced Components to model

such as integrases and RNA-splicing which require a more dynamic compilation process, and

additional mechanisms to model the reactions underlying these systems.

6 Supplemental: Code for Examples

This section provides code from the examples Figure 1. The first three models are idealized

in the sense that they are represented by hill functions and include no cellular machin-

ery such as ribosomes or polymerases. Producing these models in BioCRNpyler is easy

and just requires the reuse of a few parts: DNAassembly represents a simple transcrip-
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tional unit with a promoter, transcript and optionally an ribosome binding site (RBS) and

protein product. RepressiblePromoter creates a promoter modeled by a hill function.

Species creates CRN species used in the models. Notice that only Species which are

shared between different Components need created by hand - BioCRNpyler takes care of the

rest. Finally, everything is added together into a subclass of Mixture and compiled into a

ChemicalReactionNetwork. The second three models build off the general architectures of

the first three but add in more complicated context and implementation details. Instead

of using ExpressionDilutionMixture SimpleTxTlDilutionMixture, these models use the

considerably more complex TxTlDilutionMixture which includes molecular machinery such

as RNAP, ribosomes, RNAases, and background cellular processes. Additional implementa-

tion details in the form of Components and Mechanisms are also added to these models.

6.1 Inducible Repression

Here a repressor is constituitively produces from a DNAassembly. This repressor is then

linked to a RepressiblePromoter which models repression using a hill function.

#Models a piece of DNA that constiuitively produces the species R

repressor = Species("R")

const_rep = DNAassembly(name="const_rep", promoter="medium", rbs="medium",

protein=repressor)

#R represses RepressiblePromoter which is placed into another DNAassembly reporter

prom = RepressiblePromoter(name="pR", repressor=repressor)

reporter = DNAassembly(name = "Reporter", promoter=prom, rbs="strong", initial_conc=1)

#ExpressionDilutionMixture models gene expression without transcription/translation

mixture = ExpressionDilutionMixture(components=[reporter, const_rep],

parameter_file="params.txt")

CRN = mixture.compile_crn()
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6.2 Toggle Switch

In the following example, a toggle switch is created by connecting two instances of RepressiblePromoter

together. Notice that string names passed to promoter and rbs are used to help find parame-

ters. BioCRNpyler comes with many default parameters to enable rapid model prototyping.

#Creates A and is repressed by B

repA = Species("A")

promA = RepressiblePromoter(name="pA", repressor=repB)

assemblyA = DNAassembly(name="A", promoter=promA, rbs="medium", protein=repA,

initial_conc=1)

#Creates B and is repressed by A

repB = Species("B")

promB = RepressiblePromoter(name="pB", repressor=repA)

assemblyB = DNAassembly(name="B", promoter=promB, rbs="medium", protein=repB,

initial_conc=1)

#SimpleTxTlDilutionMixture includes transcription and translation but no machinery

mixture = SimpleTxTlDilutionMixture(components=[assemblyA, assemblyB], parameter_file=

"params.txt")

CRN = mixture.compile_crn()

6.3 Repressilator

The code to create a 3-node repession oscillator is really just adding one more unit and

rewiring the toggle switch example.

#Create Repressors

repA = Species("A")

repB = Species("B")

repC = Species("C")

#Create Promoters

promA = RepressiblePromoter(name = "pA", repressor = repC)

promB = RepressiblePromoter(name = "pB", repressor = repA)
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promC = RepressiblePromoter(name = "pC", repressor = repB)

#Create DNAassemblies

assemblyA = DNAassembly(name = "A", promoter = promA, rbs = "medium", protein = repA,

initial_conc = 1)

assemblyB = DNAassembly(name = "B", promoter = promB, rbs = "medium", protein = repB,

initial_conc = 1)

assemblyC = DNAassembly(name = "C", promoter = promC, rbs = "medium", protein = repC,

initial_conc = 1)

#Place it all in a Mixture & Compile

mixture = SimpleTxTlDilutionMixture(components = [assemblyA, assemblyB, assemblyC],

parameter_file = "params.txt")

crn = mixture.compile_crn()

6.4 Cas9 Repressor and Guide RNA Coexpressed with Reporter

Modeling a dCas9-guideRNA repressor in bioCRNpyler requires that the dCAs9 and guide

RNA know to bind together. This is accomplished via the Component subclass ChemicalComplex

which models binding between multiple species. The resulting dCas9-guideRNA ComplexSpecies

is used as a repressor.

#Only one dCas9-guideRNA complex binds to the promoter at once

params = {

("negativehill_transcription", None, "n"):1

}

#Create guide RNA and dCas9 Species

guide = Species("guide", material_type = "rna")

dcas = Species("dCas9")

#These species will bind together by placing them in the ChemicalComplex Component

#the attribute "notdegradable" ensures that RNAases do not degrade guide RNAs bound to

dCas9.

repressor = ChemicalComplex([dcas, guide], attributes = ["notdegradable"])
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reporter = Species("reporter")

#Constuitive Assemblies to produce dCas9 and the guideNRA

assembly_dcas = DNAassembly(name = "dcas", promoter = "medium", rbs = "medium", protein

= dcas)

assembly_guide = DNAassembly(name = "guide", promoter = "strong", rbs = None, transcript

= guide)

#Create a repessible promoter

pReg = RepressiblePromoter(name = "pA", repressor = repressor, parameters = params)

assembly_rep = DNAassembly(name = "reporter", promoter = pReg, rbs = "strong",

initial_conc = 1, protein = reporter)

# Place the Components in a Mixture

extract = TxTlDilutionMixture("e coli", components = [assembly_rep, assembly_dcas,

assembly_guide, repressor], parameter_file = "params.txt")

#Compile the CRN

crn = extract.compile_crn()

6.5 Targeted RNAase Toggle Switch

The targeted RNAase toggle switch model is a hypothetic model similar to a normal toggle

switch but with regulation at the RNA level instead of the transcriptional level. This is ac-

complished by creating two constitutively expressed RNAases (which are ChemicalComplexes

made up of two subunits) and adding custom Mechanisms to the Mixture modeling the degra-

dation of any species with the attribute ”tagA” and ”tagB” by RNAase A and RNAase B,

respectively.

#Create an RNA species with degradation tag sequence tagB

TA = Species("A", attributes = ["tagB"], material_type = "rna")

#Create homodimer subunit A

A = Species("A", material_type = "protein")

#RNAase A is a homodimer made up of two identical subunits

rnaaseA = ChemicalComplex([A]*2)

#create a DNAassembly that produces A

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2020. ; https://doi.org/10.1101/2020.08.02.233478doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.02.233478


assemblyA = DNAassembly(name = "A", promoter = "strong", transcript = TA, rbs =

"medium", protein = A, initial_conc = 1)

#Same as above but for Species B

TB = Species("B", attributes = ["tagA"], material_type = "rna")

B = Species("B", material_type = "protein")

rnaaseB = ChemicalComplex([B]*2)

assemblyB = DNAassembly(name = "B", promoter = "strong", transcript = TB, rbs =

"medium", protein = B, initial_conc = 1)

#add all the Components to a Mixture

mixture = TxTlDilutionMixture("e coli", components = [assemblyA, assemblyB, rnaaseA,

rnaaseB], parameter_file = "default_parameters.txt")

#Create a Deg_Tagged_Degredation Mechanisms which tells rnaaseA to degrade any species

with attribute "tagA"

mixture.add_mechanism(Deg_Tagged_Degredation(mechanism_type = "tagA_degredation",

deg_tag = "tagA", protease = rnaaseA.get_species()))

create a Deg_Tagged_Degredation Mechanisms which tells rnaaseB to degrade any species

with attribute "tagB"

mixture.add_mechanism(Deg_Tagged_Degredation(mechanism_type = "tagB_degredation",

deg_tag = "tagB", protease = rnaaseB.get_species()))

#Compile the CRN

CRN = mixture.compile_crn()

6.6 Multiple Ribosome Occupancy Repressilator Dynamics

Simulating multiple-ribosome occupancy in the Repressilator mostly reuses the code from

Section 6.3 with the main addition of a new Mechanism to model transcription being placed

into the Mixture.

#Create Repressors

repA = Species("A")

repB = Species("B")
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repC = Species("C")

#Create Promoters

promA = RepressiblePromoter(name = "pA", repressor = repC)

promB = RepressiblePromoter(name = "pB", repressor = repA)

promC = RepressiblePromoter(name = "pC", repressor = repB)

#Create DNAassemblies

assemblyA = DNAassembly(name = "A", promoter = promA, rbs = "strong", protein = repA,

initial_conc = 1)

assemblyB = DNAassembly(name = "B", promoter = promB, rbs = "strong", protein = repB,

initial_conc = 1)

assemblyC = DNAassembly(name = "C", promoter = promC, rbs = "strong", protein = repC,

initial_conc = 1)

#Extra parameters for the Multi_tx Mechanism

extra_params = {"max_occ":10, ("multi_tx", None, "k_iso"):50, ("multi_tl", None,

"k_iso"):50, "cooperativity":2}

#Add Everything to a Mixture

mixture = TxTlDilutionMixture("e coli", components = [assemblyA, assemblyB, assemblyC],

parameter_file = "default_parameters.txt", parameters =

extra_params, overwrite_parameters = True)

#Add the multi_t translation mechanism to the mixture, overwriting the old one.

mixture.add_mechanism(multi_tl(name = "multi_tl", ribosome =

mixture.ribosome.get_species()), overwrite = True)

#Compile the CRN

crn = mixture.compile_crn()

7 Supplemental: Tables of Features

This section lists many of the different Mixture, Component and Mechanism classes available

in BioCRNpyler. For more details about these classes and examples using many of them,

check out the examples folder on Github.
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7.1 Mixtures

Mixture Name Description

ExpressionExtract A model for gene expression without machinery

such as ribosomes, polymerases, etc. Here

transcription and translation are lumped into one

reaction: expression.

SimpleTxTlExtract A model for transcription and translation in a

cell-free extract without machinery such as

ribosomes, polymerases, etc. RNA is degraded via

a global mechanism.

TxTlExtract A model for transcription and translation in a

cell-free extract with machinery for ribosomes,

polymerases, and endonucleases action. This

model does not include any energy buffer.

ExpressionDilutionMixture A model for in-vivo gene expression without any

machinery such as ribosomes, polymerases, etc.

Transcription and translation are lumped into one

reaction and a global mechanism is used to dilute

all non-DNA species.

SimpleTxTlDilutionMixture Mixture with continuous dilution for non-DNA

species. Transcription (TX) and Translation (TL)

are both modeled as catalytic with no cellular

machinery. mRNA is also degraded via a separate

reaction to represent endonucleases.

TxTlDilutionMixture Transcription and translation with ribosomes,

polymerases, and endonucleases labelled as cellular

machinery. Also includes a background load which

represents innate loading effects in the cell. Effects

of loading on cell growth are not modeled. It has

global dilution for non-DNA and non-machinery

species. This model does not include any energy.
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7.2 Components

Component Type Component Name Description

Promoter Promoter Constitutive σ70 promoter

Promoter RegulatedPromoter Repressible or activatable promoter such

as Ptet

Promoter ActivatablePromoter Activatable promoter using a positive Hill

function

Promoter RepressiblePromoter Repressible promoter using a negative Hill

function

Promoter CombinatorialPromoter Flexible promoter mechanism allowing

various transcription factor binding

configurations to allow or prevent

transcription

Ribosome Binding Site RBS Simple RBS using a translation

mechanism

Coding Sequence CDS Protein coding part used for DNA construct.

Doesn’t affect CRN

Terminator Terminator Transcriptional terminator used for

DNA construct. Doesn’t affect CRN

DNA DNA Basic component that represents a DNA

sequence

DNA DNAassembly A relatively simple DNA sequence

containing one promoter, RBS, and a

product

DNA DNA construct A more complex DNA sequence that can

have any number of Components in any

order

RNA RNA Basic component that represents an RNA

sequence

RNA RNA construct A more complex RNA sequence that can

have any number of Components in any

order. Usually automatically generated by

DNA construct

Protein Protein Basic component that represents a protein

Chemical Complex ChemicalComplex A complex that represents the

combination of several Species. Takes care

of binding and unbinding reactions

needed to form the complex

Enzyme Enzyme An enzyme that operates on a substrate

to produce a product

Enzyme MultiEnzyme An enzyme that operates on a list of

substrates to produce a list of products
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7.3 Mechanisms
Mechanisms Type Mechanism Name Description

binding Reversible Bimolecular Binding S1 + S2 ↼−−⇁ (S1 : S2)

cooperative binding One Step Cooperative Binding nS1 + S2 ↼−−⇁ (nS1 : S2)

cooperative binding Two Step Cooperative Binding nS1 ↼−−⇁ (nS1), (nS1) + S2 ↼−−⇁ (nS1 : S2)

cooperative binding Combinatorial Cooperative Binding Allows a set of species Si and

cooperativities ni to bind to a target T in

any order to form (n1S1 : ... : nkSk : T

along with all combinatorial

intermediaries.

binding One Step Binding S1 + S2...SN ↼−−⇁ S1 : S2 : ... : SN

catalysis BasicCatalysis S + C → P + C

catalysis BasicProduction C → P + C

catalysis MichaelisMenten Sub + Enz ↼−−⇁ Sub : Enz → Enz + Prod

catalysis MichaelisMentenReversible Sub + Enz ↼−−⇁ Sub : Enz ↼−−⇁ Enz :

Prod ↼−−⇁ Enz + Prod

copy MichaelisMentenCopy Sub + Enz ↼−−⇁ Sub : Enz →

Sub + Enz + Prod

transcription OneStepGeneExpression G→ G + P

transcription SimpleTranscription G→ G + T

translation SimpleTranslation T → T + P

transcription PositiveHillTranscription G→ [r]G + P r = kG(Rn)/(K + Rn)

transcription NegativeHillTranscription G→ [r]G + P r = kG/(K + Rn)

transcription Transcription MM G + RNAP ↼−−⇁ G : RNAP →

G + RNAP +mRNA

translation Translation MM mRNA + Rib ↼−−⇁ mRNA : Rib→

mRNA + Rib + Protein

transcription multi tx DNA : RNApn + RNAp ↼−−⇁ DNA :

RNApclosedn → DNA : RNApn+1DNA :

RNApn → DNA : RNAp0 + nRNAp +

nmRNADNA : RNApclosedn → DNA :

RNApclosed0 + nRNAp + nmRNA for

n = {0,maxocc}

translation multi tl mRNA : RBZn + RBZ ↼−−⇁ mRNA :

RBZclosed
n → mRNA :

RBZn+1mRNA : RBZn → mRNA :

RBZ0 + nRBZ + nProteinmRNA :

RBZclosed
n → mRNA :

RBZclosed
0 + nRBZ + nProtein for

n = {0,maxocc}

dilution Dilution s→ ∅

rna degredation mm Degredation mRNA MM T +Nuclease ↼−−⇁ T : Nuclease→

Nuclease. Global mechanism effects all

RNA species T . ComplexSpecies

containing RNA species are broken apart

via the reaction T : X +Nuclease ↼−−⇁ T :

X : Nuclease→ X +Nuclease. for any

X.

degredation Deg Tagged Degredation X + Protease ↼−−⇁ X : Protease→

Protease. Here X is any Species with the

deg tag attribute passed into the

constructor of this GlobalMechanism.
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