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Abstract 
 
Background: Genetic factors affecting multiple biomedical traits in mice have been identified 

when GWAS data, which measured responses in panels of inbred mouse strains, was analyzed 

using haplotype-based computational genetic mapping (HBCGM). Although this method was 

previously used to analyze one dataset at a time; but now, a vast amount of mouse phenotypic 

data is now publicly available, which could enable many more genetic discoveries.  

 

Results: HBCGM and a whole genome SNP map covering 43 inbred strains was used to 

analyze 8300 publicly available datasets of biomedical responses (1.52M individual datapoints) 

measured in panels of inbred mouse strains. As proof of concept, causative genetic factors 

affecting susceptibility for eye, metabolic and infectious diseases were identified when 

structured automated methods were used to analyze the output. One analysis identified a novel 

genetic effector mechanism; allelic differences within the mitochondrial targeting sequence 

affected the subcellular localization of a protein. We also found allelic differences within the 

mitochondrial targeting sequences of many murine and human proteins, and these could affect 

a wide range of biomedical phenotypes.  

 

Implications: These initial results indicate that genetic factors affecting biomedical responses 

could be identified through analysis of very large datasets, and they provide an early indication 

of how this type of ‘augmented intelligence’ can facilitate genetic discovery.  

 

 

 

 

 

 

 
Abbreviations: cSNP, codon-changing SNP; GWAS, genome-wide association study; 

HBCGM, haplotype-based computational genetic mapping; MTS, Mitochondrial 

targeting sequence. 
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Introduction 

 

Mouse is the premier model organism for biomedical discovery, and mice were used for the 

discovery or development of many therapies that are now in clinical use. However, similar to the 

difficulties encountered in analyzing human GWAS results [1], it has been difficult to identify the 

genetic factors underlying biomedical trait response differences in GWAS using inbred mouse 

strains.  Just as human subpopulations are descended from ancestral founders; inbred 

laboratory strains are derived from an estimated four ancestral founders [2, 3]. Because of their 

ancestral relatedness, GWAS results will identify a true causative variant along with multiple 

other false positive associations, which are caused by genomic regions with a correlated genetic 

pattern that is due to common inheritance (a property referred to as ‘population structure’). 

Statistical methods have been developed to reduce the false discovery rate by correcting for the 

population structure that exists in humans [4, 5], plants [6], and mice [7]. While these correction 

methods have utility for analysis of human GWAS results, we have shown that they are less 

useful for analyzing murine GWAS results, and they also increase the chance that a true 

causative genetic factor will be discarded 
*
. In brief, even though multiple genomic regions have 

a shared ancestral inheritance, one may be responsible for a phenotypic difference. 

 

Haplotype-based computational genetic mapping (HBCGM) [8] is a method for analyzing mouse 

GWAS data, which has identified genetic factors underlying 22 biomedical traits in mice [8-30]. 

One finding generated a new treatment for preventing narcotic drug withdrawal [22] that is now 

being tested in a multi-center clinical trial [31]. In an HBCGM experiment, a property of interest 

is measured in available mouse strains whose genomes have been sequenced; and genetic 

factors are computationally predicted by identifying genomic regions (haplotype blocks) where 

the pattern of within-block genetic variation correlates with the distribution of phenotypic 

responses among the strains [9, 32, 33]. A next-generation version of HBCGM with a 30,000-

fold improvement in computational efficiency was developed, and whole genome sequence data 

for 26 strains was analyzed to produce a whole genome map with 16M SNPs [14]. HBCGM was 

previously used to analyze the response data or one trait at a time. But now, a vastly increased 

amount of phenotypic data for inbred mouse strains has become available. The Mouse 

Phenome Database (MPD) [34] has 8300 phenotypic datasets (1.52M individual datapoints) that 

measure experimentally-induced responses in panels of inbred mouse strains. They have been 

shown to be useful for genetic discovery since a genetic susceptibility factor for haloperidol-

induced toxicity was identified by analysis of one MPD dataset [14]. Many more genetic 
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discoveries could be made if all 8300 of the MPD datasets could be analyzed. However, 

HBCGM analyses generate many false positive associations that appear along with the 

causative genomic region for the trait response difference in the list of correlated genes. This 

creates a significant hurdle that limits our ability to genetically analyze the information contained 

within a large database like the MPD. For example, if 50 correlated genomic regions were 

identified for each of the 8300 MPD datasets (i.e. 415K possible genetic leads), the output could 

not be carefully examined by a team of dedicated individuals (or even by a University’s entire 

staff of scientists). This problem is compounded by the fact that the HBCGM program maintains 

a relatively low threshold for identification of correlated genetic regions to avoid false negatives. 

To overcome this problem, selection methods are used to identify the true causative factor from 

among the multiple correlated regions. Causative genetic candidates were selected from among 

the many genes with correlated allelic patterns by applying orthogonal criteria [9, 35], which 

include gene expression, metabolomic [21], or curated biologic data [36], or by examining 

candidates within previously identified genomic regions [23, 24]. This approach evaluates 

genetic candidates using multiple criteria; this can provide superior results to that of a typical 

GWAS that only uses a single highly stringent criterion to identify candidates. In order to more 

efficiently identify likely candidate genes, the logical paths that were used to select the 

previously identified genetic factors were used to develop structured computational methods for 

analyzing HBCGM output. We demonstrate the utility of this approach by identifying several 

murine genetic factors that were known to affect important biomedical phenotypes. This 

approach is then used to identify a novel genetic effector mechanism that alters the expression 

and subcellular localization of the encoded protein. We also find that this novel genetic effector 

mechanism could affect many mouse and human genes.  

 

*Wang, M. and G. Peltz. The Effect of Population Structure on Murine Genome-Wide 
Association Studies Manuscript submitted. Supplied as a supporting manuscript. 
  

Results 

 

Bulk analysis of MPD datasets. Whole genome sequencing data was used to generate a 

database with 21.3M SNPs with alleles covering 43 inbred mouse strains (Table S1). The fold 

genome coverage averages 30x per strain (range 19x to 64x based upon a 3 Gb genome); 

which is similar to that of other recent studies [37, 38]. The high fold-genome coverage and the 

use of stringent tiered methods used for variant calling [14] ensured that variants were identified 

with high confidence.  
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Each of the 8,300 MPD datasets is categorized according to the type of biomedical trait 

response measured [34]. As examples, 472 datasets relate to body weight or body fat 

composition; 255 measure an immune system response; 96 relate to drug metabolism; and 233 

datasets measure a neurologic response. In some cases, multiple datasets measure the same 

response at different times after a treatment (i.e. haloperidol toxicity [14]). Irrespective of their 

grouping, we identified 1363 MPD datasets that measured a response in 12 or more strains and 

had inter-strain differences that were likely to be heritable (ANOVA p value <1x10-5). We found 

that the selected 1363 MPD datasets had an average of 24 inbred strains that were in our 

database. After these were bulk analyzed by HBCGM, 560 datasets had at least one gene with 

a genetic association p value <1x10-5. The HBCGM output for all of these datasets is available-

in a clickable format that is indexed relative to the MPD information-at http://peltz-app-

02.stanford.edu/cgi-bin/haplomap/supplementary.html. Given this large number of datasets, we do 

not know how many of these results correctly identify causative genetic factors. However, we 

present the results from several analyses; and show how application of additional computational 

analysis methods enabled causative genetic factors to be identified.  

 

Applying structured computational methods. One MPD data set (MPD:1501) characterized 

the susceptibility of bone marrow macrophages obtained from female mice of 23 inbred strains 

to the Bacillus anthracis lethal factor [39]. This toxin killed macrophages obtained from twelve 

strains, while macrophages from 11 other strains were resistant to the toxin. HBCGM analysis 

indicated the allelic pattern that was most highly correlated with susceptibility to this toxin was 

within the pyrin domain of the NACHT, LRR and PYD domains containing protein 1b (Nlrp1b) 

(Fig 1). The susceptible and resistant strains had distinct Nlrp1b haplotypes. Of note, all of the 

most highly correlated genes were located in the same region of mouse chromosome 11; and 

the second most highly correlated gene was an adjacent functional homologue (Nlrp1a) of 

Nalp1b. Nlrp1b has been shown to play a crucial role in the formation of a subset of 

inflammasomes, which is an important part of the response to pathogenic infections [40, 41]; 

and allelic variation in Nlrp1b was previously shown to regulate macrophage [39] and neutrophil-

dependent responses [42] to anthrax infection among inbred strains. 

 

The anthrax toxin response was binary (death or survival), it was measured in a large number of 

strains, and the different types of response was evenly distributed among the 23 strains 

analyzed. However, the responses in many MPD datasets were characterized in a smaller 
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number of strains, and the different response types of were unevenly distributed among the 

strains. Because of this, HBCGM analysis of most MPD datasets identified a much larger 

number of genes with haplotypic patterns that were highly correlated with the phenotypic 

response pattern; and structured computational methods for filtering the output were needed to 

identify the true causative genetic factor. For the cases described here, automated methods 

were used to identify correlated genes that: (i) were expressed within the target organ for the 

trait; (ii) contained a codon-changing SNP (cSNP); and (iii) a search of the biomedical literature 

indicated that the gene was related to the phenotype. For example, one MPD data set (MPD: 

26721) examined the retinas of 29 strains: 21 strains had normal retinas, and 8 strains had 

retinal degeneration (Fig. 2). Thirty-three genes had haplotype blocks with a perfect genotype-

phenotype correlation: all strains with normal retinas had one haplotype, while those with retinal 

degeneration shared a second haplotype. The  computational filtering process rapidly reduced 

the number of candidates to four genes, which were all located within a single chromosomal 

region. Of these four genes, only one gene had a SNP allele with a stop codon, and the 

published literature analysis indicated that it was associated with vision. Phosphodiesterase 6b 

(Pde6b) encodes a phosphohydrolase that plays key role in transducing light mediated retinal 

signals [43]. A SNP with a stop codon (Tyr347X) was located within a protein domain (GAF) that 

occurs in cGMP-regulated phosphodiesterases that is responsible for high affinity, non-catalytic 

binding of two cGMP molecules/holoenzyme. All eight strains with retinal degeneration had the 

stop codon, while the 29 strains with normal retinas had the Tyr347 allele (Fig. 2). Although we 

did not know it when this analysis was performed, a form of retinal degeneration that occurred in 

some inbred mouse strains was first described 93 years ago [44]; and the causative mutation 

(retinal degeneration 1, rd1) was subsequently localized to this Pde6b SNP [45]. Although a 

previously known genetic factor was identified, this result demonstrates these structured 

computational analysis methods have utility for genetic discovery. 

 

Another data set (MPD: 9904) measured plasma high-density lipoprotein (HDL) cholesterol 

levels in female mice of 30 different inbred strains on a high-fat diet for 17 weeks [46]. There 

was a large inter-strain variation in HDL cholesterol levels  (range 40 to 125 mg/dL) (Fig. 3), 

which was highly heritable (ANOVA p value = 3 x 10-72). Since this was a quantitative trait, many 

genes had haplotypic patterns that correlated with the HDL levels. Therefore, automated 

methods were used to evaluate the top 50 gene candidates identified by the HBCGM analysis to 

identify genes that were: (i) expressed in liver, and (ii) contained a codon-changing SNP. 

Application of these criteria reduced the number of candidates to three genes (Tomm40l, Nr1i3 
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and Apoa2), which were all located within a single genomic region (Chr 1, 171 MB), and a 

literature search indicated that only one was related to cholesterol metabolism. Apoa2 encodes 

apolipoprotein (Apo-) A-II, which is the second most abundant protein within HDL particles, and 

it is involved in the lipoprotein metabolism pathway. Apoa2 alleles were previously shown to 

affect HDL size and composition in mice [47]; and HDL levels in Apoa2 knockout mice were 

decreased by 70% [48].  ApoA-II also plays an important role in cholesterol efflux; it modulates 

the interaction of HDL with lipid transfer proteins and enzymes [49].  Although the roles of the 

Pde6b in retinal degeneration, ApoA-II in HDL metabolism, and of Nrlp1b in the anthrax toxin 

response were previously known, these results demonstrate that genetic factors underlying 

important biomedical traits can be identified by HBCGM analysis of a large number of 

phenotypic datasets. However, candidate gene filtering methods were required for successful 

analysis of these traits, and these structured methods enabled the analyses to be much more 

rapidly completed. An example of a potential novel genetic finding for another retinal trait is 

described in the supplement (Fig. S1). 

 

A novel genetic effector mechanism for a metabolic phenotype. Another dataset (MPD: 

50243) measured hepatic succinylcarnitine levels in 16-week-old male mice after a 16-hour fast 

[50]. The levels were highly variable and were highly heritable (ANOVA p value = 1x10-18) 

across the 24 strains. Two (FVB, SJL) of the 24 strains had a very high hepatic level of this 

metabolite (Fig. 4).  Our own analysis confirmed that SJL mice had dramatically increased 

hepatic succinylcarnitine levels (Fig. S2). HBCGM analysis identified 152 genes whose allelic 

pattern correlated with the hepatic succinylcarnitine level (i.e. the FVB and SJL haplotype  

differed from the 22 other strains). However, only 3 of these genes were expressed in liver and 

had a codon changing SNP; and a literature search revealed that only one was linked with 

succinylcarnitine metabolism. Lactb encodes a serine beta-lactamase-like protein that forms 

filaments that localize to the region between the inner and outer mitochondrial membranes, and 

it has been proposed that Lactb filaments could affect mitochondrial organization and 

mitochondrial metabolism [51]. Moreover, analysis of two large population-based European 

cohorts revealed that human LACTB alleles were associated with plasma succinylcarnitine 

levels (rs2652822, p=7x10-27) [52], and the level of Lactb mRNA expression positively correlates 

with body mass index (p�=�1.19�×�10−8) [53].  Expression of a Lactb transgene also was 

shown to affect fat mass in mice [54, 55]. 

 

Examination of the allelic pattern shared by the two strains (FVB, SJL) with elevated hepatic 
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succinylcarnitine levels suggested a potential genetic effector mechanism (Fig S3). Nuclear 

DNA encodes all except 13 of the ~1158 proteins required for the assembly and function of 

mitochondria [56-58]. These proteins are synthesized in the cytoplasm and are then transported 

into the mitochondria. Although there are various targeting mechanisms [59], most have NH2-

terminal mitochondrial targeting sequences (MTS) that are enriched in hydrophobic and 

positively charged amino acids. Comparative analyses of yeast, mouse and human MTS have 

indicated that their length, sequence and net charge (between +3 and +6) are highly conserved 

[60]. The sequence conservation is due to the fact that the MTS must: form amphiphilic α-

helices; interact with subunits of a mitochondrial surface protein for mitochondrial import; and 

must then be removed from the mature protein by a cleavage reaction that is performed by a 

very limited set of proteases [59, 61-65]. FVB and SJ/L mice share unique alleles at five SNP 

sites: Arg110Gly and Pro88Leu are within the NH2-terminal MTS; while three SNPs (Val217Ala, 

Ala266Thr and Ser237Pro) are within the sequence of the mature Lactb protein. Since two 

SNPs (Pro88Leu, Arg110Gly) introduce significant amino acid changes within the MTS (Fig. 5), 

the mitochondrial localization of Lactb could be altered in FVB and SJL mice. To investigate 

this, cDNAs encoding the C57BL/6 and FVB allelic forms of Lactb were expressed as EGFP 

fusion proteins in 293T cells (Fig. 6A). The C57BL/6 Lactb-EGFP fusion protein was highly 

expressed; it had a punctate expression pattern that overlapped with cellular mitochondria; and 

it differed from that of a control (EGFP only) protein that was expressed throughout the 

cytoplasm. In contrast, the FVB Lactb-EGFP fusion protein was expressed at a much lower 

level than the C57BL/6 protein (Fig. 6B). Importantly, the mRNAs for the two allelic forms of 

these fusion proteins were expressed at the same level after transfection (Fig 6C). Since these 

cDNAs were transcribed at similar rates, the protein expression differences must result from an 

allelic effect on a post-transcriptional process. To more precisely determine the basis for this 

allelic effect, FVB alleles at two positions (88Leu, 110Gly) within the MTS were engineered into 

the C57BL/6 Lactb cDNA by site directed mutagenesis (Fig. 6A). Interestingly, the C57BL/688L 

110Gly Lactb-EGFP fusion protein was expressed at a reduced level, which was similar to that of 

the FVB allelic form (Fig. 6C). Similar differences in protein expression were also noted when 

the different allelic forms of the fusion proteins were expressed in HepG2 cells (Fig. S4). These 

results indicate that while the C57BL/6 protein was efficiently expressed and transported into 

mitochondria, FVB alleles at two sites within its MTS dramatically reduced its expression level 

within mitochondria. 
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SNPs are present in the MTS of many murine and human proteins. To determine if allelic 

variation within the MTS could affect other nuclear-encoded mitochondrial proteins, we used our 

mouse SNP database to investigate whether MTS SNPs were present in any of the 524 genes 

that were annotated as nuclear encoded mitochondrial proteins [66]. We found 188 SNPs within 

the MTS of 120 of these murine genes; and 109 SNP alleles caused a major amino acid change 

in the predicted MTS of 79 genes (blosum-62 matrix score <-1) (Table S2). We then examined 

the NCBI SNP database to determine whether SNP alleles altered the MTS in 544 annotated 

human proteins [67], and found 161 codon-changing SNPs within the MTS of 83 of these 

proteins. It is noteworthy that 78 of these genes have other mutations that are located outside of 

the MTS, which cause human genetic diseases with very severe phenotypic effects (Table S3). 

Also, 8 genes have SNP alleles within their MTS that introduce a stop codon, and 12 genes 

have a SNP allele affecting the initiator methionine (Table 1). Moreover, allelic changes in 55 of 

these disease-associated proteins are predicted to have a major effect on the MTS sequence 

(blossom-62 matrix score < -1). For example, there are 13 SNPs within the 33 amino acid MTS 

of a thymidine kinase 2 (TK2) (Table S3). Genetic mutations that inactivate TK2 cause 

mitochondrial DNA depletion, which presents in early childhood with a progressive myopathy or 

encephalopathy [68-71].  As another example, there were four cSNPs within the 53 amino acid 

MTS of Pyruvate Dehydrogenase Complex Component X (PDHX) (Table S3), which encodes 

the E3 ubiquitin ligase binding protein of the pyruvate dehydrogenase complex that catalyzes 

the rate-limiting step in aerobic glucose oxidation. A genetic deficiency of PDHX produces a life-

threatening condition that causes developmental retardation [72]. Interestingly, the Arg23Cys 

and Arg24Gly SNP alleles have a major effect on the charge (the minor alleles reduce the 

charge from +6.1 to +4.0) and isoelectric point (from pH 12.6 to pH 10.74) of the PDHX MTS.  

Hence, there are multiple examples of allelic effects that are likely to impact the mitochondrial 

localization, and possibly the function, of human proteins that are of importance for cellular and 

tissue function.  

 

Discussion   

 

We demonstrate how computational analysis of a large biomedical response database could 

accelerate the pace of genetic discovery. Our ability to analyze this large phenotypic database 

is dependent upon two factors: (i) an increased number of inbred strains whose genome has 

been sequenced; and (ii) the use of automated methods for analyzing HBCGM output. Why is 

the breadth of strain coverage important?  The database analyses responses across many 
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strains, and this differs from prior mouse genetic analysis methods. For many years, mouse 

genetic models were analyzed by characterizing intercross progeny generated from two 

parental strains. This required a large amount of time for the generation and analysis of 

intercross progeny, and causative genetic factors could not be precisely localized [73]. To 

improve genetic mapping precision [74, 75], investigators have produced large panels of 

recombinant inbred strains (i.e. increased depth), but the progeny are generated from only 6-8 

founder strains [76][77]. While the increased depth can improve genetic mapping precision, its 

utility is limited by the lack of strain breadth. When a small number of strains are evaluated, the 

actual extent of phenotypic variation that is present in the mouse population is under-estimated 

[9, 33]. This is a critical, since a key factor for successful genetic discovery is analyzing strains 

that exhibit outlier responses. For example, the MTS allelic effect on mitochondrial metabolism 

could not have been uncovered using any of the available recombinant inbred strain panels [76, 

77] since the two strains (SJL, FVB) with high hepatic succinylcarnitine levels were not among 

the founder strains used to generate the panel. In fact, our initial analysis of the 8300 MPD 

datasets indicated that inbred strains exhibiting outlier responses (i.e. those in the top or bottom 

10%) were often not found among the 23 strains previously in our SNP database [14]. The 

number of evaluable datasets increased when the genome sequence of 43 strains became 

available. Each inbred strain has unique genetic variants, and possibly phenotypic responses, 

which could enable genetic discovery. Our projections [9] indicate that over  ~100,000 new 

SNPs per strain will be found even after the genomes of 40 strains are sequenced. As the 

emphasis in 21st Century healthcare shifts from disease treatment to disease prevention [78], 

new murine genetic models will be needed for the new phenotypes that will be of interest 10 or 

more years from now. Since we cannot predict which strains will have outlier responses for 

phenotypes of future interest, obtaining the genomic sequence for an increasing number of the 

>450 available inbred strains [79] is of great importance for 21st Century genetic discovery. 

 

Why are automated and structured methods needed for GWAS data analysis?  Filtering 

methods are required for selecting a true causative factor from among the many genomic 

regions that correlate with a phenotypic response pattern. On multiple prior occasions [35], we 

have found that causative genetic factors could be identified when other types of data were 

used to filter the gene candidates output by HBCGM analysis [12, 21, 23, 24, 36]. Since those 

analyses were manually performed, and they examined one dataset at a time, this filtering 

process is far too cumbersome for analyzing the 8300 available MPD datasets. Therefore, to 

select the most likely gene candidates among those output by HBCGM analysis, we developed 
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selection criteria that could be automated. In these initial studies, we utilize gene expression 

criteria, select candidate genes with cSNPs; and use available information in published literature 

to identify the most likely causative gene(s) output by the genetic mapping program. This 

resembles methods developed by others that use: transcriptome wide association results [80, 

81] or functional information [82-84] to select causative loci from among the many SNP sites 

identified in a human GWAS; or those that identify SNPs near a priori identified trait-related 

gene candidates in plant GWAS analyses [85]. The automated analysis of 152 correlated genes 

in the HBCGM output for the hepatic succinylcarnitine data led to the identification of four likely 

candidate genes, which was quickly narrowed to one obvious candidate by the literature search. 

While the criteria used in our initial studies select for cSNPs, a recent analysis of developmental 

disorders [86] indicated that allelic variation within non-coding regions could impact many other 

traits. We anticipate that filtering process improvements will enable other types of SNPs to be 

identified. Improved methods for analyzing the impact of allelic changes in non-coding 

sequences [88] could subsequently be used. A method for automated identification of genetic 

factors underlying metabolomic differences [87] could enable metabolomic data to be 

incorporated into the analyses. Our rudimentary literature searches could be improved by using 

a deep neural network [89], which has already been used to identify mutations that cause rare 

diseases in human populations. Implementation of these methods could enable ‘augmented 

intelligence’ further improve genetic discovery capabilities. This could enable the computational 

power and the large number of available phenotypic datasets to be used to advance our 

understanding of how biomedical traits are genetically regulated.  

 

These computational methods identified a novel genetic effector mechanism: allelic changes 

within the MTS of murine Lactb alter its expression and mitochondrial localization. Moreover, 

this genetic effector mechanism could be active in other murine and human nuclear encoded 

mitochondrial proteins, which suggests that it could be of broad importance for disease 

susceptibility. In addition to the many known genetic diseases that are associated with nuclear 

encoded mitochondrial proteins [90], mitochondrial dysfunction is fundamental to many 

commonly occurring disease [92, 93] and age-associated conditions [57], with AIDs progression 

[94], and with cancer susceptibility [91]. In one case, glutathione peroxidase 1 (Pro198Leu) 

alleles were shown to differentially affect its relative expression level in mitochondria, and 

altered the cellular response to oxidative stress [95]. Detailed studies in mice [96] and fish [97] 

have demonstrated that polymorphisms within the mitochondrial and nuclear genomes interact, 

and these interactions affect physiologically important processes. However, little was known 
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about the effect of MTS polymorphisms on phenotypic responses and/or disease susceptibility. 

Of particular importance, MTS SNPs are present in many human proteins, including those 

where mutations outside of their MTS have caused very genetic diseases with a very severe 

impact. Since mutations within these genes have such significant health consequences, it is 

likely that at least some of the MTS allelic changes will impact other biomedical traits and 

possibly disease susceptibility.  

 

Conclusions: Implementation of the computational analysis methods described here could 

enable augmented intelligence to be used for genetic discovery. This could enable the 

computational power and the large number of phenotypic datasets that are now available to be 

used to advance our understanding of how biomedical traits are genetically regulated.  

 

Methods are available in the online supplement. 

 

Data availability: The data sets within the Mouse Phenome Database (MPD) that were analyzed 

in this study are available at (https://phenome.jax.org). All sequence data is available at  

http://www.ncbi.nlm.nih.gov/bioproject/593371 (Bioproject ID: PRJNA593371). The HBCGM 

output for all of these datasets is available-in a clickable format that is indexed relative to the 

MPD information-at http://peltz-app-02.stanford.edu/cgi-bin/haplomap/supplementary.html. The 

source code for candidate gene filtering is available at 

http://github.com/AhmedArslan/HbCGM_paper, and that used for the functional characterization 

of genes is available at [98].  
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Table 1. We used the NCBI human SNP database to identify SNP alleles that altered the MTS 
of the 544 genes that encoded human proteins that were annotated as having a MTS. We found 
human SNP alleles that introduced a premature termination codon (PTC) within the MTS of 
eight of these genes (A), and human SNPs that altered the initiator methionine for 12 genes (B). 
This table shows the gene symbol, the predicted length of the amino-terminal MTS, the position 
of the altered amino acid within the MTS, and the identity of the reference and variant amino 
acid for each SNP. These human SNPs are of interest because they are located within genes 
that have one or more other mutations, which are located outside of the MTS, that have been 
shown to cause a human genetic disease. The name of the disease caused by other SNPs 
(outside of the MTS) within each indicated gene (obtained from the Mendelian Inheritance in 
Man database) is shown. While the MTS SNPs are not disease associated, they could be of 
interest. For example, seven of the 8 genes, which have a SNP that introduces a PTC allele in 
their MTS are associated with metabolic changes that cause severe diseases. Thus, an 
individual that expresses a truncated form of any of the proteins encoded by these genes could 
have a metabolic abnormality. Similarly, a polymorphism affecting the initiator methionine of any 
of the 12 genes shown could have an impact on several phenotypes. 
 
A 

 
B 

 

Symbol Length SNP-location Ref Variant Disease 

ACADVL 40 22 S X 
Acyl-CoA dehydrogenase very long-chain deficiency 

(ACADVLD) 

COQ6 28 14 W X Coenzyme Q10 deficiency, primary, 6 (COQ10D6) 

FH 44 3 R X Fumarase deficiency (FMRD) 

GDF5OS 48 20 Q X Cerebral creatine deficiency syndrome 3 (CCDS3) 

MUT 32 7 Q X Methylmalonic aciduria type mut (MMAM) 

PCK2 32 23 S X 
Mitochondrial phosphoenolpyruvate carboxykinase deficien

(M-PEPCKD) 

SDHB 28 27 R X Pheochromocytoma (PCC) 

TTC19 70 65 W X Mitochondrial complex III deficiency, nuclear 2 (MC3DN2)

 

Symbol Length SNP-location Ref Variant Disease 

ACAT1 33 1 M K 3-ketothiolase deficiency (3KTD) 

CYP11B1 24 1 M I Adrenal hyperplasia 4 (AH4) 

ETFDH 33 1 M T Ethylmalonic encephalopathy (EE) 

ETHE1 7 1 M I Ethylmalonic encephalopathy (EE) 

FXN 41 1 M I Friedreich ataxia (FRDA) 

GLDC 35 1 M T Non-ketotic hyperglycinemia (NKH) 

NFU1 9 1 M K Multiple mitochondrial dysfunctions syndrome 1 (MMDS1

OAT 35 1 M I 
Hyperornithinemia with gyrate atrophy of choroid and 

retina (HOGA) 

OTC 32 1 M V Ornithine carbamoyltransferase deficiency (OTCD) 

PANK2 46 1 M T Neurodegeneration with brain iron accumulation 1 (NBIA

SDHA 42 1 M L Mitochondrial complex II deficiency (MT-C2D) 

SDHD 56 1 M I Paragangliomas 1 (PGL1) 
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Figure 1. Top: The susceptibility of inbred strains to the lethal factor produced by Bacillus 

anthracis. Macrophages isolated from each indicated strain were incubated lethal toxin, and 

their survival was measured as described [39]. Strains with a “blue bar” (100% survival) are 

resistant to the toxin, while strains without a bar (100% lethality) were susceptible. Bottom: 

HBCGM analysis identifies the genes whose allelic patterns were most highly correlated with 

toxin susceptibility. The four co-linear genes with haplotype blocks that correlated with the 

phenotypic response pattern are indicated by their symbol; and an orange, white, or blue 

background indicates whether a SNP causes or does not cause an amino acid change, or if it 

affects a splice site, respectively. The haplotypic pattern is shown as colored rectangles that are 

arranged in the same order as the input data (shown in the top graph). Strains with the same 

colored rectangle have the same haplotype within the haplotype block within the indicated gene. 

The p-values and genetic effect size were calculated as previously described [32]. 
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Figure 2. Top: The incidence of retinal degeneration in 29 inbred strains. Eight strains had 

significant retinal degeneration in all male and female mice (blue bars) examined, while 21 

strains (indicated by the absence of a bar) had normal retinas. A bar with a value of 1 indicates 

all mice of that strain had retinal degeneration. Middle: HBCGM identified 33 genes with 

haplotype blocks whose allelic pattern was perfectly correlated with the retinal phenotype. 

However, only the four genes expressed in the retina are shown here. The genes within the 

correlated haplotype blocks are indicated by their symbol; and an orange, or white background 

indicates whether a SNP caused a significant or no amino acid change, respectively. The 

haplotypic pattern is shown as colored rectangles that are arranged in the same order as the 

input data shown above. Strains with the same colored rectangle have the same haplotype 

within the block. The p-values and genetic effect size were calculated as previously described 

[32]. Bottom: The domain structure of the Pde6b protein, and the location of its two GAF and 

the esterase domains are shown. The relative position of a SNP allele with a stop codon within 

the 2nd GAF domain is indicated. The 8 strains with retinal degeneration all had the stop codon 

at position 347, while the 21 strains with normal retinas had the Tyr347 allele.  
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Figure 3. Top: Plasma HDL levels were measured in female mice of 30 inbred strains 

maintained on a high-fat diet for 17 weeks. Each bar is the average of the plasma HDL + SEM 

(mg/ml) measured in female mice (n=5-14 mice per group) of the indicated strain. Bottom: The 

HBCGM program identified the ten genes whose allelic pattern was most highly correlated with 

plasma HDL levels. The genes within the correlated haplotype blocks are indicated by their 

symbol; and an orange or white background indicates whether SNPs cause a significant or no 

amino acid change, respectively. The haplotypic pattern is shown as colored rectangles that are 

arranged in the same order as the input data (shown in the graph above). Strains with the same 

colored rectangle have the same haplotype within the block. The p-values and genetic effect 

size were calculated as previously described [32]. Of note, since the calculated genetic effect 

size for the Apoa2 alleles was 0.55, other genetic factors could also affect the plasma HDL 

levels in murine strains. 
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Figure 4. Top: Hepatic succinylcarnitine levels were measured in 16-week-old male mice after 

a 16-hour fast in 24 inbred strains. Each bar is the average succinylcarnitine level + SEM 

(shown as the abundance determined by mass spectroscopy) for each strain. Bottom: HBCGM 

analysis identified 152 genes whose allelic patterns were highly correlated with the 

succinylcarnitine level. However, only 3 of these genes (colored gene symbol background) were 

expressed in the liver and had a SNP causing change in the predicted amino acid sequence.  

The genes within correlated haplotype blocks are indicated by their symbol: an orange, white, or 

blue background indicates whether a SNP does or does not cause an amino acid change, or if it 

affects a splice site, respectively, is present. The haplotypic pattern is shown as colored 

rectangles that are arranged in the same order as the input data. Strains with the same colored 

rectangle have the same haplotype within the block. The p-values and genetic effect size were 

calculated as previously described [32]. 
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Figure 5. Top: Lactb protein domains and the sites of the SNP alleles. The green region is the 

113- amino acid mitochondrial targeting sequence (MTS), and the grey region is the mature 

protein with the Lactb domain. The box below shows the position of two murine SNPs 

(Pro88Leu and Arg110Gly) within the MTS where the two strains with high succinylcarnitine 

levels (SJL, FVB) share unique alleles that are not present in other strains. The box above 

shows the position of three SNPs (Ser247Pro, Ala266Thr, Val217Ala) within the mature Lactb 

protein where the two strains (SJL, FVB) with high succinylcarnitine levels share unique alleles 

(247Pro, Thr266, Ala271).  Bottom: A protein structural model of the Lactb protein was 

produced using I-TASSER [99]. The green region is the NH2-terminal MTS, and the gray region 

shows the structure of the mature protein. The positions of the two SNP sites within the MTS 

are shown in red. 
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Figure 6. (A) Diagram of murine Lactb-EGFP fusion proteins. The control vector expresses an 

EGFP cDNA from a CMV promoter. The Lactb-EGFP fusion proteins were prepared from: (i) 

C57BL/6 or (ii) FBV Lactb mRNAs; or from a (iii) C57BL/6 Lactb mRNA with FVB alleles 

engineered at two positions (88L, 110G) within its MTS. (B) Confocal images obtained 24 hours 

after 293T cells were transfected with the plasmids shown in (A) indicate the different levels of 

expression and sub-cellular localization of the fusion proteins. For each construct, low 

magnification images are shown in the upper row (scale bar 50 um), and higher magnification 

images of a region within the upper panel (single cell level) are shown in the lower row (scale 

bar 5 um). Mitochondria are stained red, and the green color indicates the Lactb fusion protein 
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expression.  In contrast to the diffuse cytoplasmic expression pattern of the control EGFP 

protein, the C57BL/6 Lactb-EGFP fusion protein is expressed at a high level in a punctate 

pattern that overlapped with mitochondria. The FVB Lactb-EGFP protein was also expressed in 

a punctate pattern, but at a much lower level than the C57BL/6 Lactb-EGFP fusion protein. 

Also, the level and pattern of expression of the C57BL/6 88L 110G Lactb fusion protein resembled 

that of the FVB Lactb-EGFP fusion protein. This result is representative of 3 independently 

performed experiments. (C) RT-PCR measurement of the level of Lactb-EGFP mRNA 

expression in 293T cells 24 hrs after transfection with the plasmids shown in (A). Each bar is the 

average + SE of 3 independent measurements. Despite the difference in the level of protein 

expression, there was no significant difference between the level of C57BL/6 and FVB Lactb-

EGFP mRNA expression (p=0.22). 
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