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Abstract 
 

 
The Dual Mechanisms of Cognitive Control (DMCC) project provides an ambitious and rigorous 

empirical test of a theoretical framework that posits two key cognitive control modes: proactive 

and reactive. The framework’s central tenets are that proactive and reactive control reflect domain-

general dimensions of individual variation, with distinctive neural signatures, involving lateral 

prefrontal cortex (PFC) in interactions with other brain networks and circuits (e.g., frontoparietal, 

cingulo-opercular).  In the DMCC project, each participant is scanned while performing 

theoretically-targeted variants of multiple well-established cognitive control tasks (Stroop, Cued 

Task-Switching, AX-CPT, Sternberg Working Memory) in three separate imaging sessions, that 

each encourage utilization of different control modes, plus also completes an extensive out-of-

scanner individual differences battery.  Additional key features of the project include a high spatio-

temporal resolution (multiband) acquisition protocol, and a sample that includes a substantial 

subset of monozygotic twin pairs and participants recruited from the Human Connectome Project. 

Although data collection is still continuing (target N=200), we provide an overview of the study 

design and protocol, planned analytic approaches and methodological development, along with 

initial results (N=80) revealing novel evidence of a domain-general neural signature of reactive 

control.  In the interests of scientific community building, the dataset will be made public at project 

completion, so it can serve as a valuable resource. 
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Introduction  
 

 

The DMCC project is a large-scale longitudinal study that provides a systematic test of the 

Dual Mechanisms of Control (DMC) framework, a theoretical account of both inter- and intra-

individual variability in cognitive control mechanisms (Braver, 2012; Braver et al., 2007). The 

study has multiple components, which assess brain activity and behavioral performance via a 

newly developed task battery.  This battery is designed to probe the two main control modes 

postulated in the framework, proactive and reactive, in terms of both experimental manipulations 

and individual differences.   The sample size target of the DMCC project is to acquire data from 

200 healthy young adults.  It is worth noting that although there have now been a number of larger-

scope neuroimaging projects that share some similarity with the DMCC (e.g., HCP, ABCD, Cam-

Can, IMAGEN, PNC, UK Biobank; Casey et al., 2018; Essen et al., 2013; Miller et al., 2016; 

Satterthwaite et al., 2014; Schumann et al., 2010; Shafto et al., 2014), this project is somewhat 

unique in that was designed to test a specific theoretical framework, and with sufficient sample 

size for not only robust and reliable estimation of group effects, but also to provide sensitivity to 

individual differences effects, though subject to the constraints of what is financially and 

logistically feasible within a single-lab, single-PI effort.   Likewise, the sample also has unique 

features, consisting of two informative participant subsets: 1) identical (monozygotic) twin-pairs, 

enabling phenotypic analyses of genetic and/or environmental similarity effects; and 2) 

participants recruited from the Human Connectome Project (HCP), enabling integration of DMCC 

data with prior HCP data.   

 

Funded by a NIMH MERIT award, primary data collection in the DMCC project began in 

late 2016.  As of 2020, the project is still on-going (thanks to a second round of NIMH funding), 

with data collection expected to continue until 2023.  Each participant takes part in at least one 

wave of testing that an extensive out-of-scanner behavioral session and three fMRI neuroimaging 

sessions. In the neuroimaging sessions, high-resolution anatomical, resting state fMRI, and task 

fMRI data are collected.  In total, a minimum of 300 minutes (5 hours) task-fMRI and 30 minutes 

of resting-state fMRI are collected for each participant. The out-of-scanner assessments include 
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over 25 measures of cognitive ability and personality traits, as well as psychological and 

physiological indices of health and well-being. In each fMRI session, participants perform the full 

DMCC task battery, in one of three conditions, baseline, proactive and reactive, with these 

conditions describing distinct variants of each task in the battery. The purpose of this report is to 

describe the origin and current state of the DMCC project, including the underlying theoretical and 

conceptual backbone behind the DMCC protocol, the task paradigms that comprise the primary 

neuroimaging battery, and the analysis pipeline, including some aspects of current methodological 

development. Most importantly, we present a first set of initial results from the project, which 

provide new evidence of a consistent neural signature of reactive control.   

 

Theoretical and Conceptual Goals of the DMCC Project  

 

The DMCC project was explicitly designed to help achieve the goals of the Research 

Domain Criteria (RDoC), a major NIMH strategic initiative.  The RDoC initiative aims for a 

reconceptualization of mental illness and neuropsychiatric disorders in terms of underlying 

dimensions that can be characterized at different levels of analysis, from behavioral profiles, to 

neural system and circuit abnormalities, all the way to genetic and molecular causes (Cuthbert & 

Insel, 2013). The DMCC project was structured to help achieve these goals, by providing a 

rigorous and systematic examination of the putative core dimensions and neural mechanisms that 

give rise to variation in cognitive control function.  

 

Cognitive control, which refers to the ability to regulate, coordinate, and sequence thoughts 

and actions in accordance with internally maintained goals (E. K. Miller & Cohen, 2001), is one 

of the key domains or constructs of focus within the RDoC initiative.  There is a strong consensus 

that cognitive control impairments are a critical component of a wide-range of mental health and 

neuropsychiatric disorders (e.g., schizophrenia, depression, ADHD, Parkinson’s, Alzheimers).  

Yet, there is still a poor understanding of the underlying sub-components and mechanisms that 

give rise to both normal and pathological variation in cognitive control function.   In developing 

the DMCC project, we relied heavily on the DMC theoretical framework, which we believe 
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provides critical experimental leverage and methodological tools for uncovering and 

characterizing the component mechanisms of cognitive control variation. 

 

The DMC framework is a unifying and coherent theoretical account that explains three 

empirically observed sources of variation – within-individual (task and state-related), between-

individual (trait-related), and between-groups (i.e., impaired populations with changes to brain 

function and integrity) – in terms of an underlying core dimension of variability related to the 

temporal dynamics of cognitive control. It is this emphasis on cognitive control variability and 

temporal dynamics that critically distinguishes the DMC framework from other theoretical 

accounts, which nonetheless posit similar computational mechanisms and neural architectures 

(Banich, 2009; Botvinick et al., 2001; Engle & Kane, 2003; Herd et al., 2014; Koechlin & 

Summerfield, 2007; E. K. Miller & Cohen, 2001; Miyake et al., 2000) 

 

In the DMC framework, the key distinction is between two control modes that have 

contrasting dynamic neural signatures. Proactive control involves sustained and preparatory 

activation of cognitive goal representations within lateral prefrontal cortex (PFC), enabled by 

phasic inputs (for goal updating) and tonic signals (for goal maintenance) arising from the mid-

brain dopamine (DA) system (and associated components, i.e., dorsal and ventral striatum). In 

contrast, reactive control involves transient, stimulus-driven goal activation in these lateral PFC 

regions, based on signals arising from neural circuits that mediate interference/conflict detection 

(e.g., anterior cingulate cortex, medial frontal cortex; ACC/MFC) and/or episodic/associative 

cueing (e.g., posterior parietal cortex [PPC], medial temporal lobe [MTL]).   

 

Based on a range of theoretical arguments (detailed in Braver, 2012; Braver et al., 2007), 

we postulate that the proactive and reactive control modes reflect computational tradeoffs with 

complementary costs and benefits. Consequently, successful cognition depends upon a variable 

mixture of proactive and reactive control strategies.  Moreover, there are a variety of state, trait, 

and population factors that influence which control mode is dominant, including available 

cognitive resources and capacity, motivational salience of task performance and reward 
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attainment, expectations for interference, and the integrity/efficacy of relevant neural systems and 

circuits.   

 
A key tenet of the DMC framework is that proactive and reactive control appear to serve 

as meaningful constructs in the RDoC sense, in that they appear to: a) index coherent dimensions 

of both state and trait-related variability in normal cognitive control function; b) be useful for 

characterizing both age-related changes and clinical impairment in a variety of populations; and c) 

exhibit unique and well-defined behavioral and neural signatures. Indeed, a tantalizing possibility 

is that proactive and reactive control might act as endophenotypes, in also reflecting meaningful 

dimensions of genetic variation (e.g., single nucleotide polymorphisms [SNPs], such as COMT; 

Furman et al., 2020; Green et al., 2012; Mier et al., 2009).  For example, we previously speculated 

that the complementary computational tradeoffs of proactive and reactive control could each 

confer evolutionary advantages optimized for different environmental contexts (e.g., stable / 

predictable vs. rapidly changing / chaotic), leading to their stable expression in the population 

(Braver et al., 2010).  

 

A major aim of the DMCC project is to extend our understanding of proactive and reactive 

control, by conducting a comprehensive test of their construct validity.  Although rigorous 

establishment of construct validity is a critically important endeavor (Cronbach & Meehl, 1955), 

particularly with respect to RDoC goals, it is still only infrequently attempted in investigations of 

cognitive (executive) control (Friedman & Miyake, 2016; Karr et al., 2018; Rey-Mermet et al., 

2019), and is even more rarely a focus of cognitive neuroscience research in this domain (Derrfuss 

et al., 2004; Kragel et al., 2018; Sylvester et al., 2003).  A first step is to establish convergent 

validity, which requires assessment of multiple distinct measures of proactive and reactive control 

in a within-subject design, in order to test for common cross-task relationships and patterns of 

activation. A second step is to establish divergent (discriminant) validity, by demonstrating that 

proactive and reactive control do in fact reflect dissociable constructs. This is actually quite 

challenging experimentally, in that proactive and reactive control are by definition temporally 

related, such that reduced utilization of proactive control will increase the demand on reactive 

control, and vice versa (which we have previously termed a reactive-proactive shift;  Braver et al., 

2009). The third step of construct validation is to properly situate proactive and reactive control 
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within a nomological network of related constructs at different levels of mechanism and 

description, including other measures of individual difference (e.g., personality/motivation, 

intelligence, working memory capacity), brain function (e.g., anatomy, connectivity), and genetics 

(e.g., heritability, SNPs).  Finally, for the longer-term effort of evaluating the utility of proactive 

and reactive control as meaningful constructs in studies of health and disease, it will be necessary 

to determine their predictive validity for important functional outcomes (e.g., educational and 

career achievement, physical and mental-health status and vulnerabilities). 

 

In this first stage of reporting on the project and its progress, we focus on the new cognitive 

control battery developed to provide dissociable measures of proactive and reactive control that 

are also convergent across multiple task paradigms.  Additionally, we detail our approach to data 

acquisition and analysis, while also describing current methodological developments, both of 

which are aimed at achieving both high degrees of reproducibility, transparency, and ensuring 

quality control / quality assurance (QC/QA).   

 

The DMCC Task Battery  

 The DMCC task battery includes four well-established task paradigms frequently used in 

the cognitive control literature:  Stroop, AX-CPT, Cued Task-Switching and Sternberg Working 

Memory.  Critically, however, each of the tasks is performed under three different conditions that 

encourage utilization of different cognitive control strategies:  baseline, proactive, and reactive.   

Moreover, the variants of these paradigms adopted within the DMCC project are in some cases 

novel, without prior precedent in the literature.  Consequently, here we provide an overview of 

each of the tasks in the battery, along with the rationale for their inclusion and the logic behind the 

different manipulations (see Figure 1).   It is also worth noting that the full DMCC task battery is 

being explored in a parallel behavioral study (conducted on-line through Amazon MTurk), via a 

test-retest format, to explore psychometric properties.  A report of behavioral findings from that 

study is forthcoming, so here we emphasize the basic behavioral effects, along with predictions 

for neuroimaging.  
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Figure 1.  Diagram of cognitive control tasks used in DMCC battery, highlighting key trial contrasts used to define 
cognitive control index.  A. Stroop task, illustrating contrast between incongruent and congruent trials.  B.  AX-CPT, 
illustrating target (AX) trials as well as key contrast between BX and BY trials.  C.  Cued-Task Switching, illustrating 
contrast between incongruent and congruent trials. D. Sternberg Working Memory, illustrating target (NP) trials, as 
well as key contrast between RN and NN trials. Diagram illustrates Baseline condition, with stimulus timing 
information listed for each task.   
 

Stroop.  The color-word Stroop is widely recognized as a canonical task of cognitive 

control, in which top-down selective attention is required to focus processing on the task-relevant 

font color of printed words, while ignoring the irrelevant but otherwise dominant word name. The 

primary index of cognitive control is thus the Stroop interference effect, which contrasts 

incongruent (word name indicates a different color than the font color, e.g., BLUE in red font) and 

congruent (word name matches font color, e.g., BLUE in blue font) trials (see Figure 1A).  A key 

dimension of the task that has often been used to manipulate cognitive control demands is that of 

probability congruence (PC; Bugg et al., 2008; Bugg & Crump, 2012). Under high PC conditions, 

congruent trials are frequent and incongruent trials are rare, such that cognitive control demands 

are on average low and intermittent. Consequently, the baseline condition utilizes high PC, as it 

produces robust Stroop interference and individual differences effects (Kane & Engle, 2003).  
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In contrast, the proactive condition utilizes a low PC condition in which PC is decreased 

in a global, or list-wide manner (Bugg, 2012; Bugg et al., 2011). In this case, proactive control is 

theoretically associated with sustained maintenance of the task goal to attend to the ink color 

dimension and ignore the word, which should be present in a consistent (i.e., on all trials) and 

persistent manner (i.e., engaged even prior to stimulus onset). Thus, the key prediction is that 

Stroop interference should be reduced on all trials, relative to baseline condition with high PC 

conditions.  Likewise, in terms neural activity dynamics, the key prediction is that cognitive 

control-related mechanisms should be engaged prior to stimulus onset, potentially sustained across 

trials, and/or present globally on all trials.   

 

The reactive condition also manipulates PC, but in an item-specific, rather than list-wide 

fashion. In this case, specific colors occur with low PC (e.g., RED in green font is frequent, while 

RED in red font is rare), while others occur with high PC (e.g., YELLOW in yellow font is 

frequent). This type of item-specific PC manipulation is theoretically predicted to enhance the 

utilization of reactive control when low PC items are encountered. For these items, strong 

associations may develop between a critical feature (a specific ink color) and increased control 

demands (i.e., high interference), leading to this feature more effectively engaging goal retrieval 

and utilization (Bugg et al., 2011; Bugg & Hutchison, 2013; Jacoby et al., 2003). When this occurs, 

the engagement of cognitive control-related neural activity would be expected to be transient, 

present only after stimulus onset, and primarily engaged by low PC incongruent items (relative to 

low PC congruent items).   

 

A novel feature of the Stroop tasks included in the battery, is that there are actually two 

distinct, and intermixed set of items, biased items, for which PC is manipulated across conditions, 

and unbiased items (“PC-50”: 50% congruent, 50% incongruent).  The unbiased items, which are 

included and equivalent across all three conditions, enable tighter comparisons and predicted 

dissociations among conditions.  Specifically, in the proactive condition, changes in Stroop 

behavioral interference and neural activity, relative to baseline, should equivalently impact both 

types of items, whereas in the reactive condition, the cognitive control-related changes should be 

specific to the biased items.   Finally, it is worth noting that because of the large numbers of 

different font colors (8) included in each of the conditions, the task is implemented with vocal 
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rather than manual responding, using digitization and automated signal processing algorithms to 

extract response latencies from the noisy scanner environment.  In our previous behavioral studies, 

we have used similar experimental manipulations to dissociate proactive and reactive control, 

using both picture-word (Gonthier et al., 2016),  and color-word (Gourley et al., 2016) Stroop 

variants.   

 

AX-CPT.  The AX-CPT has become increasingly utilized as a task of context processing 

and cognitive control, given its simplicity, flexibility and applicability in a wide-range of 

populations (Barch et al., 2008; Chatham et al., 2009; Chun et al., 2018; MacDonald, 2008; Paxton 

et al., 2007). In the task, contextual cues constrain the appropriate response to probe items. As the 

name suggests, A-cues followed by X-probes require a target response, and occur with high 

frequency, leading to strong cue-probe associations. Cognitive control is postulated as key process 

involved in maintaining and utilizing the contextual cue information, in order to minimize errors 

and response interference occurring on BX trials, which occur when the X-probe is presented but 

not preceded by an A-cue.  Thus, a useful index of cognitive control for this task is the BX 

interference effect, which contrasts BX and BY (neither an A-cue nor an X-probe is presented, 

leading to low control demands) trial types (see Figure 1B).  In prior work, shifts in the tendency 

to utilize proactive or reactive control have not only been observed when comparing different 

populations or groups, but have also been manipulated within-subjects (Braver et al., 2009). 

 

The AX-CPT conditions included in the battery extend prior recent work, by using a task 

variant in which the A- and B-type contextual cues occur with equal frequency, thus eliminating 

confounds in earlier versions that could be due to the lower overall frequency of encountering B-

cues (Gonthier, Macnamara, et al., 2016; Richmond et al., 2015). Further, these conditions also 

include no-go trials, in which the probe is a digit rather than letter.  Because of the increase in 

response uncertainty (i.e., three types of probe response are possible: target, nontarget, no-go), the 

addition of no-go trials decreases the overall predictive utility of context information for 

responding, and as a consequence was found to reduce the overall proactive control bias typically 

observed in healthy young adults. Thus, the baseline condition includes these no-go trials to 

produce a “low control” state, from which to more sensitively observe condition-related changes 

in control mode (Gonthier, Macnamara, et al., 2016).  
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The proactive condition replicates prior work using context strategy training to increase 

predictive preparation of responses following contextual cue information (Edwards et al., 2010; 

Gonthier, Macnamara, et al., 2016; Paxton et al., 2006). Specifically, prior to performing this 

condition, participants are provided with explicit information regarding the frequencies of these 

cue-response associations, and receive training and practice in utilizing them to prepare the 

dominant responses. In addition, during inter-trial intervals, participants are provided with visual 

instructions to “remember to use the strategy”. The key prediction is that the increased utilization 

of contextual cue information will lead to a bias to prepare a target response following an A-cue 

(analyzed in terms of both AX and AY trials) and a nontarget response following a B-cue, leading 

to reduced interference on BX trials, but a side effect of which will be increased interference on 

AY trials, which occur when the A-cue is not followed by an X-probe. This translates into a 

prediction of increased cue-related neural activity, which might also be accompanied by sustained 

activation (in maintaining the instructed strategy) across the task block.  

 

The reactive condition utilizes a new manipulation which has not previously been 

examined in prior work. Specifically, in the reactive condition item-specific probe cueing is 

present (similar to other cueing manipulations in tasks, such as the flankers; Braem et al., 2019; 

Bugg & Crump, 2012; Crump et al., 2006), such that on high control demand trials (AY, BX, 

nogo) the probe item appears in a distinct spatial location, and with a distinct border color 

surrounding it (presented briefly before the onset of the probe). Critically, because these stimulus-

control associations (i.e., between border color / spatial location and high control demand) only 

form at the time of probe onset, they are not hypothesized to modulate the utilization of proactive 

control strategies. Likewise, the probe features are insufficient to direct stimulus-response 

learning, since they do not directly indicate the appropriate response to be made (i.e., either a non-

target or no-go response could be required). In contrast, because probe features serve as cues 

signaling high control demand, and they can drive more rapid and effective retrieval of contextual 

information to resolve the conflict. The key prediction is that utilization of probe features should 

reduce BX interference in the reactive condition.  In terms of neural activity dynamics, reactive 

control effects should be observable as transient probe-triggered activation on BX (relative to BY 

trials). 
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Cued-TS.  Cued task-switching (Cued-TS) has long been recognized as a critical paradigm 

to assess a core component of cognitive control – the ability to update and activate task-

representations in on-line manner in order to appropriately configure attention and action systems 

for processing the upcoming target (Kiesel et al., 2010; Meiran, 1996; Vandierendonck et al., 

2010). The key aspect of the paradigm is that two or more tasks randomly alternate in a trial-by-

trial fashion, with target items typically being ambiguous, so that they can be processed according 

to multiple task rules. Consequently, the advance presentation of the task cue, prior to target onset, 

is what disambiguates the target and specifies the appropriate stimulus-response rules.   An 

important index of cognitive control in task-switching paradigms is the task-rule congruency effect 

(TRCE;Meiran & Kessler, 2008), which refers to the increased interference (both errors and 

reaction time) when the target response required for the current task trial is incongruent to the 

response that would be required to the same target stimulus if a different task had been cued (see 

Figure 1C). For example, in letter-digit task-switching (also called consonant-vowel, odd-even or 

CVOE; Minear & Shah, 2008; Rogers & Monsell, 1995), if in the letter task, a right button press 

is required for a consonant, and left button press for a vowel, but in the digit task, a right button 

press is required for odd and left button press for even, the “3E” target stimulus would be 

incongruent (whereas the “A2” target stimulus would be congruent, since for either task, the left 

button press would be correct).  Another cognitive control effect is the mixing cost, which occurs 

on all trials in task-switching blocks (relative to single-task blocks; Rubin & Meiran, 2005))   

 

In prior work, it was found including reward incentives on a subset of trials, with reward 

cues presented at the time of the task cue, led to a strong reduction in the mixing cost (interference 

on task-repeat vs. single-task trials) – and this was present even on the trials that were non-

incentivized – but no effect on the TRCE (Bugg & Braver, 2015) This finding was interpreted as 

indicating that global performance enhancements are associated with proactive control, whereas 

reactive control primarily influences the TRCE, and so is less impacted by advance reward 

incentive manipulations.  The Cued-TS conditions included in the DMCC battery build on these 

prior findings, by using variants of the CVOE (letter/digit) paradigm that accentuate the robustness 

of the TRCE, as a putative marker of reactive control, while also incorporating advance task cues 

with a long cue-to-target interval, which enables effective utilization of proactive control. 
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In the baseline condition, target stimuli are list-wide mostly congruent, as prior work has 

found that mostly congruent conditions result in a large and robust TRCE (Bugg & Braver, 2015). 

The proactive condition follows Bugg & Braver (2015) in keeping the same list-wide mostly 

congruent structure as the baseline condition, but adding reward incentives on a subset of trials. 

Specifically, on a third of the trials, reward cues are presented simultaneously with advance task 

cues (i.e., by presenting the task cue in green font), and indicate the opportunity to earn monetary 

bonuses if performance is accurate and fast (relative to baseline performance) on that trial. By only 

presenting reward cues on a subset of trials, the remaining subset of non-incentivized trials and 

target stimuli can be directly compared across the proactive and baseline conditions. A divergence 

from Bugg & Braver (2015) is that single-task conditions are not included as part of the battery 

(due to length constraints), which precludes direct calculation of mixing costs. Nevertheless, the 

key prediction is that enhanced proactive control will lead to global performance improvement 

(i.e., present on all trials) even on these non-incentivized trials.   In terms of cognitive control-

related neural activity, the prediction is of increased cue-related activity, which might also be 

accompanied by sustained activation (in maintaining the reward incentivized motivational context) 

across the task block.  

 

The reactive condition utilizes a new manipulation which has not previously been 

examined in prior work. Specifically, the reactive condition includes punishment (rather than 

reward) incentives, again on the same one-third of trials that were incentivized in the proactive 

condition. However, in the reactive condition the incentive cue is presented at the time of the target 

stimulus, rather than with the task cue (i.e., by presenting the target in green font), which prevents 

the use of incentive motivation in a preparatory fashion. Participants are instructed that they will 

lose a component of their potential monetary bonus if they make an error on these incentivized 

trials. Critically, the incentivized trials occur preferentially with incongruent target stimuli. This 

manipulation is intended to associate punishment-related motivation with these high-conflict 

items, potentially leading to increased response monitoring and caution when incongruence is 

detected. As such, the key prediction is that enhanced reactive control should reduce the TRCE, 

even on the non-incentivized trials, when compared to baseline and proactive conditions.  In terms 
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of neural activity dynamics, reactive control effects should be observable as transient probe-

triggered activation on incongruent (relative to congruent trials). 

 

Sternberg WM.  The Sternberg item-recognition task has been one of the most popular 

experimental paradigms used to assess short-term / working memory for over 50 years (Sternberg, 

1966), but more recently has been adapted particularly for the study of cognitive control and in 

neuroimaging paradigms, with the “recent probes” variant (Jonides et al., 1998; Jonides & Nee, 

2006). Like standard versions of the paradigm, the recent probes variant presents participants with 

a memory set of various load levels (number of items), followed after a short delay (retention 

period) by a single item probe, which requires a target response if the probe was a part of the 

memory set. However, in the recent probes variant, the key manipulation is that the probe item can 

also be a part of the memory set of the previous trial, but not the current trial, which is termed a 

“recent negative” (RN) probe. On these RN trials, the probe is associated with high familiarity, 

which can increase response interference and errors, unless cognitive control is utilized to 

successfully determine that the familiarity is a misleading cue regarding probe status (target or 

nontarget). Thus, a key index of cognitive control in this Sternberg variant is the negative recency 

effect (Jonides & Nee, 2006; Monsell, 1978), which contrasts RN and NN trials (NN: novel 

negative, when the probe item is not a member of the current or previous trial’s memory set; see 

Figure 1D).   

 

The classic finding in the literature is that as the memory set increases in size (i.e., WM 

load increases) performance declines accordingly (Sternberg, 1969). Under conditions in which 

the WM load is below capacity (3-4 items), proactive control strategies can be utilized to keep the 

memory set accessible within WM, and used as an attentional template from which to 

prospectively match against the probe. In contrast, when the WM load is above capacity (~7 items), 

reactive control strategies are likely to be utilized, with probe responses driven by retrieval-

focused processes, such as monitoring of familiarity signals.  The variants of the Sternberg WM 

included in the DMCC battery are adapted from prior studies, that utilized manipulations of both 

WM load expectancy (Speer et al., 2003) and RN frequency (Burgess & Braver, 2010). 

Specifically, in all conditions, trials randomly vary in set size, with words used as stimuli, such 

that all items are novel on each trial, with the exception of RN probes. Under such conditions, 
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Burgess & Braver (2010) found strong RN interference effects are observed.  Likewise, following 

Speer et al (2003), the set size in a given trial is revealed sequentially, leading to unpredictability 

and reliance on WM load expectancies to engage control strategies. 

 

 In the baseline condition, most trials have high WM load (6-8 items) and RN frequency is 

low, which should reduce tendencies to engage either proactive or reactive control strategies. 

However, in the proactive condition, most trials have low WM load (2-4 items), leading to the 

expectancy that active maintenance-focused and proactive attentional strategies will be effective, 

while RN frequency remains low (i.e., matched with the baseline condition), such that the utility 

of reactive control should be unchanged. The critical prediction concerns the 5-item set size which 

occurs equivalently in all conditions, and thus can be compared between them. The key hypothesis 

is that use of proactive control strategies, will improve performance, primarily for the target probe 

trials (termed novel positive, or NP, since they never overlap across trials).   In terms of neural 

activity dynamics, the key prediction is of increased encoding-related activity (i.e., during 

presentation of the memory set) on all trials, which might also be accompanied by sustained 

activation (i.e., maintaining the attentional strategy) across the task block.   

 

In the reactive condition, WM loads are identical to the baseline condition, while the 

frequency of RN trials is strongly increased. Thus, in the reactive condition, it is familiarity-based 

interference expectancy that increases, rather than WM load expectancy.   Based on the increased 

interference-expectancy, the theoretical hypothesis is that participants will not rely on familiarity 

as a cue for responding, but will instead use familiarity cues to prompt evaluation of the probe 

match to items stored in WM.  Consequently, the key prediction is that of reduced RN-related 

interference in the reactive condition.   In terms of neural activity dynamics, reactive control effects 

should be observable as transient probe-triggered activation on RN (relative to NN trials). 

 

Methodological Approach 

 As this is the first paper to describe the DMCC project, we provide here a broad overview 

of the methodological approach. Our goal is to inform interested readers of the key project 

components and rationale, with the aim of promoting open science and reproducibility, and 

encouraging utilization of DMCC data within the scientific community.   In the subsequent section, 
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we focus on the methodological details specific to the first-set of analyses performed with this 

dataset.  

 

Participant Sample and Acquisition Protocol 

In a number of ways, the DMCC project was modeled after HCP, and endeavored to follow 

closely to the tenets of the ‘HCP-style paradigm’ in terms of the participant sample and acquisition 

protocol (Glasser et al., 2016).  In particular, like the HCP, the DMCC project is focused on 

examining both normative aspects and inter-individual variability in cognitive and brain function 

among healthy young adults.  The sample was thus constrained to participants aged 18-45, which 

is an age range that is not strongly impacted by neurodevelopmental changes or by 

neurodegenerative changes associated with increasing age.   

 

The scope and structure of the DMCC project imposed several important constraints, that 

caused us to deviate from the HCP paradigm in a number of ways that we describe here. To meet 

the demands of our project in isolating distinct components of cognitive control with high 

experimental precision, we required 25-30 minutes of scanning time for each of the 4 tasks. Since 

each of the three task fMRI sessions was structured to contain all 4 tasks, this resulted in  ~2 hours 

of task fMRI per session.  Because of these constraints and the intense cognitive demands 

associated with performing our task battery, subject fatigue and motivation were found to be a 

significant challenge.  As a solution to this challenge, we found it most helpful for fatigue and 

motivation recovery to schedule only a single imaging session per day and to space sessions out 

over a minimum of two days.  This protocol of 3 spaced imaging sessions introduced strong 

logistical constraints that necessitated recruitment of participants from the HCP pool who were 

residents within the local community.   This differentiated the DMCC from the HCP, which used 

a “burst scheduling” protocol to acquire data over a consecutive 2-day period, and enabled the 

recruitment of out-of-town family members.   

 

Additionally, although it was a high priority to recruit family members into the DMCC, 

given the smaller scope of the DMCC project, and the challenges described in recruiting fully local 

twin pairs, our recruitment focus was on identical (monozygotic; MZ) twin pairs (and these pairs 

were primarily recruited from other sources than the HCP pool).  Consequently, in the DMCC 
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sample, there are very few DZ and non-twin siblings, which precludes true classical genetic 

modeling, which requires contrasts between MZ and DZ (or non-twin siblings) to separate genetic 

heritability from environmental effects.  Nevertheless, the inclusion of MZ twin pairs are still 

highly valuable from a statistical modeling perspective, as they provide convergent information 

regarding both test-retest reliability (using twin similarity as a lower-bound estimate) of individual 

DMCC cognitive control measures as well as the ability to estimate the covariance structure among 

DMCC tasks that is not contaminated by individual-specific measurement error effects.  As 

described briefly below, we have begun to fully exploit these properties using multivariate pattern 

analysis (MVPA) approaches.   

 

After the start of data collection, the DMCC project was extended to incorporate an 

additional study design arm, supported by funding from the NCCIH.  In this arm, MZ twins were 

recruited, at the time of initial screening, to participate in a mindfulness skills training intervention 

component.  Following completion of their initial wave of testing, the twin-pair was randomly 

assigned, such that one twin received mindfulness training through an established and 

scientifically-validated 8-week course (Mindfulness-Based Stress Reduction), while the other twin 

served as a wait-list control.  Following course completion, both twins returned for another wave 

of testing with the full DMCC protocol.   The use of this novel, randomized discordant 

experimental twin design was another advantageous feature leveraging the utilization of MZ twins 

in the project. 

 

 

 The DMCC acquisition strategy was designed with the goal of facilitating integration of 

DMCC data with HCP data collected on the same participants.  Thus, similar to the HCP, we 

utilized a multi-band acceleration sequence to increase spatial and temporal resolution in BOLD 

fMRI scans (Uğurbil et al., 2013). However, in line with recommendations from methodological 

evaluations (Todd et al., 2017), we adopted a more conservative approach similar to that of other 

contemporaneous projects (e.g., MyConnectome; Poldrack et al., 2015), by utilizing a multi-band 

acceleration factor of 4 (MB4), as opposed to the more aggressive 8-fold acceleration used in the 

HCP.   This reduction led to a corresponding shift in acquisition parameters (2.4 mm3 voxel size, 
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TR=1200 msec), but retained some of the gains in spatial and temporal resolution, while also 

maintaining high levels of signal quality with whole-brain coverage.   

 

 Participants in the DMCC protocol undergo a series of 4 experimental sessions.  The first 

session involves out-of-scanner behavioral assessment geared towards providing a more 

comprehensive profile of individual difference characteristics.  The assessment includes both self-

report measures related to personality and psychological health and well-being, as well as 

cognitive tests of crystallized and fluid intelligence, processing speed, working memory capacity, 

and attentional control.   A full-list and detailed description of these measures is beyond the scope 

of the current report, but can be found at this link 

(https://nda.nih.gov/edit_collection.html?id=2970). Here, we just briefly list a few of the notable 

measures and constructs being assessed: NIH toolbox (Oral Reading Recognition, Pattern 

Comparison, Flankers Task; Weintraub et al., 2013), Operation and Symmetry Span (Redick et 

al., 2012);  Ravens Matrices (Raven, 2000); Five Factor Personality (NEO-FFI; McCrae & Jr, 

2007); Trait Mindfulness (FFMQ, MAAS; (Baer et al., 2006; Brown & Ryan, 2003), Reward 

Sensitivity (BIS/BAS, SPSRQ; Carver & White, 1994; Torrubia et al., 2001), Emotion Regulation 

(ERQ; Gross & John, 2003), Need for Cognition (Cacioppo et al., 1984),  Positive and Negative 

Affect (PANAS; Watson et al., 1988), State and Trait Anxiety (STAI; Spielberger, 2010), Sleep 

Quality (Pittsburgh Sleep Quality; Buysse et al., 1989), Impulsiveness (Patton et al., 1995),  and 

Life Satisfaction (SWL; Diener et al., 1985).  

 

Following the behavioral session, participants always completed the Baseline 

neuroimaging session first, then the Proactive and Reactive neuroimaging sessions, with the order 

of these latter two sessions counter-balanced across participants.  Within the session, task-order 

was counter-balanced but maintained across all subsequent sessions, and testing waves, for 

longitudinal participants.  Likewise, in twin-pairs, both members of the pair experienced the same 

task and session order, in order to facilitate twin-based comparisons. In addition to these behavioral 

and neuroimaging data, relevant physiological information is also collected during the sessions, 

including weight, blood pressure, heart rate, caffeine and food intake, plus a number of salivary 

cortisol samples (including early morning, pre and post scanning) and collection of DNA on all 
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participants.  During scanning, heart-rate and respiration data are also continuously monitored and 

collected, with the potential for use in preprocessing.    

 

Analysis Workflow 

Given the complexity of the DMCC data acquisition protocol, and the amount of data 

generated per participant, we found it critical to develop a set of standardized operating procedures 

and processing pipelines, that enable efficient and high-levels of quality control of a project of this 

type, while also allowing for a de-centralized means of management, familiarization, and 

processing by multiple members of the research team (Etzel et al., 2020). Moreover, each 

component of the processing pathway and associated software tools were developed with the aim 

of maximizing the transparency, reproducibility, and the data sharing potential of the project.  Data 

storage and management are structured to enable both secure archiving as well as tight integration 

with associated data from the HCP, by making use of the IntraDB databasing file format (Marcus 

et al., 2013), and the Connectome Coordination Facility for data structures and storage capabilities 

(https://www.humanconnectome.org/study/dual-mechanisms-cognitive-control).  Behavioral (and 

later neuroimaging) data are also being deposited in the NIH National Data Archive and 

Repository (NDAR), with both repositories (NDAR and CCF) being used to facilitate data sharing.  

Currently, a small sample of the DMCC neuroimaging dataset is available on OpenNeuro at the 

following link (https://openneuro.org/datasets/ds002152/versions/1.0.2). Schematic diagrams of 

DMCC workflows along with associated documentation on standardized operating procedures, 

processing scripts, software tools, and example outputs are all available on OSF, and can be 

accessed via the following link (https://osf.io/xfe32/).  

 

Because of our primary interest in individual differences in the DMCC project, we 

developed an analysis workflow that could provide a semi-automated and reproducible processing 

pipeline that generates quality control information as well as easily visualized summaries of all 

processing stages at the single-subject level.  For our initial set of analyses, we adopted the HCP 

pipeline approach to preprocessing (Glasser et al., 2013), which takes advantage of the high spatial 

resolution and multi-modal imaging data to enable artifact removal, distortion correction, and align 

brain areas.  Critically, we also examined that potential benefits of surface-based registration and 

reconstruction, using CIFTI file-formats developed for the HCP.    
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A key aspect of our approach has been to leverage cortical parcellation atlases as a primary 

analytic tool.  In particular, our approach to single-subject analysis, utilizes the cortical parcels 

(and subcortical nuclei) as the basic unit of analysis.  For univariate analyses, this is done by 

averaging voxel-wise data within parcels (nuclei), which results in a highly significant reduction 

of data complexity, and enabling an effective way to visualize whole-brain data in a principled yet 

unbiased manner.   For multivariate analyses, the voxel-level data are retained, but analyses are 

conducted at the parcel (nuclei) level, treating these as an unbiased / pre-specified means of 

conducting whole-brain or region-of-interest analyses.  We have explored a number of these 

cortical parcellation atlases, including Multi-Modal Parcellation (MMP; Glasser, Coalson, et al., 

2016), but for our primary set of analyses, we utilized Schaefer 400-parcel atlas, as it uses a 

combined global-local approach (gradient-weighted Markov Random Field) to create more 

homogenously sized parcels, available at various resolutions (Schaefer et al., 2018).  Additionally, 

we include a set of 19 segmented subcortical nuclei (e.g., amygdala, hippocampus, caudate, etc), 

generated as part of the CIFTI file format in the HCP pipeline (Glasser et al, 2013).  

 

Throughout the project we have been committed to conducting methodological evaluations 

and benchmarking to ensure that we are following best practices and incorporating state-of-the-art 

approaches throughout.  As such, we found that surface-based alignment, combined with the 

cortical parcellation approach, exhibited significant benefits in statistical sensitivity to task effects 

relative to more standard volume-based alignment approaches; consequently, the data and analyses 

reported here utilize this approach.  Additionally, we are now in the process of shifting our pre-

processing pipeline to fMRIprep (Esteban et al., 2018, 2020), as we have that it yields further 

benefits in terms of standardization, QA/QC, and statistical sensitivity, relative to the HCP 

pipelines (Etzel et al., 2019).   Most recently, we have explored a second stage pre-processing 

approach using a whole-brain neural model derived from resting-state fMRI scans to filter out 

intrinsic activity dynamics and provide even greater sensitivity and temporal precision regarding 

event-related activity dynamics (Wang et al., 2020).  Finally, we have been focusing on 

multivariate pattern analysis (MVPA) approaches (both classification-based decoding and 

representational similarity analyses; RSA) as a more powerful and flexible means from which to 

fully leverage the advantages of our twin-based design (Etzel et al., 2020), to identify task-related 
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activity, and to reveal key neural coding properties (Freund et al., 2020; Freund & Braver, 2020; 

Tang et al., 2020) All of these benchmarking and comparative analyses will be the focus of 

forthcoming reports; here, we report standard univariate analyses based on Schaefer atlas cortical 

parcellations using the HCP surface-based processing pipelines.   

 

For univariate analyses, standard GLM estimation is conducted (using AFNI software) 

according to a mixed blocked / event-related design (Petersen & Dubis, 2012; Visscher et al., 

2003).   This design and the associated analytic approach are important for testing the DMC 

framework, as this approach allows for the separation of sustained (block-related) from transient 

event-related activation dynamics.  Many theoretical predictions regarding dissociations between 

reactive and proactive control involve distinctions between transient probe-related activity 

(reactive effects) from either cue-related or sustained activations (proactive effects).    The mixed 

blocked / event-related GLM analyses are facilitated by the consistent structure present in task 

fMRI scanning runs, which each comprise three task blocks (of approximately 3-minute duration) 

alternating with four resting fixation blocks (30-seconds duration each).  Likewise, within each 

task block, inter-trial intervals are jittered in a uniform manner to improve estimation of event-

related effects.   Finally, event-related activation is estimated using a deconvolution (finite impulse 

response, FIR; Glover, 1999) approach. This approach enables flexible estimation of the full 

timecourse of event-related activity which is useful in multi-event trials (Ollinger et al., 2001), 

such as the cue-target structure present in 3 of the 4 DMCC tasks (AX-CPT, Cued-TS, Sternberg).   

 

Following GLM estimation, data are summarized for visualization at parcel/nuclei level, 

in terms of sustained estimates and event-related timecourses for each condition and task and 

condition, breaking the event-related data down further into different trial types and contrasts.  

From these, summary reports are generated for each participant (which are also linked to parallel 

summaries of the in-scanner behavioral performance data), enabling easy visual inspection and 

quality control checks.  An illustrative example of these single-subject summary reports can be 

found at the following link (https://osf.io/54qhb/). A further strength of this analytic and 

visualization approach is that it facilitates exploration and benchmarking of the effects of various 

processing parameters, parcellation atlases, and pipeline choices as described above.   
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Focus of the Current Report 

Because of the rich nature of the DMCC dataset and the on-going state of data collection, 

many primary research questions of interest will be the focus of future papers.  Most prominently, 

individual difference focused analyses, which will examine the relationship between neural 

activity patterns associated with proactive and reactive control, and the other individual difference 

measures, will be most powerfully investigated after data collection is complete (estimated 2023), 

with a target sample size of 200.  Here we focus our initial analyses on the question of whether 

there is a unique neural signature of reactive control, that is distinct from proactive control.  

Although proactive-control focused analyses are equally important, the examination of reactive 

control has been somewhat neglected in ours and other researchers’ prior work.  Consequently, we 

took advantage of the within-subject design and novel DMCC task battery, with 4 distinct tasks 

including baseline and reactive control conditions to test whether there are consistent reactive 

control patterns across the task, and whether these are linked to behavioral performance 

enhancements associated with increased utilization of reactive control.   

 

Methods 

Participants. Analyses were conducted on a subset of 80 participants (Mean Age=32.0, 

SD=6.1, Female=47, Male=32, Prefer Not To Answer=1) with high-quality data from both 

baseline and reactive sessions.  This participant sample included both prior HCP participants 

(N=43) as well as 24 twin-pairs, and had the following self-reported demographic breakdown:  

White/Caucasian (57), Black/African-American = 11, Asian / Pacific Islander = 5, More Than One 

Race = 5, Prefer Not To Answer = 1. During recruitment all participants were screened and 

excluded if they were outside the 18-45 age range, were diagnosed with severe mental illness, 

significant neurological trauma, certain medication usage, or failure to pass screening for MRI 

safety contraindications.  Participants recruited from the HCP sample were screened and excluded 

for a significant change in their status with regard to these exclusion criteria from the time of their 

last HCP scan.   A screening form with the full listing of exclusion criteria can be found at the 

following link (https://osf.io/6efv8/). All participants provided written informed consent in 

accordance with the Institutional Review Board at Washington University, St. Louis, and received 

$400 compensation for completion of all sessions (along with additional monetary bonuses for 

performance in the Cued-TS sessions).   
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Imaging Data Acquisition. All imaging data were acquired on a Siemens 3T PRISMA 

scanner using a 32-channel head coil, and included both high-resolution MPRAGE anatomical 

scans (T1- and T2-weighted with 0.8 mm3 voxels) and BOLD functional scans using the CMRR 

multi-band sequences described above (acceleration factor=4, 2.4 mm3 voxels, 1.2s TR, with 

alternating AP and PA encoding directions).  Full details of the acquisition protocol and parameters 

can be found at the following link (https://osf.io/tbhfg/). In each of three imaging sessions, 

participants underwent 8 BOLD scans runs of approximately 12 minutes in duration, during which 

they performed 2 consecutive runs of each of the 4 DMCC tasks.   

 

Tasks. All DMCC tasks were programmed and presented to participants using Eprime software 

(Version 2.0, Psychology Software Tools, Pittsburgh, PA).  All tasks scripts are available at the 

following link (http://pages.wustl.edu/dualmechanisms/tasks). In all tasks but the Stroop, 

participants responded with a custom designed manual response box, using index and middle 

fingers of the right hand.   In the Stroop, participants made vocal responses that were digitally 

recorded and later processed to automatically extract response latencies, using a MATLAB 

spectral filtering algorithm, with code available at the following link  

(https://github.com/ccplabwustl/dualmechanisms/tree/master/preparationsAndConversions/audio

). These recordings were also manually inspected for quality control purposes, and to code 

response errors.    

 

 In the Stroop task (see Figure 1A), participants named the font color of the word (red, 

purple, blue, yellow, white, pink, black or green). The key contrast of interest is of biased 

incongruent vs. biased congruent trials.  In the AX-CPT task (Figure 1B), participants made target 

or non-target button press responses to cue and target stimuli, with target trials defined as an A cue 

followed by an X probe. The key contrast of interest is BX vs. BY trials.  In the Cued-TS paradigm 

(see Figure 1C), participants made target or non-target button press responses to letter-digit target 

stimuli, with the target defined by the task cue (Letter or Digit) and response mapping (Letter: 

consonant or vowel; Digit: odd or even).  The key contrast of interest is non-incentive incongruent 

vs. non-incentive congruent trials.  In the Sternberg paradigm (see Figure 1D), participants made 

target or non-target button press responses to probe word stimuli, deciding whether they had been 
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one of the words previously presented in the memory set for that trial.  The key contrast of interest 

is recent negative critical (5-item) trials vs. novel negative critical (5-item) trials. Detailed 

information regarding stimulus parameters is available at the following link (https://osf.io/48aet/).   

 

Data Analysis.   All analyses were performed using R statistical software version 3.1.3 (R 

Development Core Team 2015).  Code and input data for replicating the figures and statistics are 

available at the following link (https://osf.io/xvzrf/).  

 

For behavioral data, analyses focused on RT and error rates in the key contrasts of interest.  

These contrasts isolate interference effects associated with increased cognitive control demands, 

or in other words, the degree to which task performance declines in high control relative to low 

control trials.  Second-level (i.e., group effect) statistical analyses were conducted using robust t-

tests (Yuen), which operate on trimmed means (0.1 trim) to reduce the effects of outliers (Yuen, 

1974).   

 

For imaging data, preprocessing was implemented with HCP preprocessing pipelines 

(Glasser et al., 2013), which utilize FreeSurfer to reconstruct the cortical surface and extract 

subcortical nuclei (Fischl et al., 2002), align the data to MNI atlases in surface-space, correct 

distortions, compute motion alignment parameters, introduce spatial smoothing, and express the 

data in “grayordinate” vertices.  Following HCP preprocessing, additional pre-processing occurred 

with AFNI software (Cox, 1996), computing frame-wise motion censoring parameters (FD > 0.9 

mm) and implementing image normalization (i.e., demeaning).  Sustained and event-related data 

were estimated using standard AFNI GLM procedures (3dREMLfit) at the voxelwise level (which 

includes 6-parameter motion and framewise censoring parameters, as well as polynomial 

detrending, using the -polort flag). Following GLM estimation, voxelwise beta estimates were 

averaged into cortical parcels according to the Schaefer 400 atlas (Schaefer et al., 2018), and 

subcortical parcels via the CIFTI FreeSurfer segmentation (19 nuclei) (Glasser et al., 2013).   For 

the primary analyses of interest, contrast timecourses were computed, and extracted around the 2-

TR peak of the target event (allowing for the ~5 second hemodynamic lag).   These contrasts isolate 

interference effects associated with increased cognitive control demands, or in other words, the 

degree to which neural activity increases on high control relative to low control trials. Second-
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level (i.e., group effect) statistical analyses were performed to test whether a contrast was 

significant (i.e., greater than zero, indicating high control demand activity > lower control demand 

activity) using 1-sample t-tests.  

 

Participants were included in analyses if they successfully completed all experimental 

sessions.  Of the 80 participants meeting these criteria for the initial analyses, 10 participants did 

not have full imaging data for all Baseline and Reactive scans (most were missing one scanning 

run due to technical issues). Additionally, 14 participants were missing behavioral data during at 

least one scanning run (again due to technical issues, typically related to button box or microphone 

malfunction).  Because of the loss in statistical power, GLM estimation and behavioral data 

analyses were not conducted for these participants, for the problematic task in the relevant session.  
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Results 

 Baseline Session: Behavioral Performance.   We examined the presence of interference 

effects in the Baseline session, associated with high vs. low cognitive control demands, through 

the relevant contrast of interest for each task, in both reaction time and error rates.  In all four tasks, 

and in both behavioral measures, these interference effects were highly robust (see Table 1):  

Stroop (incongruent–congruent; RT: t = 18.37, p < .001; error: t = 4.49, p < .001), AX-CPT (BX-BY; 

RT: t = 8.78, p < .001;error:t = 7.46, p < .001), Cued-TS (incongruent–congruent; RT: t =5.34, p <.001;  

error:  t = 5.44,  p  <  .001), Sternberg  (RN–NN;  RT: t  =  7.30,  p  < .001; error: t = 9.94, p < .001). 

These results are consistent with the interpretation that the selected trial type contrasts index 

increased cognitive control demands.   

 
Table 1.  Behavioral measures for high and low control demand trials in DMCC tasks. Left columns indicate Baseline 
condition, right columns indicate Reactive condition.  Data are reported as means with SEM in parentheses, for both 
reaction time (RT) and error rate.  
 
 

Baseline Session: Neural Activity.   We conducted a whole-brain parcel-wise analyses to 

identify regions showing robust effects of cognitive control demand. These analyses were based 

on event-related timecourses for the high – low cognitive control demand contrast in each task, 

isolating a 2-TR peak window around the target event (assuming a ~5-second hemodynamic lag, 

and with the peak selected based on visualization of initial pilot data; see Figure 4). A two-stage 

conjunction analysis approach was then utilized to reveal regions showing consistent control 

demands across all four tasks.  In the first-stage, a linear mixed effect statistical model was 

employed to test each parcel for the fixed effect of high > low control demand, including the 4 

tasks and participant as random effects.  For this first-stage, to control for multiple comparisons a 

Bonferroni correction was used to control for the number of parcels (419).  Thus, the significance 

level was set at p < .0001.  In the second stage, each task was interrogated individually, for the 

significance of the contrast, using a p < .05 uncorrected significance levels.  We counted a parcel 

as robust and consistently activated by control-demand if it not only passed the first stage, but was 

also significant for each of the 4 tasks, in the second stage.  
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Figure 2.  Brain regions identified showing a consistent effect of cognitive control demand in each of the four DMCC 
tasks. Regions are shown as surface-based parcels in the Schaefer 400 atlas (Schaefer et al, 2018) shown on medial 
(left side) and lateral (right side) surfaces, for the left (upper) and right (lower) hemispheres. Color scale indicates 
contrast significance in each of the 4 tasks: red (min t > 1.96; p <~ .05), orange (min t  > 2.57; p < ~ .01), and yellow 
(min t > 3.0; p < ~ .005).  Regions are mostly localized to fronto-parietal and cingulo-opercular network (see Table 2 
for anatomical locations).   
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From these analyses, we identified a set of 34 cortical parcels (no subcortical nuclei were 

identified) that met both criteria.   These parcels are shown in Figure 2, with contrast timecourses 

shown in Figure 4. The identified parcels are primarily localized to regions within the 

frontoparietal and cingulo-opercular networks typically associated with cognitive control (Cole & 

Schneider, 2007; Dosenbach et al., 2008; Vincent et al., 2008).  Indeed, 28 of the 34 regions are 

located in parcels labeled in the Schaefer atlas as belonging to either the Control (12), 

Salience/VentralAttention (11), or DorsalAttention networks (note that the 4 parcels labeled as 

belonging to the Default Mode network were located within lateral prefrontal cortex; see Table 2).    

The most robustly activated regions were bilateral, within dorsolateral prefrontal cortex (parcel #’s 

140,347) and anterior insula / frontal operculum (parcel #’s 99, 306).  These results imply that this 

set of regions may function as core network consistently responsive to cognitive control demands, 

across a wider set of task conditions.   

 

Baseline: Brain-Behavior Relationships.   Given that both behavioral performance and 

parallel neural activity measures showed consistent effects of control demand across the four tasks, 

we next tested whether these effects were associated.  In particular, we hypothesized that 

individuals showing larger behavioral interference effects would also show larger neural activity 

effects of control demand, i.e., a positive correlation.  To test this hypothesis, and reduce 

dimensionality, we created a composite behavioral index of performance, by z-score normalizing 

the data across participants, and then combining RT and error measures across the 4 tasks to create 

a summed z-score value for each participant, with larger values indicating higher interference.   

Likewise, to create a single neural activity index, we treated the 34-parcels as a “mega-parcel”, 

averaging contrast activity values (betas) across the set.  In addition, we z-score normalized, and 

then summed these mega-parcel values across the four tasks for each participant. We then 

correlated the neural activity index against the behavioral composite index.  This correlation was 

significantly positive (r: .25; Pearson’s: p = .04;  Spearman’s: p = .03; see Figure 5A), supporting 

our hypothesis.  
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Table 2.  The 34 parcels identified as showing a consistent effect of cognitive control demand across DMCC tasks. 
Parcel numbers, names, networks, and centroid coordinates (MNI) are those provided in the 400 parcel, 7 network 
resolution Schaefer atlas (Schaefer et al, 2018). For additional information, see 
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal. 
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Reactive Effects: Behavioral Performance.   We next examined whether the experimental 

manipulations designed to encourage utilization of reactive control were effective in enhancing 

behavioral performance by reducing interference effects.  Paired robust (Yuen) t-tests were 

conducted to compare RT and errors across Baseline and Reactive sessions, for each of the tasks.  

In 3 of the 4 tasks, at least one of the behavioral metrics showed a statistically significant effect, 

and this was trending in the remaining task: Stroop (RT: t = 8.01, p < .001; error: t = 1.32, p > .1), 

AX-CPT (RT: t = -1.23, p > .1; error: t = 3.22, p = .002), Cued-TS (RT: t = 0.1, p > .1; error: t = 

1.88, p = .06),  Sternberg (RT: t = 1.67, p = .1; error: t = 2.32, p = .02).   Thus, behavioral data 

support the hypothesis of enhanced task performance (reduced interference) via increased 

utilization of reactive control (see Figure 3).  To support this interpretation, we conducted a paired 

robust (Yuen) t-test on the behavioral composite index aggregated across the 4 tasks, which was 

computed separately for Reactive as well as Baseline, for each participant.  This analysis confirmed 

the hypothesis of a robust decrease in interference (improved cognitive control utilization) in 

Reactive, relative to Baseline (t = 5.36, p < .001).  

 
Figure 3.  Effects of Reactive condition on behavioral performance in DMCC cognitive control indices. Data are 
shown in terms of RT (left side / axis) and error rate (right side / axis) for each of the four DMCC tasks: A. Stroop; B. 
AX-CPT; C.  Cued-TS; D. Sternberg.  Baseline (red bars) and Reactive (green bars) data shown separately.  
Reductions in cognitive control indices indicate decreased interference in each task, consistent with enhanced control 
in the Reactive condition.  
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Reactive Effects: Neural Activity.  We examined whether performing the four tasks under 

Reactive control conditions would be associated with parallel neural activity effects to what was 

observed in terms of behavioral performance. Visualization of the event-related contrast 

timecourses for each task suggested a reduction in activation in Reactive, relative to Baseline (see 

Figure 4) in the 34-megaparcel.   Paired robust (Yuen) t-tests were conducted to statistically 

compare neural activity during the target period across Baseline and Reactive sessions, for each 

task, in the 34-megaparcel.   In all four tasks, we found that activity was numerically reduced in 

the Reactive session, and this reduction effect was statistically significant in 3 of the 4 tasks:  

Stroop (t: 3.83, p < .001), AX-CPT (t: 0.53, p > .1), Cued-TS (t: 2.16, p = .02), Sternberg (t: 2.93, 

p = .005).  Thus, the neural data support the interpretation of reduced activation associated with 

increased utilization of reactive control. To support this interpretation, we conducted a paired 

robust (Yuen) t-test on the mega-parcel, by again computing a neural activity index averaging 

across the four tasks.  This analysis strongly supported the pattern of a robust decrease in activation 

in Reactive, relative to Baseline (t = 4.58, p < .001).  

 

 
 
Figure 4.  Event-related contrast effects for the DMCC tasks in Baseline and Reactive conditions. Data are shown for 
the 34-megaparcel as contrast timecourses (i.e., high – low control demand differences), with the key target period (2 
TR window) shaded in gray.  In the Baseline condition (red lines) there is a clear peak for each of the four DMCC 
tasks.  This peak is consistently reduced across tasks in the Reactive condition (green lines). 
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Reactive Effects: Brain-Behavior Relationships.  We hypothesized that the Reactive-

related enhancement of task performance (reduced interference effects) might be functionally 

linked to the parallel reduction of neural activity observed in fronto-parietal regions (34-

megaparcel).   To test this hypothesis, we first computed the brain-behavior correlation within the 

Reactive condition by itself, using the behavioral composite index and neural activity index.  

Interestingly, within the Reactive condition, we did not observe a significant brain – behavior 

relationship (r = .10; Pearson’s p > .1, Spearman’s p > .1; see Figure 5B).    We next computed 

Baseline – Reactive change scores on these indices.  Here, the brain-behavior correlation between 

these change scores was significant (r = .32; Pearson’s p = .01,  Spearman’s p = .01; see Figure 

5C).  A more formal test of the hypothesis was conducted as a within-subjects statistical mediation 

analysis, according the procedures outlined in Judd et al. (2001).  That is, we tested whether the 

effect of the Reactive experimental manipulation on behavioral performance was statistically 

mediated (or moderated) by its effect on reducing neural activity.   This analysis did find evidence 

of statistically robust mediation (estimate: 0.42, t = 2.77, p = .007) without evidence of moderation 

(estimate: -.21, t: -1.53, p > .1).  

 

 
Figure 5.  Brain-behavior correlations in Baseline and Reactive conditions. Scatterplot data show each participant in 
terms of their neural activity index (z-normalized beta coefficient for the 34-megaparcel summed across the 4 tasks) 
and behavioral composite index (high – low demand cognitive control indices for RT and error z-normalized and 
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summed across the 4 tasks).  The significant positive correlation in Baseline (A) indicates that individuals showing 
greater control-related activity also showed more behavioral interference. This relationship was not significant in the 
Reactive condition (B), but was significant in terms of the Baseline – Reactive change score (C). The positive 
correlation in the change score indicates that individuals showing a larger Reactive-related reduction in activity also 
tended to show a larger Reactive-related reduction in behavioral interference (i.e., enhanced control).   

 

 

Control Analyses. A confound present in the above analyses is that the Reactive 

experimental session always occurred after the Baseline session.  This was an intentional aspect 

of the study design, to enable the Baseline session to provide an unbiased estimate of individual 

differences, and provide a practice foundation for the subsequent sessions. However, it does leave 

open the interpretation that the observed Reactive effects were a by-product of this systematic 

order relationship (e.g., practice or habituation related).   Although it is impossible to fully resolve 

this potential confound, we did conduct two control analyses to address it.  First, there was 

counterbalancing across participants, such that the Reactive session could be performed either 

second or third.  We examined whether session order strengthened the Reactive effect, predicting 

greater effects when Reactive was the third session, if these were primarily due to order.  However, 

we observed no difference in either the neural activity index (t: -1.27, p > .1) or the behavioral 

composite index (t: -1.4, p > .1).  Likewise, we tested whether the Baseline – Reactive brain-

behavior correlation was impacted by whether the Reactive condition was in the second or third 

session.  There was no impact of this variable, and both correlations were of similar magnitude 

(reactive 2nd: correlation = .31; reactive 3rd: correlation = .35).    

 

 

Discussion  

The focus of this report is twofold. First, we provide an overview of the DMCC project, 

with its approach to investigate cognitive control function in a theoretically-driven and 

experimentally-rigorous manner, with a focus on individual differences and brain-behavior 

relationships. Second, we highlight the promise and potential of this project for researchers 

interested in the neural mechanisms of cognitive control, by reporting initial analyses of DMCC 

data that reveal a novel neural signature of reactive control, in terms of decreased stimulus-

triggered activity within a set of fronto-parietal brain regions.  We elaborate on each of these 

dimensions in turn.   
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DMCC Project Features 

 The primary feature of the DMCC study is its within-subjects design, in which each 

participant undergoes over 5 total hours of task fMRI, performing 4 distinct, but theoretically-

targeted cognitive control paradigms (Stroop, AX-CPT, Cued-TS, Sternberg) under three different 

control modes (baseline, reactive, and proactive). There are now a number of other studies, 

utilizing much larger sample-sizes than the DMCC, in which each participant undergoes fMRI 

scanning while performing multiple cognitive tasks (e.g., HCP, ABCD, IMAGEN, PNC; Casey et 

al., 2018; Essen et al., 2013; Satterthwaite et al., 2014; Schumann et al., 2010) as well as smaller 

studies that have collected comparable task fMRI data on each individual (Gordon et al., 2017; 

Nakai & Nishimoto, 2020).  However, to our knowledge, the DMCC project is the first collect this 

much task fMRI data within the domain of cognitive control, using theoretically-targeted 

experimental paradigms. Moreover, the use of a multi-task approach aligns well with psychometric 

and measurement model perspectives, in which the use of multiple task indicators assessing the 

same theoretical construct provides the foundation for more statistically valid extraction of latent 

variables (Conway & Kovacs, 2013; Cooper et al., 2019; Friedman & Miyake, 2016; Kievit et al., 

2011). In other words, by collecting data on each participant from multiple cognitive control tasks, 

the DMCC project provides a more psychometrically valid and meaningful basis for determining 

whether neural and behavioral markers reliably tap into cognitive control, in showing a consistent 

pattern across tasks.   Moreover, from a construct validation perspective, it can be argued that the 

DMCC data most strongly demonstrate the generalizability of behavioral and neural markers of 

cognitive control constructs, by minimizing the impact of measurement error or anomalous / 

spurious effects that might be observed within single tasks.  

 

A second key aspect of the DMCC design is that not only do participants perform multiple 

cognitive control tasks under multiple experimental contexts, but that these contexts were also 

theoretically-designed to manipulate the mode of cognitive control being deployed.  In particular, 

the DMC framework suggests a meaningful distinction between proactive and reactive control 

modes, in that these can be distinguished in terms of operating characteristics, temporal dynamics, 

and neural coding schemes.  The DMCC project provides an unprecedented opportunity to 

systematically test this theoretical framework, by examining the neural activity and behavioral 
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profiles of individuals performing each of the four tasks in the DMCC battery under proactive and 

reactive, as well as baseline conditions.   Moreover, each of the individual tasks provides a rich set 

of data regarding the effects of different experimental manipulations on cognitive control modes 

and mechanisms, such as interference expectancy, instructed strategies, motivational incentives, 

and working memory load.  Conversely, when examined in combination, the dataset enables a test 

of whether consistency in control mode shifts occur even across heterogenous tasks and 

experimental contexts.   As such, the DMCC project can also be construed as a large test-retest 

design, from which state-dependent components of cognitive and neural activation profiles can be 

uncovered and disentangled from the state-independent processes that are engaged as individuals 

perform demanding cognitive tasks.  As discussed further below, here we provide the first analysis 

of this type, leveraging the advantages of the DMCC to demonstrate the presence of consistent 

state-dependent changes in neural activity profiles occurring during reactive control.  

 

 A third key aspect of the DMCC design is its focus on individual differences, enabling 

examination of cognitive control variation in relation to other established sources of individual 

variation.   Because of the broad range of individual difference measures collected outside of the 

scanner, it will be possible to relate variation in cognitive control function and control modes with 

a range of related constructs, including personality traits (e.g., anxiety, neuroticism, impulsivity, 

reward and punishment sensitivity, need for cognition), as well as with closely linked cognitive 

dimensions such as fluid intelligence, working memory capacity, and processing speed.   Another 

source of individual differences information is the HCP, since a large subset of DMCC participants 

also took part in the HCP.  Consequently, it is possible to leverage the set of task fMRI paradigms 

used in the HCP, as well as its larger sample-size (> 1000 participants), to draw inferences and 

connections regarding neural substrates.  Moreover, the larger sample size and genotyping 

available in the HCP make it possible to link neural and behavioral cognitive control profiles 

identified in the DMCC with relevant dimensions of genetic variation.   Additionally, the subset 

of MZ twins within the DMCC sample makes it possible to examine the effects of heritability and 

shared environmental on cognitive control variation in a manner that is more systematic and 

theoretically-driven than has been possible in prior investigations within this domain.    
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The longitudinal component of the DMCC design is its final key feature, as it enables both 

individual differences-focused and other theoretically-valuable investigations of cognitive control 

function.  Specifically, within the DMCC, many participants, including most of the MZ twin pairs, 

return for multiple waves of testing, during which the full experimental protocol is repeated.  This 

aspect of the design provides a test of the longer-term (i.e., multiple month intervals) stability 

versus change present in behavioral and neural cognitive control profiles. Combined with the 

multi-task, multiple context nature of the design, this longitudinal data will enable richer and more 

rigorous investigations that can uncover latent sources of stability and change decoupled from 

task-specific effects and other sources of measurement error.    Moreover, for the subset of DMCC 

participants in the HCP, there is also the possibility of relating cognitive control function with 

stability versus change in resting-state connectivity patterns over even longer intervals (years). 

Lastly, for many DMCC participants the longitudinal component is integrated with a mindfulness 

skills training intervention that occurs between testing waves.   This component of the project 

provides a novel means of testing the relationship between mindfulness and cognitive control 

function – a relationship that has been hypothesized in many theoretical treatments (Malinowski, 

2013; Y.-Y. Tang & Posner, 2009; Teper et al., 2013). Since most of the DMCC participants in 

the mindfulness intervention are members of MZ twin pairs (with their co-twin serving as a wait-

list control), the DMCC project enables investigation of how psychologically and cognitively 

meaningful interventions impact relevant individual differences in cognitive control. This can be 

done by examining how similarity in cognitive control function among MZ twins (relative to 

unrelated individuals) is impacted by a discordant and randomized experimental manipulation.  

 

We describe these key features of the DMCC project in the hopes of making other 

interested investigators aware of the possibilities available with the dataset.  Aligned with the 

current push towards open science and reproducibility, we have a strong commitment to make the 

DMCC dataset publicly available. While the project is ongoing, we plan for a partial release by 

the time this paper is published (of baseline session data), and a full release after study completion.   

Regardless, we encourage interested investigators to contact us regarding the possibility for earlier 

collaboration or dataset access.  
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Initial DMCC findings 

To provide a first demonstration of the promise of the DMCC dataset, we conducted 

analyses that focused on reactive control, particularly whether there was a consistent behavioral 

and neural signature of this control mode.   The reactive control mode has tended to receive less 

investigation than that of proactive control (Braver, 2012), and its characteristics of reactive 

control have been more difficult to describe, sometimes even confused or conflated with a 

reduction in proactive control.   Thus, one of the design goals of the DMCC battery was to provide 

task conditions, across a set of well-established cognitive control paradigms, that manipulated the 

utilization of reactive control, distinct from proactive control.  In particular, we hoped to 

demonstrate that utilization of the reactive control mode can be linked with enhanced cognitive 

control function and improved task performance (i.e., reduced interference effects).  In this respect, 

the results clearly supported our hypotheses.   In all four tasks, we observed behavioral evidence 

of task performance improvements under Reactive conditions, observable as reductions in 

interference relative to Baseline.   

 

 We found a parallel and novel pattern when examining the fMRI data, in that a set of fronto-

parietal brain parcels, defined by their consistent transiently increased activation to high control 

demand target items during the Baseline condition, also showed a consistent reduction in this 

transient response in the Reactive condition.  Three aspects of this finding are particularly 

noteworthy.  First, because we identified the set of 34 fronto-parietal parcels based solely on their 

Baseline activation profiles, the activity reduction we observed in these same parcels under 

Reactive conditions was unbiased.  Second, the set of fronto-parietal regions that we identified 

here are consistent with prior work, which described a similar canonical cognitive control network 

(Cole & Schneider, 2007; Dosenbach et al., 2008; Vincent et al., 2008). This network has also 

been referred to as the multiple-demand network (Camilleri et al., 2018; Duncan, 2010; Duncan & 

Owen, 2000), in that it exhibits consistent responsivity to increasing control demands across a 

range of task contexts (Assem et al., 2020; Fedorenko et al., 2013; Shashidhara et al., 2019).   This 

set is primarily bilateral and includes not only mid-lateral prefrontal cortex and parietal cortex, but 

also other regions linked to cognitive control, such as the anterior insula / frontal operculum, and 

medial frontal cortex / dorsal anterior cingulate.   Our use of a standardized atlas and parcellation 

scheme (Schaefer et al., 2018) facilitates identification of these regions in multiple datasets and 
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across labs, which will promote stronger tests of cross-study consistency in anatomical localization 

and naming conventions.  Third, because of the multi-task nature of the DMCC design, we were 

able to demonstrate a consistent pattern, not only for the Baseline control demand effect, but also  

for the Reactive activation reduction effect.  This consistency increases confidence in the 

interpretation that the Reactive pattern is a generalizable one, occurring across different task 

contexts and experimental manipulations.    

 

Indeed, reactive manipulations implemented across the four tasks were somewhat variable, 

and in some cases, novel.  In the Stroop task, we used an item-specific proportion congruency 

manipulation that has been repeatedly shown in prior work (Bugg et al., 2011; Bugg & Hutchison, 

2013; Gonthier, Braver, et al., 2016).  In the AX-CPT, the manipulation was similar, in that we 

used a context-specific proportion conflict manipulation (spatial location and border color of probe 

items predicted the likelihood that they would be high or low conflict).  To our knowledge, this is 

the first time that both item-specific and context-specific manipulations have been studied together 

in a within-subject, multi-task design.  In the Sternberg task, the reactive manipulation also 

involved interference expectancies, but was related to familiarity, rather than congruency or 

conflict.   Finally, in the Cued-TS paradigm, the reactive manipulation involved a punishment-

related motivational context, so was quite different from the other tasks.  Yet even with these 

heterogeneous manipulations, we observed a similar fronto-parietal neural profile for reactive 

control.  As such, it seems warranted to refer to this fronto-parietal pattern of reduced transient 

activation as the neural signature of reactive control.   

 

The functional relevance of this neural signature was supported by the finding of a clear 

brain-behavior relationship, highlighting individual differences among participants.  In particular, 

the individuals that showed the strongest Reactive-related reduction in transient activity were the 

ones showing the largest behavioral benefits.  The relationship was confirmed through formal 

statistical mediation analyses, which suggest that the impact of the Reactive experimental 

manipulations on task performance, were at least partially mediated by their associated impact on 

neural activity.   Thus, we interpret the findings as indicating that the Reactive-related reduction 

in transient activity is functionally related (or even more provocatively, a causal factor tied) to the 

improvement in performance.   
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There were some potentially surprising aspects of these reactive control findings.  First, it 

might be expected that an increase in cognitive control utilization would be associated with 

increased activation in the neural substrates that implement control functions.   Yet here we found 

the opposite pattern, in which we attribute enhanced utilization of reactive control with a transient 

decrease in event-related activation.  In the neuroimaging literature, decreased activity patterns co-

occurring with improvements in behavioral performance markers are often referred to as reflecting 

enhanced efficiency in neural computation.  That is, the computation may take less time, or require 

less resources.   Indeed, efficiency-related activation patterns have been attributed to enhanced 

cognitive control in some prior work (Gold et al., 2013; Gray et al., 2005; Luna et al., 2010), and 

in particular, in item-specific proportion conditions that reflect utilization of reactive control, in 

tasks such as the Stroop (Blais & Bunge, 2010; Chiu et al., 2016; Grandjean et al., 2013). Thus, in 

some ways, the findings are consistent with the prior literature.  Nevertheless, computational and 

mechanistic accounts of how enhanced cognitive control can give rise to reduced activation are 

still somewhat lacking.  Thus, a fuller understanding the neural mechanisms of reactive control 

will still require further work, as elaborated further below.   

 

Another potential issue related to the interpretation of the current results is that frequently, 

evidence of reduced activation occurs with practice or repetition of items.  This effect is so 

common in the memory and object recognition literature that it is referred to as the repetition 

suppression effect (Gonsalves et al., 2005; Grill-Spector et al., 2006; Henson & Rugg, 2003; 

Horner & Henson, 2008; Larsson & Smith, 2011). Similarly, increasing practice or experience 

with task conditions is also well-established to lead to reductions in task-related activation (Chein 

& Schneider, 2005; Kelly & Garavan, 2004; Petersen et al., 1998).  Finally, reactive control has 

been frequently interpreted as related to the learning of stimulus-response or stimulus-control state 

associations (Chiu & Egner, 2019), potentially via conflict-triggered learning mechanisms 

(Abrahamse et al., 2016; Verguts & Notebaert, 2008, 2009). These associations will build up with 

repeated exposures to stimulus trials and features.  Thus, it is a possible concern that in the DMCC 

study design the Reactive session always occurred after the Baseline session.  As a consequence, 

one alternative interpretation of the Reactive-related reductions in activity is that they merely 

reflect the increased practice that occurs with the general task conditions during the Reactive 
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session relative to Baseline, rather than anything specific or selective regarding the engagement of 

reactive control.   In the analyses conducted for the paper, we partially controlled for this 

alternative interpretation by examining reactive effects as a function of whether the Reactive 

conditions were performed in the second or third session (which was counterbalanced across 

participants).  Under a pure practice or repetition interpretation of the results, both the reduction 

in reactive activation (and behavioral performance) would be expected to be stronger in the third 

session than the second.  Yet no evidence of this pattern emerged.  Nevertheless, stronger evidence 

for the selectivity and specificity of the reactive effects is still needed.  

 

Limitations and Future Directions.  

Although beyond the scope of the current paper, a key next step in the DMCC project will 

be to focus on determining whether a unique neural signature of proactive control can be also be 

identified.  A central claim of the DMC framework, and a primary focus of the DMCC project was 

to test whether proactive and reactive control are implemented by distinct and dissociable neural 

mechanisms.  In particular, the current findings are supportive of DMC framework tenets that 

reactive control is associated with transient neural mechanisms that are stimulus-triggered and 

linked to key features of target items (e.g., conflict, familiarity, punishment, etc).  However, 

proactive control is postulated to involve distinct neural mechanisms that are sustained or cue-

related, and which become engaged ahead of, and in anticipation, of control-demanding events.  

To most strongly confirm the presence of these independent neural control mechanisms, it will be 

critical to determine whether a double dissociation can be established, such that the Proactive 

condition is selectively associated with consistent changes in sustained or cue-related activity 

across the four tasks in the battery, while the Reactive condition is selectively associated with 

transient event-related effects.  Moreover, establishment of such a double dissociation will be 

highly important for ruling out alternative interpretations of the findings, such as those related to 

practice or session-order confounds, such as described above.  

 

Even without a contrasting focus on proactive control, the findings reported here can also 

be advanced by further explication and convergent evidence regarding underlying mechanisms.  

In particular, one intriguing hypothesis is that the Reactive-related reduction in transient activity 

may reflect more efficient signaling and propagation of control-related information among fronto-
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parietal regions.  Furthermore, recent work has pointed to fronto-striatal pathways, particularly 

involving the dorsal striatum and caudate nucleus, in mediating the learning and storage of 

stimulus-control associations (Chiu & Egner, 2019).  Thus, one important direction for future work 

will be complement the activation-focused analyses conducted here, with those aimed at 

understanding whether reactive control is also linked to systematic changes in functional or 

effective connectivity, among fronto-parietal and fronto-striatal regions.   

 

Another important direction will be to exploit both the twin-based and test-retest 

components of the DMCC study design to further explore and support reactive (and proactive) 

control findings.  For example, a powerful means by which to demonstrate the robustness and 

generalizability of the reactive control neural signature would be to test whether it is stable across 

repeated waves of testing.  Such a finding would also be important for ameliorating concerns 

regarding whether the reactive control pattern is confounded with practice or repeated exposure to 

experimental task conditions.  In other words, if the activity reductions found in the Reactive 

condition, relative to Baseline, were also replicated in retest sessions, this would argue against a 

practice-related interpretation, since in the retest sessions, all tasks would already be highly 

practiced and familiar.   Another way to establish the functional importance of the reactive control 

signature would be test whether the individual difference-related brain-behavior relationships we 

observed were also highly similar within MZ twin pairs.   If such a pattern were observed, it would 

clearly support the interpretation that the reactive control signature reflects a meaningful and 

heritable dimension of individual variation, rather than a purely state-dependent activation pattern.   

This type of inference would also be supported by findings that the observed reactive control 

patterns were linked to other sources of individual differences.  For example, in prior work, we 

and others have suggested that reactive control might be associated with increased trait anxiety 

(Fales et al., 2008), risk aversion (Brown & Braver, 2007), and punishment sensitivity (Savine et 

al., 2010). Testing for these associations represents a rich and promising direction of exploration 

within the DMCC dataset, once the sample size permits such investigations to be conducted with 

sufficient statistical power.   

 

 Another potential limitation of the current work, and also a key direction for future 

analyses, relates to the constraints imposed by a univariate, as opposed to multivariate, statistical 
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modeling approach to the DMCC data.    Indeed, univariate approaches only provide information 

about the intensity of brain activation (i.e., increasing or decreasing), and as such are of limited 

utility for understanding the computations that are more likely to be encoded in activation patterns. 

In contrast, multivariate approaches, such as MVPA, provide richer information regarding the 

representational coding schemes that are implemented in different brain regions, which might be 

critical for disentangling and dissociating cognitive control dimensions, such as proactive and 

reactive.   In particular, reactive and proactive control may be most strongly dissociated in terms 

of the neural coding of distinct control dimensions (Freund et al., 2020).  Indeed, reactive control 

might be more strongly identified in terms of the neural coding of congruency information or 

stimulus-control associations, whereas proactive control is likely to be associated with the coding 

of task rules or goal-related information.  Our group has started to explore MVPA approaches, 

such as classification decoding (R. Tang et al., 2020) and representational similarity analysis 

(RSA; Freund & Braver, 2020) with the DMCC data, and this represents a promising direction for 

more systematic exploration.   

  

A related and critical question within the DMCC project is to more firmly establish the 

domain-generality of reactive and proactive control.  Although domain-generality can explored 

with univariate approaches as well, such as through conjunction analysis and composite indices, 

as utilized in this report, such methods are less powerful, since they are susceptible to measurement 

error and other sources of noise.  Indeed, there has been quite a bit of recent controversy and debate 

regarding whether univariate behavioral and neural measures of cognitive functioning are 

sufficiently reliable to be treated as individual difference measures and included in cross-task 

analyses (Bennett & Miller, 2010; Dubois & Adolphs, 2016; Elliott et al., 2020; Hedge et al., 2017; 

Rouder & Haaf, 2019; Whitehead et al., 2019).  One solution to this problem is to use latent 

variable approaches, which are especially well-adapted to the multi-task, multi-condition approach 

utilized in the DMCC project.  Because latent variable approaches examine relationships between 

latent factors, estimated in shared variance across tasks or conditions, they are less prone to 

measurement error, and as such may be more sensitive and selective in revealing the domain-

generality of cognitive control dimensions.  Indeed, our group has begun exploring the use of latent 

variable approaches to neuroimaging analyses, in large-sample datasets such as the HCP, and 

found them to be quite effective (Cooper et al., 2019). However, one of the main drawbacks of 
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such approaches is that they are “data-hungry” and are likely not to be sufficiently powerful in 

datasets such as the DMCC until data collection is complete, with sample-sizes in the range of 200 

hundred individuals.  

 

This is again an issue for which multi-variate approaches might represent an alternative 

and more efficient solution (Dubois & Adolphs, 2016).   A key advantage of MVPA approaches 

is not only that they provide richer descriptions of neuroimaging data, by more effectively pooling 

voxel-wise patterns, but also that they may more easily enable more abstracted measures brain 

activity, that are less susceptible to measurement error and artifacts (Cohen et al., 2017; Norman 

et al., 2006).   In particular, RSA measures, which focus on the similarity in neural activation 

patterns, can enable examinations of second-order relationships (Haxby et al., 2014; Kragel et al., 

2018; Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013), such as the relative similarity of 

high control and low-control demand conditions across tasks.  By focusing on cross-task and cross-

session similarity structure, these types of RSA approaches are likely to be the most powerful ones 

for revealing whether the neural coding of reactive and proactive control does indeed show the 

theoretically-predicted forms of domain-generality suggested by the DMC framework.   

 

Conclusion 

 The DMCC project represents an ambitious and rigorous attempt to reveal key neural 

mechanisms of cognitive control.  In particular, it tests the key theoretical tenets of the DMC 

framework, which postulate reactive and proactive modes as meaningful and distinct dimensions 

of cognitive control that are serve as important sources of both intra- and inter-individual variation.  

Towards that end we have provided initial support for these DMC tenets, by identifying a novel 

neural signature of reactive control, that it is: a) consistently engaged across multiple tasks; b) 

involves a focal set of fronto-parietal regions; c) contributes to behavioral performance 

enhancements observed under that conditions encourage utilization of reactive control; and d) is 

subject to significant individual differences.  Our goal is to inform investigators interested in 

individual differences and cognitive control of the advantageous design features of the DMCC 

project, with the hope that they will be encouraged to make use of the dataset, when the data 

become publicly available, which we commit to doing as soon as possible.   In that spirit, we hope 

to contribute to building a strong community of researchers working together to advance our 
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understanding of frontal lobe function, the neural underpinnings of cognitive control, and 

individual differences in these domains.     
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