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Abstract 
Background One of the growing problems in genome diagnostics is the increasing number 

of variants that get identified through genetic testing but for which it is unknown what the 

significance for the disease is (Variants of Unknown Significance - VUS)1,2. When these 

variants are observed in patients, clinicians need to be able to determine their relevance for 

causing the patient’s disease. Here we investigated whether allele-specific expression (ASE) 

can be used to prioritize disease-relevant VUS and therefore assist diagnostics. In order  to 

do so, we conducted ASE analysis in RNA-seq data from 3,818 blood samples (part of the 

the Dutch BIOS biobank consortium), to ascertain how VUS affect gene expression. We 

compared the effect of VUS variants to variants that are predicted to have a high impact, and 

variants that are predicted to be pathogenic but are either recessive or autosomal-dominant 

with low penetrance. 

Results For immune and haematological disorders, we observed that 24.7% of known 

pathogenic variants from ClinVar show allelic imbalance in blood, as compared to 6.6% of 

known benign variants with matching allele frequencies. However, for other types of 

disorders, ASE information from blood did not distinguish (likely) pathogenic variants from 

benign variants. Unexpectedly, we identified 5 genes (ALOX5, COMT, PRPF8, PSTPIP1 

and SH3BP2) in which seven population-based samples had a predicted high impact, 

autosomal-dominant variant. For these genes the imbalanced expression of the major allele 

compensates for the lower expression of the minor allele. 

Conclusions Our analysis in a large population-based gene expression cohort reveals 

examples of high impact, autosomal-dominant variants that are compensated for by 

imbalanced expression. Additionally, we observed that ASE analyses in blood are 

informative for predicting pathogenic variants that  are associated with immune and 

haematological conditions. We have made all our ASE results, including many ASE calls for 

rare variants (MAF < 1%), available at https://molgenis15.gcc.rug.nl/.  
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Introduction 
One of the challenges in the diagnosis of genetic disorders is the growing number of 

Variants of Unknown Significance (VUS)1,2. As (clinical) exome sequencing becomes more 

prevalent, new variants are increasingly being identified, but the consequences of these rare 

variants remain mostly unknown. However, a recent study suggested that rare variants might 

explain much of the missing heritability3. For common variants, genome-wide association 

studies and expression Quantitative Trait Loci (eQTL) studies4–6 are commonly used to 

identify disease-associated variants and infer their molecular consequences. This has led to 

the observation that many of these genetic risk factors affect gene expression, indicating that 

transcriptional consequences are informative for predicting whether a common variant is 

associated with disease. By further increasing eQTL sample sizes, it is now possible to 

make such inferences for variants with a minor allele frequency (MAF) of at least 1% 6. 

However, the power to make inferences for rarer variants remains limited. One way to 

resolve this is to identify their downstream molecular consequences by studying allele-

specific expression (ASE) 7. Knowledge about rare variants gained using this approach can 

then aid in interpreting their pathogenicity, which could substantially increase the diagnosis 

rate of patients 8,9. As such, RNA-Sequencing methods can help prioritize rare variants that 

show downstream molecular effects and are more likely to cause (rare) disorders. 

Here we studied RNA from whole blood for 3,818 unrelated individuals from BIOS, a 

large Dutch biobank consortium. To identify rare variants, we conducted genotype calling on 

the RNA-Sequencing data directly. We then studied ASE for 297,656 high quality variants 

and identified 45,197 variants that show an allelic imbalance. We showed that known 

pathogenic variants are more likely to show an ASE effect. Furthermore, downstream 

analyses identified 7 samples carrying high impact, autosomal-dominant variants, which 

showed strong allelic imbalance. 
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Results 
 

RNA-Seq data can be used to create high-quality phased genotypes 

We first determined the genotypes for all BIOS samples using RNA-Seq expression data by 

employing a modified version of the GATK10 best practices workflow for genotyping (see 

Methods). After joint genotype calling and filtering out genotypes with low quality, low call 

rate, or overlap with RNA-editing sites, missing genotype calls were imputed to their most 

likely genotypes using a backbone of genotyping array-genotypes and genotypes called from 

RNA-Seq. After quality control (QC), 297,656 SNPs in 9507 genes were called 

(Supplementary Fig. 1a), and most of these SNPs had a low MAF (mean MAF = 0.036, 

Supplementary Fig. 1b). The number of low MAF SNPs is so high largely due to the 

limitation of calling genotypes from RNA-Seq data, as genes have to be sufficiently 

expressed. 

For 249 samples, whole-genome sequencing (WGS) data was available from the 

Genome of the Netherlands (GoNL) project11, and we used this data as a gold standard 

comparison set to assess genotype quality. For genotypes called with our RNA-Seq 

genotype approach and present in the WGS data (73,422 variants, 78.95% of GoNL RNA-

Seq variants were available in GoNL WGS data), we observed a mean genotype 

concordance of 98.27%. Furthermore, the allele frequency (AF) was highly concordant (R2 = 

0.99, Fig. 1a) and similar at lower frequencies (AF < 0.1: R2 = 0.937, Fig. 1b).  

ASE for a gene can only be calculated if there is at least one heterozygous site within that 

gene. In total, we were able to genotype 9,508 genes in which at least one sample had a 

heterozygous coding SNP, with a mean of 1,495 samples with at least one heterozygous 

SNP per gene (Supplementary Fig. 2a). Of the genes where we found no samples with a 

heterozygous genotype, these genes were either not expressed or expressed at very low 

levels in blood, which prevented determination of the genotype. Overall, per sample 

genotype data could be derived for 3,650 genes on average (Supplementary Fig. 2b). We 

then used SHAPEIT12 to phase imputed genotypes to haplotypes and to calculate haplotype- 
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and gene-level ASE effects. To determine the quality of the phasing, we again used the 249 

samples for which WGS genotypes were available, and which were previously trio-phased 

with their parents, as the gold standard. In this data 69,752 heterozygous SNPs were called, 

of which 10,465 (15%) have at least 1 sample with a switch error. For most SNPs, only 1 or 

a few samples had a switch error per SNP. Averaged over all SNPs and samples 1.97% had 

a switch error (Fig. 1c). Together, this shows that the phasing of the RNA-Seq-based 

genotypes is of high quality, meaning that these data could be used for gene-based ASE. 

 

Figure 1. Quality of RNA-seq based genotypes for allele specific expression analysis. A) Allele frequency 
comparison showing strong correlation between WGS genotypes and RNAseq genotypes for 68,564 SNPs from 
the same samples. B) The same allele frequency comparison between RNAseq-based genotypes and WGS 
genotypes for rare variants. C) RNAseq-based genotype switching error after phasing. D) Comparison in allelic 
effect direction between blood and GTEx whole blood ASE.   
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Selection of samples showing strong gene-level ASE effects 

We measured three types of ASE effects: SNP-level ASE over the whole population (for 

validating ASE results), SNP-level ASE per sample, and gene-level ASE (geneASE). SNP-

level ASE over the whole population is calculated by per SNP summing minor counts for all 

samples and summing major counts for all samples, and subsequently performing a binomial 

test with an expected p of 0.5. In order to correct for multiple testing, we employed the 

Benjamini-Hochberg method and considered those SNPs significant when the false 

discovery rate (FDR) was less than 0.05. GeneASE takes into account the summed 

haplotype counts for all the heterozygous SNPs that overlap the gene. For geneASE, we 

determined per gene for all samples separately, whether there is an ASE effect by summing 

the counts of haplotype A and summing the counts of haplotype B, and subsequently 

performing a binomial test for every gene on the summed haplotype A and haplotype B 

count for that sample with expected p = 0.5. In order to correct for multiple-testing we again 

used the Benjamini-Hochberg method and all samples with an FDR < 0.05 were considered 

to show a significant ASE effect, yielding a total of 3,611 genes with at least 1 sample that 

showed geneASE. On average, 50 samples show an ASE effect per gene. 

The SNP-level ASE per sample was determined in the same way as the GeneASE, but 

instead of using haplotype A and haplotype B counts, the SNP minor and major allele counts 

were used. 

 

ASE is replicated in GTEx whole-blood ASE and in eQTLs 

To validate the ASE calls, we compared our SNP-level ASE over the whole population to 

eQTLs on the same dataset and ASE effects found in LCL cell lines13 and GTEx14. For each 

SNP for which at least 30 individuals were heterozygous, we summed the read counts 

overlapping the major allele and those overlapping the minor allele over all samples 

heterozygous for that SNP. We filtered out SNPs with 0 counts on the minor or major allele 

and calculated a ratio with -1*(0.5 - (major allele count / total count)), so that a negative ratio 
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means that the minor allele has more reads than the major allele, and a positive ratio means 

the major allele has more reads than the minor allele. We compared this ratio to the BIOS 

eQTL z-score, allelic ratio of LCL ASE and allelic ratio of GTEx ASE.  

For the eQTLs, there was an overlap of 4,394 SNPs with False Discovery Rate 

(FDR) < 0.05 for both the ASE effect and the eQTL effect. Of these overlapping SNPs, 

87.5% had the same direction with a Spearman correlation coefficient of 0.78 

(Supplementary Fig. 3). For LCL ASEs, 7,901 SNPs overlapped when selecting only those 

SNPs with at least 30 heterozygous samples that are significant in both datasets (FDR < 

0.05), with a 72.2% allelic concordance and Spearman correlation coefficient of 0.527 

(Supplementary Fig. 4). As expected, since it is the same tissue, we find the largest ASE 

overlap with GTEx whole blood. There were 9,117 overlapping SNPs after filtering for FDR < 

0.05 and at least 30 samples, these 9,117 SNPs had a Spearman R2 of 0.72 and an allelic 

concordance of 82.65% (Fig. 1). For other GTEx tissues the Spearman R2 was between 0.6 

and 0.68 (Supplementary Fig. 5). 

  

Rare variants are not enriched for ASE effects 

Rare variants are thought to have a large contribution to disease phenotypes and those that 

show eQTLs effects usually have higher effect sizes than common variants15, although this 

can also be explained by power issues. We therefore assessed whether rare variants affect 

allelic imbalance more often than common variants. To test this, we used the geneASE 

described to define genes showing ASE and genes not showing ASE, and subsequently 

counted the number of heterozygous SNVs within the genes for different MAF bins (< 0.1%, 

0.1-1%, 1-5%, 5-50%). We then tested, per sample, whether genes with an allelic imbalance 

contained more rare variants than genes that did not show an allelic imbalance and found 

that genes containing common heterozygous variants showed an allelic imbalance more 

often than genes containing rare variants (Supplementary Fig. 6, p < 1x10-300). This suggests 

that although the effects of rare variants might be larger, proportionally rare variants show 

allelic imbalance less often than common variants.  
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Known pathogenic variants from the ClinVar and VKGL databases show a high 

proportion of allelic imbalance 

To investigate if ASE can be used to prioritize likely pathogenic variants, we tested if genes 

containing pathogenic SNPs show allelic imbalance more often than genes containing 

benign SNPs. We took the 341,303 variants annotated by the ClinVar database 

(downloaded 19-02-2019) and selected 63,983 high-confidence variants (criteria provided, 

multiple submitters, no conflicts). For our 318,782 high-quality genotypes, 2,746 overlapped 

with these high confidence variants (2,200 benign, 125 pathogenic and 421 VUS). For 162 of 

these (113 benign, 8 pathogenic and 41 VUS) the gene in which the SNP is located did not 

have any allelic counts (e.g. because there were no heterozygous individuals with enough 

reads for this gene). For the remaining 2,584 variants, we compared the fraction of samples 

that show geneASE (binomial test p-value < 0.05 after Bonferroni correction) between 

pathogenic variants, VUS and benign variants. For ClinVar-annotated variants, genes that 

contained pathogenic variants showed allelic imbalance more frequently than genes that 

contained VUS and benign variants (5.89%, 2.87% and 3.01% respectively, Fig. 2B)16. We 

observed similar results looking at data from the VKGL data share consortium17, a Dutch 

variant classification database of annotated variants, where there was more allelic imbalance 

for pathogenic variants than for benign variants (20.3% versus 4.9%, Fig. 2B).  
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Figure 2. Comparison of the percentage of variants that show allelic imbalance between ClinVar- and 
VKGL-annotated variants. (A) Percentage of samples that show allelic imbalance if they carry a pathogenic, 
VUS, or benign variant per ClinVar-annotated pathogenicity group. (B) Percentage of samples that show allelic 
imbalance if they carry a pathogenic, or benign variant per VKGL-annotated pathogenicity group. VKGL is a 
Dutch variant classification database. 
 

We then annotated the genes in which these SNPs are located into different disease 

categories using the Online Mendelian Inheritance in Men (OMIM) database18. For some 

disease categories, where high-impact variants (as predicted by SnpEff19) are found within 

genes, the fraction of outlier genes is higher for the high-impact variants than for the benign 

variants. For example, high impact variants showed higher allelic imbalance than low and 

moderate impact variants for “allergy/immunology/infectious” diseases, 

“audiologic/otolaryngologic” diseases, “hematologic” diseases, and dental diseases, while no 

such difference was seen for other disease categories (Fig. 3). This suggests that ASE 

works better in prioritizing variants when RNA-Seq measurements are taken from disease-

relevant tissue.  
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Figure 3. Comparison of proportion of variants that show allelic imbalance between clinvar annotated 
variants for different OMIM disease categories. Each plot is a different OMIM disease category. The x-axis are 
ClinVar pathogenicity categories. The y-axis is the proportion of variants that belong to that category that show 
allelic imbalance (binom FDR p-value < 0.05), e.g. of the 59 VUS SNPs in Audiologic genes, ~20% shows allelic 
imbalance. The same variant can be counted multiple times if multiple samples carry the same variant.  

 
Splice donor and acceptor variants are often the cause of allelic imbalance 

We next investigated the functional effect of ASE variants by annotating variants using SnpEff19, a 

genetic variant annotation and functional effect prediction toolbox. We observed that for some 

disease categories, predicted high impact variants showed allelic imbalance more often than 

moderate and low impact variants (Supplementary Fig. 6). When examining SnpEff predicted 

inheritance categories, the high impact variants always showed a higher proportion of allelic 

imbalance for all inheritance categories that contained high impact variants (Autosomal Dominant 

(AD), Autosomal Dominant or Autosomal Recessive (AD/AR), Autosomal Recessive (AR), and other, 

Supplementary Fig. 7). The SnpEff categories are partly based on the type of mutation. Within the 
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high impact category, splice donor and acceptor variants showed allelic imbalance more often (64% 

and 71%, respectively) than stop gained, stop loss and start loss variants (41%, 49% and 12%, 

respectively). When variants were stratified by high impact category, the strongest enrichment (Test 

of Proportions p = 4.72x10-106, Supplementary Fig. 8) was observed in the stop gain category. Other 

categories in which this enrichment is present are start loss (p = 2.73x10-25), stop loss (p = 2.5x10-50) 

and splice acceptor sites (p = 5.67x10-05). 

 

Predicted high impact variants under express the minor allele 

The effect of high impact variants might be mitigated if the expression of the haplotype with the 

disruptive allele is lower than that of the haplotype with the functional allele. To test this, we 

annotated the geneASE SNPs with SnpEff-predicted impact categories. Here we observed that the 

minor/major expression ratio of high impact variants showed significantly larger differences than 

that of moderate (Wilcoxon  test p = 1.9x10-15) and low impact variants (Wilcoxon test p = 6.8x10-26, 

Fig. 4). We speculate that this is because the high impact variant limits the amount of expression of 

the haplotype of that allele by having a start loss or stop gain function, possibly leading to nonsense-

mediated decay. The major haplotype can compensate for the loss of function of the modified 

haplotype to keep the overall expression of the gene similar to the baseline expression. One way this 

can happen is due to a feedback loop from downstream proteins not getting enough correctly 

binding proteins, initiating the transcription of more RNA of the imbalanced gene.  
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Figure 4. Fraction of reads overlapping the minor allele compared to major allele for different SnpEFF 
predicted impact categories.  

 
Expression of some genes with autosomal dominant mutations is normal compared 

to the rest of the population 

Finally, we found that seven individuals carried a total of six high impact (SnpEff-predicted 

impact = high and CADD phred score > 20) autosomal dominant variants within one of five 

different genes (ALOX5, COMT, PRPF8, PSTPIP1 and SH3BP2), yet none of these seven 

individuals had been diagnosed with a genetic disorder. Therefore it is surprising to find 

these autosomal dominant variants in a healthy cohort. The allelic depth of five of these 

seven observations was high (≥36 reads on each allele), making it unlikely that they are 

false positive findings. For two genes, COMT and PRPF8, the allelic depth was lower (26/6 

and 8/40 counts on the reference/alternative allele, respectively), indicating that these might 

be false positives. Of the six variants, one was also observed in array data with a concordant 
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genotype, while the others were not present in the array data because they were too rare to 

be reliably imputed.  

Since our BIOS participants are mostly healthy, it is unlikely that these autosomal dominant 

mutations cause severe disease, and thus their penetrance is likely to be low. In order to 

understand this, we compared the expression levels of all individuals in the BIOS cohort to 

the expression levels of the seven individuals discussed above and found that their 

expression was not outside of the norm of the rest of the cohort (Fig. 5). Interestingly, in 

some of these seven individuals, one of the alleles completely rescues the expression levels 

for that gene. For example, the carrier of a variant in PRPF8 had average expression for 

PRPF8, but the major allele contributed 80% of the expression. Interestingly, one sample 

with a low impact SNP in the same gene shows almost the same gene expression, even 

though the minor allele contributes 60% of the total expression for that gene (Fig. 5). PRPF8 

is also the only gene out of the 5 that is intolerant to mutations according to its pLI score. For 

SH3BP2, the variant is located at the start of exon 9, which is a non-constitutive exon.  

 

Figure 5. Expression levels of autosomal dominant variants and variants with different SnpEff impact. (A) 
Distribution of expression levels for all samples for six autosomal dominant genes that contain high impact 
variants (CADD score > 15). The expression of the sample with the autosomal dominant variant is shown by the 
dot color.  
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Discussion 
 

In clinical genetics there are still many cases where a diagnosis cannot be made20. For some 

of these undiagnosed cases, RNA-Sequencing can help make a diagnosis21, and outlier 

ASE has recently been used as diagnostic tool for muscular disease patients22. However, to 

know what effect a very rare pathogenic variant might have, ASE must be analysed in a 

large dataset. In this study we explored the effects of rare variants on gene expression in 

blood in the samples of 3,810 individuals from BIOS, a Dutch population-based consortium. 

This allowed us to compare the effects of rare variants on gene expression for SNVs with 

different pathogenicity levels and impact factors for genes in various disease categories. 

 

Effects of high impact and pathogenic variants 

We found that pathogenic variants annotated by ClinVar16 and VKGL17 showed allelic 

imbalance more often than VUS and benign variants. One possible explanation for this is 

that if the expression of the gene in which the variant is located is altered, this gene could 

more likely have a phenotypic effect. These variants are only possible to exist if there is 

compensation for via the other allele. Since the individuals in this study were not known to 

have a genetic disorder, there should be some compensation for this variant, either through 

other genes and mechanisms or by recovery of the gene expression through the other allele. 

This is indeed observed for the autosomal dominant high impact variant in PRPF8, where 

the major allele compensates for the much lower expression of the minor allele. We further 

observed that predicted high impact variants also showed allelic imbalance more often than 

moderate and low impact variants, which holds for all disease categories in which there was 

a gene with high impact variants. Also, between low and moderate impact variants, we often 

observed much smaller difference between the numbers of variants with allelic imbalance. 

Genes with high impact variants also showed higher expression on the major allele, 
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although, due to the fact that rare variants (MAF < 0.01) were not masked during read 

alignment, a somewhat higher expression is expected due to possible reference bias. 

 

Limitations of our approach 

There are several limitations to our approach. We examined a healthy population cohort to 

look at the effects of rare variants, but this obviously limited the number of pathogenic 

variants. Although we have a large sample size to look at allelic imbalance in blood samples, 

many effects are not shared between tissues23, which may explain why we only find allelic 

imbalance of pathogenic variants in certain disease categories. This suggests that RNA-

Sequencing from blood, while the most readily available tissue in a clinical setting, may only 

be relevant for a limited number of disease phenotypes. For other diseases, the differences 

in allelic imbalance were not picked up in blood, most likely because the disease-relevant 

genes are not sufficiently expressed in this tissue. Finally, even with the relatively large 

number of individuals, there were only a limited number of known pathogenic variants 

present in the BIOS cohort. Improvements could be made by increasing the sample size of 

the study cohort by generating more gene expression profiles or by involving other existing 

datasets in the meta-analysis.  

 

Conclusion 

We examined allele specific expression (ASE) within RNA-Seq data for the BIOS cohort in 

order to see if we could identify differences in ASE effects between known pathogenic or 

high impact variants and benign or low impact variants. In the future we would like to apply 

this approach to samples from the clinic to determine if ASE can help in prioritizing disease-

relevant variants by identifying VUS with a large allelic imbalance and comparing it to the 

allelic imbalance found in the same gene for healthy individuals. We have also shown that it 

is possible to accurately genotype exonic variants and to subsequently phase them using 

RNA-Seq data, improving on the work of Deelen et al.13. This can be an added benefit for 
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genome diagnostics. We have also shown that it is possible to identify rare variants that 

have a strong effect on gene expression data, solely by using RNA-Seq data. Variants 

known to be pathogenic and located in genes from relevant disease categories show 

imbalanced allelic expression more often than benign variants in the same gene. VUS show 

an imbalance in allelic expression at the same or lower rates as benign variants. We 

hypothesize that variants within the VUS category that show allelic imbalance are more likely 

to be pathogenic than those that do not. Follow-up studies examining patient data would be 

interesting to show whether measuring RNA-expression levels in patients would help 

improve diagnostics. 

 

Material & Methods 

RNA-Seq preparation and data processing in the BIOS cohort 

RNA sequencing methods are described in Zhernakova et al.4 After sequencing, the RNA-

Seq data was prepared in two different ways. For expression level quantification and 

mapping of reads for ASE analysis, we used the BAM files from Zhernakova et al.4 In short, 

the generated fastq files were first checked on read quality using FastQC24 software. 

Second, adaptor sequences were trimmed using CutAdapt (v1.1)25 with default settings. 

Third, Sickle (v1.200)26 was used to remove low quality read ends. All reads were aligned 

using STAR v2.3.0e27. To avoid reference mapping bias, all SNPs present in the Genome of 

the Netherlands (GoNL)28 dataset with a MAF ≥ 0.01 were masked during alignment. Read 

pairs mapping to at most five positions and having at most eight mismatches were retained 

for downstream analyses. Subsequent gene quantification was done on Ensemb29 build v71 

(which corresponds to GENCODE30 v16). 

For genotype calling, the alignment of RNA-Seq data was done using the UCSC 

genome build 37, as defined in the 1000 Genomes project (bundle 2.8, downloaded: 
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ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/), using Hisat31 version 0.1.6-beta 

and default settings. Unlike the mapping for the ASE analysis, the genome was not masked. 

Subsequently, the SAM alignment files generated were filtered using SAMtools32 (v1.2) to 

only contain uniquely mapping reads and afterwards converted to BAM format, sorted on 

genomic position and indexed using Picard tools version 1.102. 

 
Data processing and genotype calling 

Aligned reads were processed using several command line tools from the Picard tools 

v1.102 set. Aligned reads were assigned read groups using Picard tools’ 

AddOrReplaceReadGroups. All BAM files that passed QC were merged to a single BAM file 

per sample according to the QC outcome of the concordance checks from Picard’s 

MergeSamFiles.  

Picard tools MarkDuplicates marked all duplicate reads, which indicate PCR 

artefacts, and these duplicates were not used in subsequent analysis.  

Further read adjustment was done using GATK version 3.4.0. To prevent false 

discovery of incorrectly spliced reads, reads including N cigar elements were split using 

GATK SplitNCigarReads with parameter ReassignOneMappingQuality set to 255 and 60, 

assuring hard clipping of overhanging reads and assigning the correct quality value of 60 to 

high quality mapping sites. For realignment around indels, GATK IndelRealigner was run 

with the 1000 genomes phase 133 and Mills et al.34 data set as the gold standard data set.  

A phred-scaled quality score was associated with every base. After adjusting reads 

as described, GATK BaseRecalibrator was used to recalibrate the base quality scores using 

information from the base cycle, base context and original base quality score, taking into 

account known variant sites from dbSNP35, the 1000 genomes project33 and the Mills et al.34 

standard set.  

Initial haplotypes were constructed using GATK HaplotypeCaller emitting sites in 

gVCF mode. The gVCF mode generates VCF files in which information of genomic regions 
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is also captured. This information is used downstream to call variants on the complete cohort 

of samples. 

To speed up genotype calling on cohort level, we used a custom-made Python script 

(https://github.com/molgenis/ngs-utils/blob/master/generate_merge_vcf_jobs.py) to generate 

jobs that merge 200 gVCF files using GATK CombineGVCFs into a single vcf file to be used 

as input in the next analysis step. 

The final call set was generated using GATK GenotypeGVCFs. We used all merged 

gVCFs containing 200 samples each as input and set a call confidence threshold of 10.0 and 

an emit confidence of 20.0. This approach ensured that all individual-level SNP information 

required for downstream analysis were present. 

 

Concordance between RNA-Seq genotypes and WGS genotypes 

Phased WGS genotype VCF files were obtained from the GoNL project28. The 249 GoNL 

samples that were included for the ASE project were selected from the VCF file, and the 

allele frequency was recalculated. The same 249 samples were selected from the RNA-Seq-

based genotype VCF files, and allele frequency was re-calculated. Plots were made using 

https://github.com/npklein/BIOS_ASE/blob/master/concordance_GoNL_DNA_vs_RNA.R.  

 

Alignment quality control 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to check 

quality metrics, and we removed individuals with <70% of reads mapping to exons (exon 

mapped/genome). To assess the alignment quality per sample the Picard Tools 

CollectMultipleMetrics, CollectRNA-SeqMetrics and SAMtools flagstat were executed on all 

sample-level BAM files. 
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Filtering of the genotype call set 

We included only unrelated individuals and removed population outliers by filtering out 

samples >3 standard deviations from the average heterogeneity score. Low quality variants 

and sites where many samples do not have a genotype call can badly bias genotype calling 

and phasing. We therefore filtered all variants in the call set on two criteria: call rate of at 

least 50% and per sample genotype quality of at least 20. Filtering was performed using a 

custom Perl script (https://github.com/freerkvandijk/miscellaneous/blob/master/filterRNA-

SeqCallsV2.pl). Variants for which all genotypes were set to missing after applying the filter 

were completely removed from the call set. We filtered our call set to keep only biallelic sites 

using GATK SelectVariants with the parameters -selectType SNP and -restrictAllelesTo 

BIALLELIC. 

 

eQTL and ASE replication 

To replicate the ASE effects in eQTLs and ASE, the major and minor counts per variant 

were summed over all samples for SNPs where at least 30 samples are heterozygous. The 

ratio of the ASE effect was calculated as: (minor allele counts) / (major allele counts). The P-

value was calculated with a binomial test, with 0.5 as expected value for the minor over total 

counts, and adjusted for multiple testing with Benjamini-Hochberg method. The ASE ratio is 

centred on 0 so that for values < 0 the minor allele has lower expression than the major 

allele and for values > 0 the minor allele has higher expression than the major allele. 

To replicate the effect in eQTLs, cis-eQTLs were calculated in the BIOS dataset for 

only the SNP–gene pairs for which we obtained an ASE score for SNPs with MAF > 0.01, 

call rate >0.95 and Hardy-Weinberg >0.0001. If the assessed allele of the eQTLs was not 

the same as the minor allele of the ASE SNP, the z-score was flipped. FDR for the eQTLs 

were calculated using a permutation strategy, as described previously in Westra et al.36 

SNPs where both the ASE effect and the eQTL effect FDR were <0.05 were used in the 

comparison. 
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To replicate the effect in GTEx, GTEx ASE counts were downloaded from the GTEx 

portal (https://www.gtexportal.org/home/datasets) and harmonized to the BIOS minor allele. 

P-values for the GTEx effects were calculated using a binomial test and corrected for 

multiple testing using the Benjamini-Hochberg method. For both BIOS and GTEx, SNPs 

were only included if at least 30 samples were heterozygous. 

To replicate ASE effects in LCL cells, an LCL ASE dataset13 was downloaded from 

https://molgenis56.target.rug.nl/menu/main/dataexplorer?entity=ASE. LCL SNPs that 

overlapped with BIOS ASE SNPs and had an FDR corrected p-value < 0.05 were used for 

comparison. 

 
Phasing of low coverage genotype call set 

For parallelization, the genome was chunked by selecting all genes expressed in blood 

(expressed gene list can be downloaded from https://github.com/molgenis/molgenis-

pipelines/blob/master/compute5/BIOS_phasing/scripts/expressedGenesBlood20170213.txt), 

merging the overlapping chunks, and subsequently extending the chunk range to the 

neighbouring chunks. All subsequent phasing steps were done per chunk. Missing 

genotypes were filled in with Beagle37 v.4.1 version 27Jul16.86a (beagleVCF). A separate 

VCF was generated with the phred-scaled likelihoods converted to genotype likelihoods 

using a custom script (https://github.com/molgenis/ngs-

utils/blob/master/PL_to_GL_reorder.py, adjusted from 

https://github.com/team149/tc9/blob/master/conversion/PL2GL.py ). beagleVCF and 

likelihoodVCF were converted to Shapeit2 format using prepareGenFromBeagle 

(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/files/prepareGenFromBeagle4.tgz

). Subsequently, the converted VCF files, together with the original input VCF files, were 

converted to Shapeit2 format using prepareGenFromBeagle 

(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/files/prepareGenFromBeagle4.tgz

). 
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The chunks were phased with Shapeit v2.r837 using the following parameter settings: --

input-thr 1.0, --window 0.1, --states 400, --states-random 200, --burn 0, --run 12, --prune 4 

and --main 20, using LifeLines Deep imputed and phased SNP array as scaffold. 

 
Read-backed phasing and allelic count generation 

Read-backed phasing can be used to improve phasing of variants, especially rare variants, 

that influence splicing. We used phASER38 (version 1.0.0, git version cd7daba) to perform 

read-backed phasing for all samples in combination with the RNA-Seq BAM files. PhASER 

ran with the following options: --paired-end, --gw_phase_method, --gw_phase_vcf, --baseq 

10 and --mapq 255, allowing only uniquely mapped reads to be used for counting of alleles. 

In addition to these options, we also enabled the --unphased_vars, which is required to run 

phASER Gene AE afterwards. 

phASER provides haplotypic counts for blocks of overlapping RNA reads. With 

GeneAE, the haplotypes that overlap a gene are summed to give a genetic feature count. 

For each sample and gene, the results are aggregated into a matrix with an allelic ratio for 

each gene and each sample.  

 
Job generation, execution and monitoring 

The genotype calling from the RNA-Seq data described above was conducted by 

implementing all commands in bash protocols. Each protocol contains the commands, 

settings and variables, which are filled in during generation time by the MOLGENIS Compute 

framework39. This framework enables the generation of bash scripts for use on several 

cluster environments by combining information from a workflow file, parameter file and 

sample sheet containing detailed information about samples. All pipelines can be found 

here: https://github.com/molgenis/molgenis-pipelines/. We used Public_RNA-Seq_QC, 

Public_RNA-Seq_genotypeCalling and BIOS_phasing with commit version 

d44386698818cf422715db56a9b8e3da1e06d586 for all analyses.  
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Annotating variants with functional information 

Variants were annotated using SnpEff19 (v4.3) with the parameters -lof, -canon, -ud 0. 

Subsequently, the SnpEff closest was used to annotate variants to their closest genomic 

region. Additional allele frequency information from ExAC and GoNL were added using a 

custom script 

(https://github.com/npklein/BIOS_ASE/blob/master/annotateVariantTablesWithExACandGoN

LAlleleFrequency.pl). 

 

Processing allelic counts 

A walkthrough of all steps can be found at https://github.com/npklein/BIOS_ASE. GeneAE 

counts from phASER38 were converted to a matrix with haplotype A and matrix with 

haplotype B counts (See 

https://github.com/npklein/BIOS_ASE/blob/master/createCountTables.pl). For each gene of 

each sample, a binomial p-value was calculated using a two-sided binomial test with 

expected proportion = 0.5 and confidence level = 0.95. P-values were corrected for multiple 

testing using Benjamini-Hochberg method40 

(https://github.com/npklein/BIOS_ASE/blob/master/ASE_binomial_test/binom_test.R). For 

each of our samples, the number of genes with a significant ASE effect were counted, and 

five samples with > 500 genes with an ASE effect were filtered out based on visual 

identification of outlier samples 

(https://github.com/npklein/BIOS_ASE/blob/master/createGenesAndOutliersTable.pl and 

https://github.com/npklein/BIOS_ASE/blob/master/removeOutliersAndCODAM.R). In 

addition, one sample was removed because it had a very low genotype concordance with 

the WGS data. For all 3,810 samples, the haplotype A and B counts were harmonized 

against the reference genome after filtering 

(https://github.com/npklein/BIOS_ASE/blob/master/minor_allele_ratio/createTable.pl). SNPs 

were annotated with ClinVar pathogenicity information (v2018-Nov-16), CADD scores41 and 
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SnpEff information 

(https://github.com/npklein/BIOS_ASE/blob/master/minor_allele_ratio/annotateCountsWithC

ADD.pl), and genes in which SNPs are located were annotated with OMIM disease 

information 

(https://github.com/npklein/BIOS_ASE/blob/master/figure_2_and_3/OMIM_enrichment.py). 

For the different impact categories of ClinVar, allele ratios were calculated per impact 

category 

(https://github.com/npklein/BIOS_ASE/blob/master/minor_allele_ratio/plot_minor_vs_major_

20190129.R). Per disease category, we calculated the enrichment of genes that show an 

ASE effect 

(https://github.com/npklein/BIOS_ASE/blob/master/figure_2_and_3/enrichment_disease_ge

nes_in_outliers_per_category.py).  

Data availability 

The RNA-Seq, DNA methylation, sex, age and cell count data (but not genetic and more 

extended phenotype data) can be requested and downloaded from the European Genome-

phenome Archive (EGA) using accession number EGAS00001001077. All gene and sample 

ASE data is available in an online browser that can be accessed via 

https://molgenis15.gcc.rug.nl/. All scripts to plot the main and supplemental figures are 

available in our github repository: https://github.com/npklein/BIOS_ASE. 
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