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Abstract 22 

Proteins constitute much of the structure and functional machinery of cells, forming signaling 23 

networks, metabolic pathways, and large multi-component complexes. Protein abundance is 24 

regulated at multiple levels spanning transcription, translation, recycling, and degradation to 25 

maintain proper balance and optimal function. To better understand how protein abundances 26 

are maintained across varying genetic backgrounds, we analyzed liver proteomes of three 27 

genetically diverse mouse populations. We observe strong concordance of genetic and sex 28 

effects across populations. Differences between the populations arise from the contributions of 29 

additive, dominance, and epistatic components of heritable variation. We find that the 30 

influence of genetic variation on proteins that form complexes relates to their co-abundance. 31 

We identify effects on protein abundance from mutations that arose and became fixed during 32 

breeding and can lead to unique regulatory responses and disease states. Genetically diverse 33 

mouse populations provide powerful tools for understanding proteome regulation and its 34 

relationship to whole-organism phenotypes. 35 
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INTRODUCTION 42 

Protein abundance is regulated at multiple levels spanning transcription, translation, recycling, 43 

and degradation. It is responsive to genetic variation, as observed in yeast (Picotti et al., 2013), 44 

mice (Chick et al., 2016; Williams et al., 2016; Wu et al., 2014), and human cell lines, tissues, 45 

and populations (Battle et al., 2015; He et al., 2020; Liu et al., 2015; Suhre et al., 2020). Genetic 46 

effects on protein abundance can be broadly divided into two classes. Local variants occur in 47 

the vicinity of the coding gene and commonly affect protein abundance by altering the rate of 48 

transcription or stability of the transcript (Pai et al., 2012). In contrast, distal genetic variants 49 

are found at loci far from the coding gene and their effects on protein abundance are often 50 

post-translational and conferred via a diffusible intermediate; often another protein. Within 51 

these categories, multiple modes of regulation are possible (Chick et al., 2016). The complexity 52 

of genetic regulation is compounded for proteins that are members of complexes where 53 

stoichiometry imposes varying degrees of constraint (Chick et al., 2016; Huttlin et al., 2020; 54 

Romanov et al., 2019; Szklarczyk et al., 2019; Taggart et al., 2020). The number of genetic loci 55 

that affect a protein can range from a single locus (monogenic) to many (multi-genic to 56 

polygenic). Their individual effects can be additive or dominant/recessive, thus dependent on 57 

the extent of heterozygosity in the population. Loci can also interact, resulting in epistatic 58 

effects.  59 

Resource populations with high levels of genetic diversity can help to identify and characterize 60 

the genetic loci that affect protein abundance. The Collaborative Cross (CC) (Churchill et al., 61 

2004; Collaborative Cross Consortium, 2012) and Diversity Outbred (DO) (Churchill et al., 2012) 62 

mouse populations are powerful tools for genetic analysis. They are descended from a common 63 

set of eight inbred strains (i.e., the founder strains), representing three subspecies of the house 64 

mouse, Mus musculus (Yang et al., 2007, 2011) and encompass genetic variation from across 65 

laboratory and wild mice. DO mice are available in large numbers and each individual possesses 66 

a unique, highly recombinant and heterozygous genome, supporting powerful, fine resolution 67 

mapping of genetic variants (e.g., Svenson et al. 2012; French et al. 2015; Keller et al. 2018, 68 

2019). The CC consists of ~60-70 strains that are largely inbred, with many strains homozygous 69 

at most loci (>99%), and residual heterozygous regions known and characterized (Collaborative 70 

Cross Consortium, 2012; Shorter et al., 2019; Srivastava et al., 2017). Due to fewer outbreeding 71 

generations than in the DO, the CC possess larger linkage disequilibrium (LD) blocks. The 72 

reproducible genomes of CC strains enable replicate study designs (Mosedale et al. 2017, 2019) 73 

and the characterization of  genetic effects on strain-specific phenotypes (Philip et al. 2011; 74 

McMullan et al. 2016). CC strains can serve as models for human diseases including colitis 75 

(Rogala et al., 2014), susceptibility to Ebola infection (Rasmussen et al., 2014), influenza A virus 76 

(Noll et al., 2020), SARS-coronavirus (Gralinski et al., 2015), and peanut allergy (Orgel et al., 77 

2019).  78 
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In this work, we obtained multiplexed mass spectrometry (mass-spec) quantification of proteins 79 

in liver samples of 116 CC mice representing female/male pairs from 58 strains. We previously 80 

collected proteomics data from the livers of 192 DO mice and 32 mice representing the eight 81 

founder strains (two animals of each sex per founder strain) (Chick et al., 2016) (Figure 1a). We 82 

map protein quantitative trait loci (pQTL) in both the CC and DO and find consistency of the 83 

genetic and sex effects on protein abundance across the populations. We characterize the 84 

genetic architecture of protein-complexes in both the CC and DO, and find that complexes with 85 

highly co-abundant members are heritable and exhibit non-additive and/or highly polygenic 86 

genetic architecture, which is more apparent in the CC. Finally, we identify genetic variants that 87 

originated and became fixed during the of the CC and contribute to CC strain-specific 88 

phenotypes. Our work demonstrates the complementary strengths of these genetic resources 89 

and offers new insights into the genetic regulation of protein abundance. 90 

 91 

RESULTS 92 

Genetic effects on proteins are shared across the CC, DO, and founder strains 93 

We quantified the abundance of 6,779 proteins in liver tissue from 58 inbred CC strains, one 94 

female and male per strain. We previously reported quantification of proteins from liver tissue 95 

of 192 outbred DO mice and 32 mice representing the eight founder strains (two per sex per 96 

strain) (Chick et al., 2016). The data for DO and founder strains were re-analyzed for this study 97 

to ensure that all data were processed consistently (Methods), resulting in the quantification of 98 

6,588 and 6,950 proteins, respectively. From the 9,226 total proteins detected, 4,434 were 99 

observed in all three populations (Figure 1b; Table S1).  100 

We estimated protein abundance heritability (h2), which reflects the combined effects of 101 

genetic variants, their allele frequencies, and the large-scale genetic background (e.g., inbred or 102 

outbred) of each population (Figure 1c). Heritability estimates were highest in the CC and 103 

founder strains, due to capturing variation from non-additive genetic effects (i.e., recessive and 104 

epistatic) in inbred strains. Heritability estimates in the DO are limited to additive genetic 105 

factors (narrow sense heritability; Lynch and Walsh 1998) that are captured in the genetic 106 

relatedness of our sample. Heritability estimates were significantly correlated across 107 

populations (r > 0.4, p <2.2e-16), suggesting that much of the controlling genetic variation is 108 

conserved across populations. 109 

In order to identify the genetic loci that drive variation in protein abundance, we carried out 110 

protein quantitative trait locus (pQTL) mapping in the CC and DO (Table S2). To determine 111 

significant pQTL, we first applied a permutation analysis (Doerge and Churchill, 1996) to control 112 

genome-wide error rate for each protein and then applied a false discovery rate adjustment 113 

(FDR < 0.1) across proteins (Chesler et al., 2005) to establish a stringent detection threshold for 114 

pQTL. Using this criterion, we identified 1,199 local and 289 distal pQTL in the CC and 1,652  115 
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116 
Figure 1. Comparisons of genetic and sex effects on protein abundance among the CC, DO, and founder strains reveal strong 117 
concordance. (a) The CC strains and DO mice are descended from the same eight inbred founder strains. Mutations occur 118 
during the breeding generations of the CC and DO and can become fixed in the CC, allowing their effects to be characterized. (b) 119 
Venn diagram of the analyzed proteins in the CC, DO, and founder strains. The founder strains and DO samples were from a 120 
joint experiment with the same protein annotations, resulting in greater overlap. (c) Overall genetic regulation, measured as 121 
heritability, is greater in the inbred CC and founder strains, reflecting contributions from non-additive genetic effects. Dashed 122 
vertical lines represent the median heritability in each population. Comparisons of the heritability of individual protein 123 
abundance for (d) CC and DO, (e) CC and founder strains, and (f) DO and founder strains. The correlation in heritability is high 124 
and significant regardless of which populations are being compared (r > 0.42, p < 2.2e-16). Heritability estimates in the CC are 125 
higher in part due to inclusion of a bridge sample across the batches of mass-spec experiments, which improved quantification 126 
accuracy (Methods). Red diagonal lines included for reference. Comparisons of the sex effects (with female as the reference) on 127 
individual protein abundance for (g) CC and DO, (h) CC and founder strains, and (i) DO and founder strains. N.S. indicates 128 
proteins that did not have significant sex effects. Sex effects are even more strongly correlated than heritability (r > 0.81, p < 129 
2.2e-16). Red diagonal lines included for reference. A breakdown of the number of proteins with significant sex effects and their 130 
direction is shown for each comparison of populations. 131 
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local and 382 distal pQTL in the DO (Figure 2a & b), where local is defined as when the pQTL is 132 

located within 10 Mbp of the midpoint of the protein-coding gene. We also identified a local 133 

pQTL on the mitochondrial genome in the CC for mt-Nd1 (Figure S1d). In order to prevent the 134 

exclusion of true pQTL due to overly stringent control of false positive and accurately compare 135 

pQTL discovery across populations, we carried out a parallel analysis with more lenient FDR 136 

control (FDR < 0.5; Figure S1a & b).  137 

We next restricted the set of proteins to the 4,556 that were detected and analyzed in both 138 

populations in order to compare genetic effects between the CC and DO. (Figure 2c). Among 139 

1,441 local pQTL stringently detected for the shared proteins, 639 were detected in both 140 

populations (Figure 2d). To determine if these local pQTL were driven by the same genetic 141 

variants, we compared the estimated haplotype effects at each pQTL (Methods) and found that 142 

622 (97.3%) were significantly positively correlated (Figure 2e; Table S3). To assess whether 143 

pQTL detected in only one population are population-specific or fell below the detection 144 

threshold in the other population but are likely driven by the same genetic variation, we 145 

compared the haplotype effects of detected pQTL to effects estimated at the corresponding 146 

locus in the other population, finding that 1,239 (86.0%) were significantly positively correlated. 147 

This trend for local pQTL holds true for lenient detection (Figure S1f & g; Table S3), indicating 148 

that local genetic effects on proteins are highly conserved between the CC and DO populations, 149 

even when failing to pass the threshold of detection in one of the populations.  150 

The founder strains provide additional support for local pQTL in the CC and DO (Figure S1k-n), 151 

particularly for those that are challenging to detect due to rare alleles in the CC or DO (e.g., a 152 

founder allele observed in three or fewer CC strains). We selected all genes with rare local 153 

founder alleles that did not have a leniently detected pQTL in the CC, representing 2,410 genes. 154 

We correlated the haplotype effects estimated at the locus closest to the gene transcription 155 

start sites (TSS) with the protein abundance in the founders (Methods) and found significant 156 

positive correlation for 196 genes, such as Cyp2j5. The conservation of local genetic effects 157 

among the founder strains, CC, and DO can be striking (such as in Gosr2 and Cyp2d22; Figure 158 

S2). The three populations together identify a more complete catalog of local pQTL than any 159 

one alone. In total we find evidence to support local genetic effects on abundance for 3,004 160 

proteins observed across the CC and DO.   161 

Of the 183 distal pQTL stringently detected in the CC and 278 in the DO for the shared set of 162 

proteins, we found 19 that were stringently detected in both populations. All 19 also had 163 

significantly correlated haplotype effects (Figure 2h; Table S3). Overall, the distal pQTL are 164 

weaker than the local pQTL (e.g., Chick et al. 2016; Albert et al. 2018) which may contribute to 165 

an increased rate of false negative findings. By comparing haplotype effects for pQTL that were 166 

only stringently detected in only one population, we identified an additional 45 shared distal 167 

pQTL between the CC and DO populations (Figure 2i; Table S3).   168 
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169 
Figure 2. Genetic effects of loci are highly consistent between the CC and DO. Stringently detected pQTL (FDR < 0.1) in the (a) 170 
CC and (b) DO. The pQTL are plotted by the genomic positions of proteins against pQTL coordinates. Dot size is proportional to 171 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.18.296657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.296657
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

strength of association (LOD score). (c) Venn diagram of overlap of analyzed proteins for the CC and DO. (d) Venn diagram of 172 
overlap of local pQTL detected in the CC and DO. (e) The haplotype effects of local pQTL detected in both populations are highly 173 
consistent, as measured by the correlation coefficient comparing the effects in the CC and DO. (f) More local pQTL have 174 
consistent effects between the populations when also considering pQTL detected in only one of them. Red bars represent the 175 
number of pQTL that had significantly correlated effects (FDR < 0.1). (g) Venn diagram of overlap of distal pQTL detected in the 176 
CC and DO. (h) All 19 distal pQTL detected in both populations have consistent haplotype effects. (i) Considering distal pQTL 177 
detected in either of the populations resulted in 64 with correlated effects in the other population. (j) Circos plot of the 19 178 
distal pQTL detected in both CC and DO. Arrows connect candidate drivers identified through mediation analysis to their targets 179 
(proteins with distal pQTL). Gene names in black represent the top candidates identified in both the CC and DO, whereas red 180 
and blue gene names were specific to the CC or DO, respectively. For candidate mediators that do not match between the CC 181 
and DO, the stronger candidate based on shared membership in protein families is underlined. The red asterisk denotes Pgd as 182 
a likely false positive protein mediator, observed in both the CC and DO. Examples of mediation agreement (Snx4) and 183 
disagreement (Tubg1) between the CC and DO are highlighted, with overlayed pQTL and mediation scans. Gray dots represent 184 
mediation scores for individual proteins. A strong mediator is local to the pQTL and has a steep drop from the peak LOD score. 185 
(k) SNX7 was detected as the driver of the Snx4 distal pQTL in both the CC and DO. (l) TUBGCP3 was identified as the best 186 
candidate driver for the Tubg1 distal pQTL in the CC, and NAXD as the third-best mediator; however, in the DO, NAXD was the187 
stronger mediator. Tubgcp3, as well as Tubg1 and Tubgcp2, are members of the tubulin superfamily, providing further support188 
for TUBGCP3 as the stronger candidate driver of the distal pQTL of Tubg1 and Tubgcp2. Horizontal dashed lines at LOD of 12 189 
included for reference. Lenient mapping results (FDR < 0.5) further support the consistency of genetic regulation between the190 
CC and DO (Figure S1).191 

The genetic variants that drive distal pQTL are generally thought to act through diffusible 192 

intermediates, one or more of which are under local genetic control by the same variants. We 193 

used mediation analysis (Baron and Kenny 1986; MacKinnon et al. 2007), adapted for the DO 194 

(Chick et al. 2016; Keller et al. 2018) and CC (Keele et al., 2020), to identify candidate drivers of 195 

distal pQTL (Methods; Table S4). Mediation analysis can provide support for one or more 196 

candidate mediators for a pQTL. Furthermore, alternative candidates cannot be ruled out if 197 

they unobserved, such as proteins that failed to be detected by mass-spec or functional non-198 

coding RNA. We identified candidate mediators for each of the 19 shared distal pQTL (Figure 199 

2j). The same mediator was identified in the CC and DO for 14 of these – we note that BCKDHB, 200 

CCDC93, and IKBKAP are each candidate mediators of the distal pQTL for two proteins (CCDC93 201 

for Ccdc22 and Fam45a, BCKDHB for Bckdha and Ppm1k for, and IKBKAP for Elp2 and Elp3). For 202 

four of the 19 distal pQTL, the best candidate mediator was different for the CC and DO. For 203 

example, TUBGCP3 is the strongest mediator of distal pQTL of Tubg1 and Tubgcp2 in the CC but 204 

NAXD is the strongest mediator in the DO (Figure 2l). Given that Tubg1, Tubgcp2, and Tubgcp3 205 

are all members of the tubulin superfamily, TUBGCP3 is a stronger candidate based on 206 

functional overlap. A true mediator should possess a local pQTL that co-localizes with the distal 207 

pQTL. Notably, the local pQTL for Naxd is much stronger in comparison to the local pQTL of 208 

Tubgcp3 in the DO (LODNaxd = 40.2 compared to LODTubgcp3 = 11.0) whereas in the CC, they are 209 

more comparable (LODNaxd = 9.7 compared to LODTubgcp3 = 7.9). The local pQTL of Naxd in the 210 

DO may be acting as a surrogate for the local genotype, and thus outperforming TUBGCP3. 211 

Similarly, COPS8 is the strongest mediator for distal pQTL of Cops6 and Cops7a in the CC, 212 

whereas in the DO, COPS8 was not detected as a mediator and notably did not have a local 213 

pQTL (even leniently detected) in the DO, suggesting that COPS8 may be less accurately 214 

measured in our DO sample population. The final case of discordance was for the distal pQTL of 215 
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Dnajb9, for which UGT3A2 was identified as a mediator in the DO whereas no candidate was 216 

found in the CC. Ugt3a2 possesses local pQTL in both the CC and DO, which is notably strong in 217 

the DO (LODUgt3a2 = 36.9), suggesting it may be a false positive mediator in the DO and the true 218 

mediator was unobserved for both populations. We considered all distal pQTL that were 219 

stringently detected (FDR < 0.1) in one of the populations, and evaluated the corresponding 220 

pQTL status (stringent, lenient, or not detected) and mediation status (e.g., same or different 221 

mediator) in the other population (Figure S1o), which revealed similar levels of concordance in 222 

mediation for pQTL detected in only one of the populations.  223 

When we expand our pQTL comparisons to include all leniently detected pQTL, 1,462 proteins 224 

have significantly correlated local pQTL (223 more than with stringent detection in one 225 

population; Figure S1g). In contrast, fewer distal pQTL with significantly correlated effects are 226 

detected (22 compared to 64) (Figure S1j). Some pQTL that fail to meet the stringent threshold 227 

in either population still replicate across the CC and DO, as is the case for 12 of the 41 proteins 228 

with distal pQTL and correlated haplotype effects (Figure S1i). One interesting example is Ercc3 229 

(Figure S3), which has distal pQTL near a region on chromosome 7 that contains Gtf2h1 and 230 

Ercc2, which all strongly associate with each other based on protein-protein interactions 231 

(Bioplex; Huttlin et al. 2020) and exhibit consistent but more extreme pQTL effects in the CC 232 

compared to the DO. 233 

234 

Sex effects on protein abundance are extensively shared across populations 235 

Protein abundances can differ between sexes (Chick et al., 2016), and this pattern can extend 236 

collectively to protein complexes (Romanov et al., 2019). We characterized sex effects in the 237 

CC, DO, and founder strains (Methods; Table S1). Significant sex effects (FDR < 0.1) were 238 

detected for 3,721 (54.9%) proteins in the CC, 4,376 (66.4%) proteins in the DO, and 1,549 239 

(22.3%) proteins in the founder strains. The differences between male and female were 240 

overwhelmingly in the same direction for all populations (Figure 1g-i). Gene set enrichment 241 

analysis revealed that proteins related to ribosomes, translation, and protein transport gene 242 

ontology (GO) terms were more abundant in male livers whereas proteins related to catabolic 243 

and metabolic processes, including fatty acid metabolism, were more abundant in female livers 244 

in all populations.  245 

246 

Drivers of variation in the abundance of protein-complexes 247 

Members of protein-complexes exhibit varying degrees of co-abundance, with some groups of 248 

proteins being tightly co-abundant, i.e., correlated, and others less so (Romanov et al., 2019). 249 

Correlation between members of a complex suggests some degree of co-regulation. We found 250 

that individual protein members of annotated protein-complexes (Giurgiu et al., 2019; Ori et al., 251 

2016; Vinayagam et al., 2013; Table S5) are less heritable and fewer of them possess pQTL than 252 
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253 
Figure 3. Genetic and sex effects on protein-complexes. (a-b) The co-abundance of complex members, i.e., complex-254 
cohesiveness, is consistent between the CC (red) and DO (blue) (r = 0.70, p < 2.2e-16). Cohesiveness is summarized (Methods) 255 
for each of 163 annotated protein complexes (Ori et al., 2016). (c-d) Complex-heritability, based on the first principal 256 
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component (PC1) from each complex (Methods), were inconsistent between the CC and DO (r = 0.08, p = 0.33), with heritability 257 
notably higher more often in the CC. (e-f) Complex-sex effect size, representing the proportion of variability in the complex PC1 258 
explained by sex, was consistent between the CC and DO (r = 0.48, p = 1.25e-10). For complex-cohesiveness, the intervals 259 
represent the interquartile range, and points represent the median. For complex-heritability and complex-sex effect size, 260 
intervals represent 95% subsample intervals. Exosome, chaperonin-containing T-complex, 26S Proteasome, and the 261 
mitochondrial ribosomal small subunit are highlighted as examples of highly heritable protein-complexes that are examined in 262 
detail (Figures 4, 5, 6, S5, & S6). Multi-eIF complex, eIF2B, and eIF3 are highlighted as complexes with large sex effect sizes in 263 
both the CC and DO, consistent with a previous study (Romanov et al., 2019). Red diagonal line included for reference. 264 

proteins that are not members of complexes (Figure S4a-d; Table S6). However, protein-265 

complexes can be influenced by genetic variation, as we previously reported for the Chaperonin 266 

containing T (CCT)-complex that is stoichiometrically regulated in response to the low 267 

abundance of a member protein, CCT6A (Chick et al., 2016). We evaluated the extent to which 268 

members of annotated protein-complexes were internally correlated, as well as how genetic 269 

factors and sex contribute to variation in their joint abundance. We summarized co-abundance, 270 

which we refer to as complex cohesiveness, as the median pairwise correlation between 271 

complex members (Romanov et al., 2019). To assess the contributions from genetic factors and 272 

sex, we summarized each protein-complex using the PC1 from member proteins. We first 273 

filtered proteins with local pQTL (FDR < 0.5) or strong distal pQTL (FDR < 0.1) to minimize the 274 

influence of individual proteins with independent genetic effects in order to focus on the 275 

shared genetic effects on a protein-complex. We estimated heritability and the proportion of 276 

variation explained by sex for each complex-specific PC1 (Table S7). 277 

Complex-cohesiveness was correlated between the CC and DO (r = 0.70, p < 2.2e-16) (Figure 3a 278 

& b), and within each population, correlated with complex-heritability: r = 0.33, p = 4.37e-5 in 279 

the CC and r = 0.17, p = 0.03 in the DO (Figure S4e), suggesting that cohesiveness does reflect 280 

genetic factors that control protein abundance at some level. Notably, complex-heritability is 281 

consistently higher in the CC than DO (119 out of 163 complexes; 73.0%) and uncorrelated with 282 

complex-heritability in the DO (r = 0.08, p = 0.33), in contrast to the heritability of individual 283 

proteins (r = 0.43, p < 2.2e-16) (Figure 3c & d). The greater consistency between cohesiveness 284 

and heritability of protein-complexes in the CC is consistent with variation in overall protein-285 

complex levels being influenced by non-additive genetic effects. The complex-heritability in CC 286 

captures the greater similarity of strain replicates with each other compared to other CC 287 

strains. The proportion of variation explained by sex for protein-complex abundance was 288 

correlated between the CC and DO (r = 0.48, p < 1.25e-10; Figure 3e-f). Protein-complexes 289 

previously shown to be driven by sex, such as eIF2B (Romanov et al., 2019), were confirmed in 290 

both the CC and DO. 291 

292 
Genetic and stoichiometric regulation of the exosome 293 

We identified the exosome complex as a novel and striking example of a protein-complex with 294 
stochiometric genetic regulation in the CC (Figure 4). The exosome complex had the highest 295 

296 
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297 
Figure 4. PWK allele at Exosc7 drives low abundance of the exosome complex and related proteins. (a) Genetic variation at 298 
Exosc7 has strong effects on the other members of the exosome complex and Dis3l and Etf1, which were not annotated 299 
members (Ori et al. 2016) though functionally related. The complex proteins were more tightly correlated in the (b) CC than the 300 
(c) DO, potentially due to the observance of the homozygous PWK genotype and strain replicates in the CC (Figure S5). (d) A301 
local PWK allele resulted in lower EXOSC7 abundance, as observed in seven CC strains (CC001, CC011, CC015, CC023, CC25,302 
CC075, and CC081). Points are colored by the haplotype allele at Exosc7. (e) Local genetic variation at Exosc3 does not explain303 
protein abundance patterns, which instead match the genetic variation at Exosc7, representing a distal pQTL. (f) The genome304 
scan for Exosc3 reveals the distal pQTL near Exosc7, and mediation analysis identifies EXOSC7 as a strong mediator of the distal 305 
pQTL (large gray dot) as well as the other exosome-related proteins as mediators (black dots), reflecting shared genetic 306 
regulation. The remaining smaller gray dots represent mediation scores for all other quantified proteins. Horizontal dashed line307 
at LOD of 6 included for reference. (g) The PWK allele at Exosc7 distally control other members of the exosome complex, with308 
Etf1, Dis3l, Exosc10, Exosc4, and Exosc5 shown here. Points are colored by the founder haplotype at Exosc7.  (h) The first 309 
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principal component (PC1) from the exosome complex, plotted males against females for the CC strains. Points are colored by 310 
the founder haplotype at Exosc7. CC strains separate based on whether they possess the PWK allele of Exosc7, reflected in a 311 
complex-heritability of 91.3%. After removal of the seven strains that possess the PWK allele, the complex-heritability is 61.4%, 312 
which suggest there are remaining loci that affect the abundance of the exosome. The black dashed line is the best fit line 313 
between males and females for the complex PC1, based on all 58 CC strains. The gray dashed line excludes the seven CC strains 314 
with the PWK allele at Exosc7. (i) The genome scan of the complex PC1 reveals a similar scan to Exosc3, though the pQTL near 315 
Exosc7 and its mediation are stronger, due to the consistent effects across complex members. 316 

complex-heritability in the CC (87.0%, [80.0-90.5%]) while being essentially non-heritable in the 317 
DO (0.0%, [0.0-34.6%]). Low EXOSC7 abundance is driven by a local PWK allele in the CC, which 318 
is homozygous in seven CC strains, whereas in our DO cohort, there were no mice homozygous 319 
for the PWK allele (Figure S5b). Heterozygous carriers of the PWK allele in the DO mice 320 
exhibited no discernable effect, suggesting that the exosome complex is regulated by a 321 
recessive PWK allele at Exosc7 (Figure S5c), which is consistent with founder PWK mice having 322 
low EXOSC7 abundance (Figure S5d). Mediation analysis indicates that genetic variation at the 323 
Exosc7 locus distally regulates the complex as well as the functionally related genes, Dis3L and 324 
Etf1. These two genes were not included in the original complex annotations, and their co-325 
regulation suggests new biological interactions discovered via our approach. The complex-326 
heritability (with Dis3l and Etf1 included as well as complex members previously filtered out 327 
due to possessing pQTL) was 91.3%, and after removing the seven strains with the PWK allele at 328 
Exosc7, was reduced but still high at 61.4%, indicating the presence of additional genetic factors 329 
that affect the abundance of the exosome. 330 

331 
Secondary genetic effect on the chaperonin complex 332 

Previously we found that the CCT complex was stoichiometrically regulated and driven by low 333 

abundance of CCT6A when the NOD haplotype is present (Chick et al., 2016). The CCT complex 334 

(Figure 5) has higher heritability in the DO (81.6%, [65.3-97.5%]) than in the CC (51.6%, [41.8-335 

64.4%]) (Figure 3c & d). The DO sample is well-powered to detect the low NOD allele that drives 336 

the complex-wide regulation, due to 19 (9.9%) of the mice being homozygous NOD. The CC 337 

strains replicate the distal pQTL at the locus of Cct6a through a low NOD effect for complex 338 

members (Cct4, Cct5, Cct8, and Tcp1) – but CCT6a itself was not quantified in the CC samples. 339 

The effect of the pQTL at Cct6a drives less of the overall variation in the CC sample due to fewer 340 

occurrences of NOD homozygotes (12 CC mice in comparison to 19 DO mice). The CC reveals a 341 

secondary genetic effect mediated through CCT4, with high NZO and PWK alleles. After 342 

including complex members that were previously filtered out for possessing pQTL, the complex-343 

heritability was 56.3%, which, after excluding CC strains that are NOD at Cct6a and NZO or PWK 344 

at Cct4, was still significant at 46.6% (Figure 5h), indicating that, as with the exosome complex, 345 

additional genetic effects contribute to CCT complex abundance.  346 

347 
Independent genetic effects on the components and subcomplexes of the 26S proteasome 348 

The 26S proteasome is composed of a 20S proteasome catalytic core (PSMA and PSMB 349 

proteins), which in the constitutive form has the constitutive subunits, PSMB5, PSMB6, and 350 
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351 
Figure 5. Genetic effects on the chaperonin-containing T-complex. Genome scans overlayed with mediation analysis for Cct4, a 352 
member of chaperonin-containing T (CCT)-complex, in the (a) DO and (b) CC, reveal a shared distal pQTL on chromosome 5. The 353 
CC also have a suggestive local pQTL for Cct4 on chromosome 11. CCT4 was previously revealed through mediation analysis to 354 
be distally controlled through genetic variation at Cct6a (large gray dot) in the DO (Chick et al., 2016). The other CCT member 355 
proteins were detected as mediators (black dots) as well, stemming from shared genetic effects. The remaining smaller gray 356 
dots represent mediation scores of all other quantified proteins. The mediation scan of the distal pQTL on chromosome 5 in the 357 
CC similarly detects the other members of the CCT complex, though the likely causal intermediate CCT6A was not quantified in 358 
the CC. Horizontal dashed line at LOD of 6 included for reference. The founder haplotype inheritance, represented as heatmaps 359 
with founder allele dosage (expected allele counts) as rows and individual mice as columns, ordered by CCT4 abundance, at the 360 
chromosome 5 locus near Cct6a in the (c) DO and (d) CC and the (e) chromosome 11 locus near Cct4 in the CC. A low NOD 361 
effect, potentially recessive and highlighted with dark blue boxes, drives the distal pQTL (likely through CCT6A) on CCT4 in both 362 
the DO and CC. The local effects on Cct4 were not as strong, though NZO and PWK had subtle high effects, highlighted as light 363 
blue and red boxes. (f) A diagram of the population-specific and shared effects observed through pQTL and mediation analyses 364 
in the DO and CC. Many of the pQTL in the CC are weak, with all falling below the FDR < 0.1 threshold, and some with LOD < 6 365 
(FDR > 0.5), but they are supported by overlap with the DO (chromosome 5) or being local to a complex member (chromosome 366 
11). (g) In the CC, CCT4 abundance is affected by genetic variation at Cct6a as well as its local haplotype. The dark blue squares 367 
represent the six strains that possess the NOD allele at Cct6a, which had low CCT4. The light blue and red circles are the strains 368 
with high CCT4 that possess NZO and PWK alleles at Cct4. (e) The first principal component (PC1) for the complex, plotted males 369 
against females, reveals the same pattern of low strains (NOD allele of Cct6a; dark blue squares) and the high strains (NZO and 370 
PWK alleles of Cct4; light blue and red circles, respectively). The complex-heritability was high at 56.3% and after removal of the 371 
strains possessing notable alleles from pQTL at Cct6a and Cct4, dropped to 46.6%. The black dashed line represents the best fit 372 
line between males and females for complex PC1 based on all strains, and the gray dashed line is the best fit line with strains 373 
with the NOD allele of Cct6a and NZO and PWK alleles of Cct4 excluded. 374 

PSMB7, and is capped by two 19S regulators (composed of the PSMC and PSMD proteins). The 375 

constitutive form can be modified into the immunoproteasome by replacing the respective 376 

constitutive subunits with the three immunoproteasome inducible subunits, PSMB8, PSMB9, 377 

and PSMB10, and the 19S regulators with the 11S regulators (made up of PSME proteins) 378 

(Marshall and Vierstra, 2019; Figure 6a). The immunoproteasome is a highly efficient form of 379 

the proteasome that is predominantly expressed in immune cells (Kimura et al., 2015). 380 
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This alternation between two different forms of the proteasome is apparent in the anti-381 

correlation between the inducible and immune components in both the CC and DO (Figure 6b 382 

& c) and founder strains (Figure S6a). The inverse relationship between the constitutive and 383 

inducible forms suggests that although individual samples vary in the relative abundance of the 384 

constitutive proteasome and immunoproteasome, they predominantly express one of the 385 

forms. Across the founder strains, this relationship appears to be genetically regulated, with the 386 

WSB, AJ, and NZO strains expressing more immunoproteasome, and the others expressing 387 

more of the constitutive form (Figure S6b-g). In the recombinant CC and DO, we identified a 388 

genetic variant that controls the balance between PSMB6 (constitutive) and PSMB9 389 

(immunoproteasome). In both the CC and DO, genetic variation near Psmb9 affected PSMB9 390 

abundance, as well as PSMB6 abundance, confirmed through mediation analysis (Figure 6i & j). 391 

Consistent with the anti-correlation between inducible and constitutive subunits as well as the 392 

balance in the founder strains, the relationship between PSMB9 and PSMB6 is negative, e.g., 393 

mice that inherited the WSB haplotype at the Psmb9 locus have high PSMB9 abundance and 394 

low PSMB6 abundance (Figure 6k & l). The pQTL only explains the balance of PSMB6/PSMB9, 395 

and while consistent with the overall balance of the constitutive and inducible forms of the 396 

proteasome observed in the founder strains, it does not directly affect the other 397 

interchangeable members of the proteasome, which do not possess their own strong pQTL. The 398 

loss in the CC and DO of the co-regulation of all constitutive and inducible members suggests 399 

epistatic factors may interact with pQTL at Psmb9 and those relationships are broken apart 400 

inthe recombinant populations, thus decoupling PSMB9 from the other immunoproteasome 401 

subunits. 402 

Genetic factors also influence other components of the 26S proteasome. We identified a strong 403 

local pQTL that is consistent in both the CC and DO for Psmd9 that does not affect other 404 

members of 19S regulator (Figure 6g & h), thus explaining the lack of cohesiveness of PSMD9 405 

within the proteasome, which was previously observed in the DO (Romanov et al., 2019). A 406 

distal pQTL hotspot comprising members of the 20S catalytic core and 19S regulator mapped to 407 

a short interval on chromosome 1 in the CC, most strongly observed in Psma1 (Figure 6m). No 408 

single, strong mediator was detected for the hotspot, though PEX19 was the best candidate for 409 

a number of the proteins, suggesting there may be multiple drivers of the hotspot or that the 410 

true driver was not observed at the protein-level.  411 

412 
Polygenic regulation of the mitochondrial ribosomal small subunit 413 

The mitochondrial ribosomal small subunit was highly cohesive in both populations (Figures 3a, 414 

b, 6n, & o). The complex-heritability is also high, and after including all annotated members, 415 

was 74.0% in the CC and 51.9% in the DO. Despite high complex-heritability, we detected few 416 

pQTL for individual members of the complex. The one notable exception is Auh, for which we 417 

detected a strong local pQTL in the CC and DO (Figure 6r & s). 418 
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419 
Figure 6. Polygenic regulation of the 26S proteasome and the mitochondrial ribosomal small subunit. (a) The 26S proteasome 420 
is composed of multiple subcomplexes: the 20S proteasome catalytic core (Psma and Psmb genes) and 19S regulator (Psmc and 421 
Psmd genes) for the constitutive form, and the inducible immunoproteasomes (Psmb8, Psmb9, and Psmb10) with their 11S 422 
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regulator (Psme genes). The correlation patterns between member proteins reflect these subcomplexes, which are highly 423 
consistent between the (b) CC and (c) DO (and founder strains; Figure S6a). The overall correlation pattern reflects an inverse 424 
relationship between the constitutive proteasome and the inducible immunoproteasome. (d) CC strain identity explains a large 425 
portion of the variability in the first principal component (PC1) of the proteasome (after excluding genes with strong pQTL) and 426 
the complex-heritability is notably higher in the CC (56.1%) than DO (26.5%). The dashed line represents the best fit line 427 
between males and females in the complex PC1. A portion of the complex correlation structure can be explained by pQTL, 428 
shown here as a heatmap of genome scans (proteins as rows and genomic coordinate as columns), for the (e) CC and (f) DO. 429 
Psmd9 (*) has a strong local pQTL in both the (g) CC and (h) DO, which is not shared with other proteasome proteins, explaining 430 
why Psmd9 is poorly correlated with other members of the 19S proteasome. Horizontal dashed line at LOD of 6 included for 431 
reference. Psmb6 (**) has a distal pQTL in both the (i) CC and (j) DO, which is mediated by PSMB9. Gray dots represent 432 
mediation scores for all quantified proteins, with PSMB9 highlighted as a large gray dot. (k) The relationship is negative – 433 
individuals with low abundance of PSMB9 (most notably CC strains with the WSB allele at Psmb9) have high abundance of 434 
PSMB6. Intervals represent mean  2 standard deviation bars. The dashed line represents the best fit line between PSMB6 and 435 
PSMB9 for the CC mice. (l) PSMB6 is a constitutive subunit of the 20S proteasome and PSMB9 is the corresponding inducible 436 
subunit in the modified immunoproteasome, suggesting that the inverse relationship between constitutive proteasome and 437 
immunoproteasome is genetically controlled for at least PSMB6 and PSMB9 in the CC and DO (though more broadly controlled 438 
in the founder strains; Figure S6b-g). A distal pQTL hotspot was observed in the CC on chromosome 1 (~170 Mbp) which was 439 
not present in the DO, for which (m) Psma1 (***) has the strongest signal. Though a strong mediator was not detected from the 440 
proteins near the pQTL, many members of the 20S and 19S proteasomes present as strong mediators (black dots) due to the 441 
strong correlation among the proteins that map to the hotspot. The mitochondrial ribosomal small subunit was more heritable 442 
and cohesive than the 26S proteasome (Figure 3), which is evident in the correlation patterns for both the (n) CC and (o) DO. 443 
The individual proteins, such as (p) MRPS7, and the (q) complex PC1 (after excluding genes with strong pQTL) are highly 444 
consistent within CC strains despite few strong pQTL related to the complex. The dashed line represents the best fit line 445 
between males and females in MRPS7 and complex PC1. Similar to Psmd9 within the 26S proteasome, a less cohesive member 446 
of the complex, Auh (****), can be explained by a unique local pQTL detected in both the (r) CC and (s) DO. 447 

AUH was incohesive with the core of the complex, composed of mostly MRPS proteins. The 448 

complex PC1 and individual proteins are highly consistent within CC strain (r = 0.81 for the 449 

complex PC1; r = 0.76 for MRPS7) while displaying continuous variation across the CC 450 

population (Figures 6p & q). This distribution contrasts with the bimodal pattern of abundance 451 

for the exosome complex, which is driven by a single strong pQTL (Figure 4h) and suggests that 452 

many loci with small effects influence the overall abundance of the mitochondrial ribosomal 453 

small subunit. 454 

455 

Strain-private variants affect protein abundance 456 

Inbred mouse strains can accumulate mutations, and these variants can lead to phenotypic 457 

abnormalities across classical inbred strains, e.g., new mutations that become fixed in sub-458 

strains of B6 (Kumar et al., 2013) and in the parental B6 and DBA stocks (Anderson et al., 2002) 459 

used across different epochs of the BxD panel (Ashbrook et al., 2019; Mulligan et al., 2012). 460 

New mutations originate and became fixed in the CC strains (Shorter et al., 2019; Srivastava et 461 

al., 2017) (Figure 1a). As a proof of concept, we first confirmed the loss of expression of 462 

proteins with known deletions, such as the 80 kbp deletion in CC026 that includes C3 and a 15 463 

bp deletion for CC042 in Itgal (Figure 7a-b) that increases susceptibility to tuberculosis (Smith 464 

et al., 2019) and salmonella (Zhang et al., 2019). Next, we estimated CC strain-specific effects 465 

for each protein in the CC and identified CC strains with extreme abundance of a given protein, 466 

referred to as strain-protein outliers (Methods). In total, we identified 6,046 strain-protein 467 
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Figure 7. Strain-private genetic variants affect protein abundance and potentially influence larger protein networks. The 469 
effects of known strain-private deletions on protein abundance were confirmed for (a) C3 in CC026 and (b) Itgal in CC042. The 470 
color or the dots indicates the founder allele at the gene. (c) A novel SNP allele in Sash1 specific to CC058 is associated with an 471 
increase in SASH1 abundance. (d) Proteins related to innate immune response and other related pathways were high abundant 472 
in CC013. Large dots represent the specified CC strain with extreme protein abundance. (e) CC013 also possesses a strain-473 
specific SNP allele in Hcls1, a gene involved in leukocyte differentiation, which may contribute to its unique protein abundance 474 
patterns in immune pathways. (f) CC013 has a unique liver phenotype, characterized by white granules, highlighted with red 475 
arrow, which may be related to the increased abundance of immune proteins. CC030 possesses a (g) private insertion in Brd4, 476 
which may contribute to (h) increased abundance in genes related to nuclear chromosome. Additional functionally related 477 
strain-specific protein dynamics are shown in Figure S7. 478 

outliers, representing 4,323 proteins across all 58 CC strains. The strain-protein outliers 479 

coincided with 69 known strain-private genetic variants (Srivastava et al., 2017), meaning the 480 

strain-protein outlier could represent a local effect of the private variant associated with the 481 

protein’s coding gene, and this level of enrichment was significant per permutation (p = 3.7e-4). 482 

Interestingly, not all of the observed outliers associated with genetic variants were low 483 

extremes, as would be expected with a mutation that results in loss of the protein; we also 484 

observed increases in protein abundance in strains with private variants, such as Sash1, which 485 

harbors a novel SNP allele in CC058 (Figure 7c). CC004 has a unique SNP allele associated with 486 

low abundance of Plek, a gene which also has a weak local pQTL based on genetic variation 487 

from the founder strains (Figure S7e & f).  488 

The presence of biologically related proteins with extreme abundances specific to CC strains 489 

further supports the impact of strain-specific genetic variants and regulatory patterns. We 490 

identified strain-specific dynamics by testing the set of outlying proteins specific to each CC 491 

strain for enrichment in GO and KEGG pathway terms (Tables S8 and S9). In CC013, we 492 

observed increased abundance in proteins with GO annotations for the innate immune system 493 

(Figure 7d), leukocytes, and other immune system-related GO terms. CC013 possesses a unique 494 

SNP allele in Hcls1 that was associated with increased HCLS1 abundance (Figure 7e), a gene 495 

involved in myeloid leukocyte differentiation that may contribute to the high abundance of 496 

immune-related proteins in CC013. CC013 also expressed a unique liver phenotype, 497 

characterized by white granules across the tissue (Figure 7f), which may relate to the excess of 498 

immune-related proteins. CC030 has a 4 bp insertion in Brd4 that was associated with high 499 

BRD4 abundance and may contribute to increased abundance in proteins related to nuclear 500 

chromosome and chromatin (Figure 7g-h). The strain-specific protein outlier sets were enriched 501 

in a wide range of GO biological functions (Figure S7g-j), including low and high abundance of 502 

proteins from the mitochondrial respiratory complex I in CC007 and high abundance of 503 

cytosolic ribosome proteins in CC009.  504 

 505 

DISCUSSION 506 

Multiparent populations are key resources for understanding genetic architecture; developing 507 

new phenotypic models of disease; and producing robust results that translate from model 508 
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organisms to genetically diverse outbred populations such as humans. Here we show that the 509 

CC, DO, and their founder strains broadly share protein heritability, pQTL, their mediators, and 510 

sex effects on proteins. In comparison to individual proteins, protein-complexes were less 511 

consistent across these populations, highlighting the role of non-additive genetic effects in 512 

controlling protein-complex interactions. We observed a wide range of genetic effects on 513 

protein complexes, ranging from stoichiometric regulation in response to a large-effect locus 514 

(exosome and CCT complexes) to multi-locus and highly polygenic regulation (e.g., the 26S 515 

proteasome and mitochondrial ribosomal small subunit, respectively). Within the CC, we 516 

observed strong effects on protein abundance from new mutations in specific CC strains. Lastly, 517 

we highlight individual CC strains with both aberrant protein regulation based on strain-specific 518 

mutations that broadly disrupt protein regulatory networks. 519 

 520 

Conservation of pQTL between CC and DO 521 

Consistent with expectations, the effects of local genetic variation are highly conserved 522 

between the CC and DO (and often with the founder strains). In cases where discordance 523 

occurred between populations, we can often explain based on differing founder allele 524 

frequencies between the populations, such as for the local pQTL of Ercc2 that is not detected in 525 

the DO because only one NOD homozygote was observed in the DO sample. Differences 526 

between populations stemming from different allele frequencies has been observed in human 527 

populations (Mogil et al., 2018). These discordant cases highlight how dominance and large-528 

scale homozygosity contribute to the genetic effects on proteins, exposed by comparing the CC 529 

and DO. Distal (i.e., trans) pQTL are often harder to detect due to weaker effects and are thus 530 

more likely to be discordant based on differences in allele frequencies and the presence of non-531 

additive effects. Here we showed that the 19 distal pQTL that were detected in both 532 

populations at FDR < 0.1 are highly consistent, both in terms of haplotype effects and their 533 

mediation candidates. Discordance in effects between the CC and DO was much greater for 534 

distal pQTL detected in a single population, which is in striking contrast to the strong 535 

concordance of local genetic effects detected in only one population. The extent of discordance 536 

in distal pQTL effects compared to local effects suggests that additional factors are contributing 537 

beyond differing allele frequencies and may represent distal genetic effects that are not 538 

conserved across population.  539 

Mediation analysis results mirror the concordance of distal pQTL effects, with largely the same 540 

mediators detected for distal pQTL detected with high confidence in both populations. There 541 

are some key caveats with mediation analysis, such as its accuracy being dependent on the true 542 

mediator being present in the data. If a candidate mediator is correlated with the true but 543 

unobserved mediator, possibly due to LD, it will likely be identified as a false positive mediator. 544 

This issue is problematic for proteomics studies if the mediator is not captured in the protein 545 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.09.18.296657doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.18.296657
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

data, such as non-coding RNAs or lowly abundant proteins that go undetected in the mass-spec 546 

analysis. For example, PGD was detected as a candidate mediator of a distal pQTL of Akr1e1 in 547 

both the CC and DO; however, previous studies identified zinc finger proteins (Rex2 and Zfp985) 548 

as the most likely mediator of the pQTL (Hamilton-Williams et al., 2010; Keele et al., 2020). Zinc 549 

finger proteins are lowly expressed and not prevalent in proteomics data, and in their absence, 550 

the nearby protein PGD stands out as the best mediator in both populations. Variable 551 

measurement error across candidate mediators can also cause preference for a false mediator 552 

due to noise reducing the correlation between the distally controlled protein and its true 553 

mediator. This is likely occurring in the DO where NAXD is the stronger mediator for the Tubg1 554 

distal pQTL than TUBGCP3, the strong biological candidate. Furthermore, the presence of 555 

variable measurement error in proteomics is likely, stemming from the overall magnitude of 556 

each protein’s expression, the size of the protein and the number of peptides used to 557 

summarize it, and how specifically those peptides map to the protein. Comparisons of 558 

mediation analysis of two independent genetic experiments can provide replication of findings, 559 

as well as assess a more complete set of candidate mediators and correct misidentifications.  560 

 561 

Non-additive genetic effects on proteins and protein-complexes 562 

Protein-complexes can be viewed as emergent phenotypes that can be driven by independently 563 

regulated members or sub-complexes, as well as higher order dynamics like protein-protein 564 

stoichiometry that control complex assembly. We observed a spectrum of cohesiveness 565 

(Romanov et al., 2019) across the protein-complexes and our three populations. These 566 

differences reflected components and sub-complexes that are semi-independent of the greater 567 

complex, as well as the underlying genetic architectures of the populations. Because high 568 

cohesiveness does not necessarily imply that a protein-complex is genetically regulated (e.g., 569 

stoichiometry could produce tight correlation among complex members due to non-genetic 570 

factors), we employed genetic analyses (e.g., QTL and heritability) to characterize genetic 571 

control of the protein-complexes. We found a number of strong and distinct examples of 572 

protein-complexes that are genetically regulated. Despite the challenges imposed by separate 573 

experiments and the relative nature of mass-spec proteomics (O’Brien et al., 2018), comparing 574 

the CC to the DO reveals the impact of an inbred genetic background on a number of protein-575 

complexes, due to recessive effects, or conversely, the lack of dominance genome-wide.  576 

Furthermore, CC strain replicates can capture multi-locus interactions, i.e., epistasis, by fixing 577 

alleles at multiple loci within a strain. These results support the CC as a distinctly powerful tool 578 

for genetic analyses of emergent phenotypes like protein-complexes and as a companion 579 

resource to the DO for disentangling complicated genetic mechanisms. 580 

The examples of genetically regulated protein-complexes that we identified represented a 581 

continuum of polygenicity underlying their genetic architecture. Examples ranged from the 582 
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exosome with a single large effect pQTL local to a single member driving most variation, to the 583 

highly polygenic mitochondrial ribosomal small subunit, reflected in its continuous distribution 584 

across the CC strains and lack of pQTL. Intermediate to these extremes are examples like the 585 

CCT complex with its combination of a large effect pQTL with subtle secondary genetic effects 586 

revealed in the CC, and the 26S proteasome with its well-defined sub-complexes representing 587 

two distinct forms for altered biological function, the balance of which is genetically controlled 588 

to various degrees in these three populations. A common feature shared by these example 589 

protein-complexes examples is some degree of polygenicity. Even the fairly monogenic 590 

exosome and CCT complexes have some residual heritability after removing the CC strains that 591 

possess the contrasting alleles of the pQTL, suggesting other loci have secondary effects. The 592 

polygenic effects that drives the residual heritability may also be non-additive. In the DO, the 593 

exosome and CCT complex – after accounting for the strong pQTL of Cct6a – appear non-594 

heritable, either due to large-scale dominance or the inability to capture epistatic effects in an 595 

outbred genetic background. These examples highlight the challenge of dissecting polygenic 596 

and non-additive effects down to individual loci and their specific mechanisms, emphasizing the 597 

value of related genetic resource populations with differing genetic architecture, like the CC 598 

and DO. 599 

 600 

New models of aberrant protein functional networks and disease 601 

The unique biology of individual mouse strains has led to a variety of discoveries of genetically 602 

based disease phenotypes. We leveraged the CC population to identify strains exhibiting 603 

aberrant protein dynamics that could not be tied to the founder strains, such as being 604 

downstream of mutations unique to specific CC strains. They may also result from unique 605 

combinations of alleles of upstream drivers of a shared functional network. Examples include 606 

increased abundance of immune-related proteins and unique liver phenotype in CC013, which 607 

we are following up, and altered mitochondrial respiratory complex I function in CC007. Due to 608 

the replicability of the CC population, these strain-specific protein networks can be followed up, 609 

confirmed, and the underlying mechanisms dissected to reveal new biology and develop new 610 

models of disease. 611 

 612 

Integrative genetic resource populations 613 

Proteins are a more functionally relevant measure of physiology and disease than the more 614 

commonly measured gene transcripts. In our examination of protein regulation across three 615 

related populations, we found that local genetic and sex effects on protein abundance were 616 

consistent, suggesting that molecular phenotype data and their findings can largely be 617 

integrated across these populations. It is easy to conceive of investigators querying specific 618 

genes of interest to assess whether their proteins possess sex effects, pQTL and their haplotype 619 
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effects, or mediators of distal pQTL. To enable these queries, we provide interactive QTL 620 

analysis tools for both the CC (https://churchilllab.jax.org/qtlviewer/CC/Ferris) and DO 621 

(https://churchilllab.jax.org/qtlviewer/DO/Svenson). In contrast, higher order molecular 622 

phenotypes or characteristics, such as protein-complexes and regulatory networks, showed 623 

greater discordance across these populations. Non-additive genetic effects, either at a single 624 

locus or across loci, were apparent in the regulation of protein-complexes, driving the 625 

discordance between populations based on the genetic architecture of each. Lastly, we 626 

identified CC strain-specific aberrant protein abundances, their phenotypic or system relevance, 627 

and their putative consistency with previously described mutations present across these 628 

strains.  629 

In this work, we used these diverse mouse populations to finely dissect genetic effects on 630 

protein-complexes in liver tissue, revealing the presence of non-additive effects and a polygenic 631 

spectrum of genetic regulatory patterns. In the future, we envision highly expandable joint 632 

population resources, covering a range of molecular phenotypes (e.g., RNA-seq, ATAC-seq, 633 

mass-spec proteomics) and tissues relevant to human disease.  634 

 635 

METHODS 636 

Founder and CC strains 637 

The CC and DO are descended from eight inbred founder strains: A/J (AJ), C57BL/6J (B6), 638 
129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/H1LtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK), and 639 
WSB/EiJ (WSB). We previously collected, processed, and quantified liver proteins from two 640 
females and two males from each founder strain as well as 192 DO mice (Chick et al., 2016). 641 

We received pairs of young mice from 58 CC strains from the UNC Systems Genetics Core 642 
Facility between the summer of 2018 and early 2019. Mice were singly housed upon receipt 643 
until eight weeks of age. The 58 CC strains used in this study include: CC001/Unc  (CC001), 644 
CC002/Unc (CC002) , CC003/Unc (CC003), CC004/TauUnc (CC004), CC005/TauUnc (CC005), 645 
CC006/TauUnc (CC006), CC007/Unc (CC007), CC008/GeniUnc (CC008), CC009/UncJ (CC009), 646 
CC010/GeniUnc (CC010), CC011/Unc (CC011), CC012/GeniUnc (CC012), CC013/GeniUnc 647 
(CC013), CC015/Unc (CC015), CC016/GeniUnc (CC016), CC017/Unc (CC017), CC019/TauUnc 648 
(CC019), CC021/Unc (CC021), CC023/GeniUnc (CC023), CC024/GeniUnc (CC024), 649 
CC025/GeniUnc (CC025), CC026/GeniUnc (CC026), CC027/GeniUnc (CC027), CC029/Unc 650 
(CC029), CC030/GeniUnc (CC030), CC031/GeniUnc (CC031), CC032/GeniUnc (CC032), 651 
CC033/GeniUnc (CC033), CC035/Unc (CC035), CC036/Unc (CC036), CC037/TauUnc (CC037), 652 
CC038/GeniUnc (CC038), CC039/Unc (CC039), CC040/TauUnc (CC040), CC041/TauUnc (CC041), 653 
CC042/GeniUnc (CC042), CC043/GeniUnc (CC043), CC044/Unc (CC044), CC045/GeniUnc 654 
(CC045), CC046/Unc (CC046), CC049/TauUnc (CC049), CC051/TauUnc (CC051), CC053/Unc 655 
(CC053), CC055/TauUnc (CC055), CC057/Unc (CC057), CC058/Unc (CC058), CC059/TauUnc 656 
(CC059), CC060/Unc (CC060), CC061/GeniUnc (CC061), CC062/Unc (CC062), CC071/TauUnc 657 
(CC071), CC072/TauUnc (CC072), CC075/UncJ (CC075), CC078/TauUnc (CC078), CC079/TauUnc 658 
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(CC079), CC080/TauUnc (CC080), CC081/Unc (CC081), and CC082/Unc (CC082). More 659 
information regarding the CC strains can be found at 660 
http://csbio.unc.edu/CCstatus/index.py?run=AvailableLines.information. 661 

662 
Mouse genotyping, founder haplotype reconstruction, and gene annotations 663 

The 116 CC mice were genotyped on the Mini Mouse Universal Genotyping Array (MiniMUGA), 664 
which includes 11,125 markers (Sigmon et al., 2020). Founder haplotypes were reconstructed 665 
using a Hidden Markov Model (HMM), implemented in the qtl2 R package (Broman et al., 666 
2019), using the “risib8” option for an eight founder recombinant inbred panel. Notably, 667 
heterozygous markers are omitted, and haplotype reconstructions are limited to homozygous 668 
states, smoothing over potential residual heterozygous sites that remain in the CC mice. The 669 
genotyping and haplotype reconstruction for the DO mice were previously described (Chick et 670 
al., 2016); briefly, genotyping was performed on the larger MegaMUGA (57,973 markers) 671 
(Morgan and Welsh, 2015), from which founder haplotypes were reconstructed using the 672 
DOQTL R package (Gatti et al., 2014). 673 

Ensembl version 91 gene and protein annotations were used in the CC, whereas version 75 was 674 
previously used in the older DO and founder strains data. If the gene symbol or gene ID differed 675 
for a protein ID between versions 75 and 91, we updated them to version 91 in the DO and 676 
founder strains. When comparing results (e.g., pQTL, heritability, sex effects) between the CC 677 
and the DO or founder strains, we merged based on protein ID. For the more complicated 678 
results from mediation analysis, we allowed matches based on mediator gene symbol if the 679 
target protein IDs matched. 680 

681 
Sample preparation for proteomics analysis 682 

The sample preparation and mass-spec experimentation and analysis for the DO and founder 683 
strains were previously described (Chick et al., 2016). Singly housed CC mice had their food 684 
removed six hours prior to euthanasia and tissue harvest. Tissues were dissected out, weighed, 685 
and snap frozen in liquid nitrogen.  Pulverized CC liver tissue were syringe-lysed in 8 M urea and 686 
200 mM EPPS pH 8.5 with protease inhibitor and phosphatase inhibitor. BCA assay was 687 
performed to determine protein concentration of each sample. Samples were reduced in 5 mM 688 
TCEP, alkylated with 10 mM iodoacetamide, and quenched with 15 mM DTT. 200 µg protein 689 
was chloroform-methanol precipitated and re-suspended in 200 µL 200 mM EPPS pH 8.5. The 690 
proteins were digested by Lys-C at a 1:100 protease-to-peptide ratio overnight at room 691 
temperature with gentle shaking. Trypsin was used for further digestion for 6 hours at 37°C at 692 
the same ratio with Lys-C. After digestion, 50 µL of each sample were combined in a separate 693 
tube and used as the 11th sample in all 12 tandem mass tag (TMT) 11plex. 100 µL of each 694 
sample were aliquoted, and 30 µL acetonitrile (ACN) was added into each sample to 30% final 695 
volume. 200 µg TMT reagent (126, 127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C, 130N, 696 
and 131C) in 10 µL ACN was added to each sample. After 1 hour of labeling, 2 µL of each sample 697 
was combined, desalted, and analyzed using mass-spec. Total intensities were determined in 698 
each channel to calculate normalization factors. After quenching using 0.3% hydroxylamine, 11 699 
samples were combined in 1:1 ratio of peptides based on normalization factors. The mixture 700 
was desalted by solid-phase extraction and fractionated with basic pH reversed phase (BPRP) 701 
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high performance liquid chromatography (HPLC), collected onto a 96 well plate and combined 702 
for 24 fractions in total. Twelve fractions were desalted and analyzed by liquid 703 
chromatography-tandem mass spectrometry (LC-MS/MS).  704 
 705 
Off-line basic pH reversed-phase (BPRP) fractionation  706 

We fractionated the pooled TMT-labeled peptide sample using BPRP HPLC (Wang et al., 2011). 707 
We used an Agilent 1200 pump equipped with a degasser and a photodiode array (PDA) 708 
detector. Peptides were subjected to a 50-min linear gradient from 5% to 35% acetonitrile in 10 709 
mM ammonium bicarbonate pH 8 at a flow rate of 0.6 mL/min over an Agilent 300Extend C18 710 
column (3.5 μm particles, 4.6 mm ID, and 220 mm in length). The peptide mixture was 711 
fractionated into a total of 96 fractions, which were consolidated into 24, from which 12 non-712 
adjacent samples were analyzed (Paulo et al., 2016a). Samples were subsequently acidified with 713 
1% formic acid and vacuum centrifuged to near dryness. Each consolidated fraction was 714 
desalted via StageTip, dried again via vacuum centrifugation, and reconstituted in 5% 715 
acetonitrile, 5% formic acid for LC-MS/MS processing. 716 
 717 
Liquid chromatography and tandem mass spectrometry 718 

Mass spectrometric data were collected on an Orbitrap Fusion Lumos mass spectrometer 719 
coupled to a Proxeon NanoLC-1200 UHPLC. The 100 µm capillary column was packed with 35 720 
cm of Accucore 50 resin (2.6 μm, 150Å; ThermoFisher Scientific). The scan sequence began with 721 
an MS1 spectrum (Orbitrap analysis, resolution 120,000, 350−1400 Th, automatic gain control 722 
(AGC) target 5E5, maximum injection time 50 ms). SPS-MS3 analysis was used to reduce ion 723 
interference (Gygi et al., 2019; Paulo et al., 2016b). The top 10 precursors were then selected 724 
for MS2/MS3 analysis. MS2 analysis consisted of collision-induced dissociation (CID), 725 
quadrupole ion trap analysis, automatic gain control (AGC) 1E4, NCE (normalized collision 726 
energy) 35, q-value < 0.25, maximum injection time 60 ms), and isolation window at 0.5. 727 
Following acquisition of each MS2 spectrum, we collected an MS3 spectrum in which multiple 728 
MS2 fragment ions are captured in the MS3 precursor population using isolation waveforms 729 
with multiple frequency notches. MS3 precursors were fragmented by HCD and analyzed using 730 
the Orbitrap (NCE 65, AGC 3E5, maximum injection time 150 ms, resolution was 50,000 at 400 731 
Th). 732 
 733 
Mass spectra data analysis 734 

Mass spectra were processed using a Sequest-based pipeline (Huttlin et al., 2010). Spectra were 735 
converted to mzXML using a modified version of ReAdW.exe. Database search included all 736 
entries from an indexed Ensembl database version 90 (downloaded:10/09/2017). This database 737 
was concatenated with one composed of all protein sequences in the reversed order. Searches 738 
were performed using a 50 ppm precursor ion tolerance for total protein level analysis. The 739 
product ion tolerance was set to 0.9 Da. TMT tags on lysine residues, peptide N termini 740 
(+229.163 Da), and carbamidomethylation of cysteine residues (+57.021 Da) were set as static 741 
modifications, while oxidation of methionine residues (+15.995 Da) was set as a variable 742 
modification.  743 
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Peptide-spectrum matches (PSMs) were adjusted to FDR < 0.01 (Elias and Gygi, 2007, 2010). 744 
PSM filtering was performed using a linear discriminant analysis (LDA), as described previously 745 
(Huttlin et al., 2010), while considering the following parameters: XCorr, ΔCn, missed cleavages, 746 
peptide length, charge state, and precursor mass accuracy. For TMT-based reporter ion 747 
quantitation, we extracted the summed signal-to-noise (S:N) ratio for each TMT channel and 748 
found the closest matching centroid to the expected mass of the TMT reporter ion. For protein-749 
level comparisons, PSMs were identified, quantified, and collapsed to a peptide FDR < 0.01 and 750 
then collapsed further to a final protein-level FDR < 0.01, which resulted in a final peptide level 751 
FDR < 0.001. Moreover, protein assembly was guided by principles of parsimony to produce the 752 
smallest set of proteins necessary to account for all observed peptides. PSMs with poor quality, 753 
MS3 spectra with TMT reporter summed signal-to-noise of less than 100, or having no MS3 754 
spectra were excluded from quantification (McAlister et al., 2012).  755 
 756 
Filtering out peptides that contain polymorphisms 757 

Peptides that contain polymorphisms are problematic for protein quantification in genetically 758 
diverse samples because as the reference genome, only the B6 allele is quantified. 759 
Polymorphisms (with respect to the B6 genome) function as flags of the presence or absence of 760 
the B6 allele rather than reflecting the relative abundance of the peptide. During protein 761 
abundance estimation from peptides, a polymorphic peptide can either obscure the signal of a 762 
true abundance pQTL or induce a false local abundance pQTL. To avoid these biases, we filtered 763 
out peptides that contained polymorphisms based on the genome sequence of the founder 764 
strains and that were further confirmed in the data by having local founder haplotype effects 765 
that matched the expected distribution pattern of the B6 allele among the founder strains. 766 

To determine whether peptides with polymorphisms matched their expected B6 allele 767 
distribution patterns, the peptide data was made more comparable by standardization within 768 
batches and removal of batch effects. Each peptide was scaled by a sample-specific within-769 

batch scaling factor: 𝑦̃𝑖
pep 𝑘

=  
𝑦𝑖

pep 𝑘

𝑖
, where 𝑦𝑖

pep 𝑘
 is the mass-spec intensity of peptide 𝑘 for 770 

mouse 𝑖, 𝑖 =  
∑ 𝑦𝑖

pep 𝑘
𝐾

max
𝑙 ∈ 𝐵[𝑖]

(∑ 𝑦𝑙
pep 𝑘

𝐾 )
, 𝐾 is the set of all peptides measured for mouse 𝑖, and 𝐵[𝑖] is the 771 

set of samples included in the mass-spec batch of mouse 𝑖. For the CC samples, the additional 772 
pooled sample (i.e., bridge sample) was also included in each batch and provided an additional 773 

standardization across batches: 𝑦̃̃𝑖
pep 𝑘

=  log2 (
𝑦̃𝑖

pep 𝑘
+ 1

𝑦̃𝑏[𝑖]
pep 𝑘

+ 1
), where 𝑏[𝑖] represents the bridge 774 

sample from the batch of mouse 𝑖. For the DO and founder strain samples that did not include 775 

bridge samples, 𝑦̃̃𝑖
pep 𝑘

=  log2(𝑦̃𝑖
pep 𝑘

+  1). A log transformation is used because peptide 776 

intensities are commonly log-linear. 777 

Batch effects were removed from the processed peptide data using a linear mixed effect model 778 
(LMM) fit with the lme4 R package (Bates et al., 2015). Peptides unobserved for all samples 779 
within a batch were recorded as missing (coded as NA). If greater than 80% of samples were 780 
missing for a polymorphic peptide, it was removed from the batch correction step and the 781 
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subsequent evaluation of the B6 allele distribution pattern. The following model was fit for the 782 
CC data:  783 
Equation 1 784 

𝑦̃̃𝑖
pep 𝑘

 =  + x𝑖, covar
T 

covar
+ 𝑢strain[𝑖] + 𝑢𝑏[𝑖] + 𝑖  785 

 786 
where  is the intercept,  

covar
 is the effect vector of covariates estimated as fixed effects, 787 

x𝑖, covar
T  is the ith row of the covariate design matrix, 𝑢strain[𝑖] is the effect of the strain of sample 788 

𝑖,  𝑢𝑏[𝑖] is the effect the batch of sample 𝑖, and 𝑖 is the error for sample 𝑖 with 𝑖~N(0,2). The 789 

strain and batch effects were estimated as random effects: 𝐮strain~N(𝟎, IStrain
2 ) and 790 

𝐮𝑏~N(𝟎, I𝑏
2). For the CC and founder strains, sex was included as a covariate. A similar model 791 

was fit for the DO but with no strain effect and diet also included as a covariate with sex. The 792 
batch effects, estimated with best linear unbiased predictors (BLUPs) using restricted maximum 793 
likelihood estimates (REML; Patterson and Thompson 1971), were subtracted from each 794 

peptide measurement: 𝑦̃̃̃𝑖
pep k

=  𝑦̃̃𝑖
pep k

− 𝑢̂𝑏[𝑖]. 795 

For peptides expected to contain a polymorphism, we then fit local genetic effects: haplotype 796 
effects at the marker closest to the TSS of the gene to which the peptide maps in the CC and DO 797 
and strain effects in the founder strains.   798 
Equation 2 799 

𝑦̃̃̃𝑖
pep 𝑘

 =  + local[𝑖] + x𝑖, covar
T 

covar
+ 𝑢𝑖

kinship
+ 𝑖 800 

 801 

where local𝑖  is the effect of the local haplotype pair to peptide 𝑘 for sample 𝑖, 𝑢𝑖
kinship

 802 

represents a random effect that accounts for the correlation structure between individuals that 803 
is consistent with overall genetic relatedness, often referred to as the kinship effect, and all 804 

other terms as previously defined. For the CC, local[𝑖] =  p𝑖
T

local
 where p𝑖

T is the founder 805 

haplotype probability vector at the marker closest to the gene TSS (e.g., ordering the founder 806 

strains as AJ, B6, 129, NOD, NZO, CAST, PWK, and WSB, p𝑖
T = [0 1 0 0 0 0 0 0] for a CC mouse 𝑖 807 

that is B6/B6 at the locus). For the DO, local[𝑖] =  d𝑖
T

local
 where d𝑖

T is the founder haplotype 808 

dosage vector, scaled to sum to zero, at the marker closest to the gene TSS (e.g., d𝑖
T =809 

[0.5 0.5 0 0 0 0 0 0] for a DO mouse 𝑖 that is AJ/B6 at the locus). For the founder strains, 810 

local𝑖 =  x𝑖,strain
T 

local
 where x𝑖,strain

T  is the founder strain incidence vector for mouse 𝑖 (e.g., 811 

x𝑖,strain
T = [0 1 0 0 0 0 0 0] for a B6 mouse). 

local
 is an eight-element vector of founder 812 

haplotype effects, fit as a random effect: 
local

~N(𝟎, Ilocal
2 ) where I is an 8×8 identity matrix 813 

and local
2  is the variance component underlying the local effects. The kinship effect is included 814 

for the CC and DO and modeled as ukinship ~ N(𝟎, GG
2) where 𝐆 is a realized genomic 815 

relationship matrix and G
2  is the variance component underlying the kinship effect, accounting 816 

for population structure (Kang et al., 2008, 2010; Lippert et al., 2011; Zhou and Stephens, 817 
2012). Here we used a leave-one-chromosome-out or “loco” 𝐆, in which markers from the 818 
chromosome the peptide is predicted to be located on are excluded from 𝐆 estimation in order 819 
to avoid the kinship term absorbing some of local[𝑖]  (Wei and Xu, 2016). We then calculated 820 

𝑟poly = cor(̂
local

, q), the Pearson correlation coefficient between ̂
local

, the BLUP of 
local

 and 821 
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q, the incidence vector of the B6 allele among the founder strains (e.g., q =  [0 1 0 0 0 0 0 0] 822 
for a peptide with a B6 allele that is missing in the other founder strains). Sets of peptides with 823 
polymorphisms were defined based on having 𝑟poly > 0.5 for each of the CC, DO, and founder 824 

strains, to be excluded from further analysis because they would bias protein abundance 825 
estimation. 826 
 827 
Protein abundance estimation from peptides 828 

Protein abundances were estimated from their component peptides after filtering out peptides 829 
that possessed polymorphisms based on founder strain sequences that were confirmed in the 830 

peptide data. The abundance for protein 𝑗 is calculated as 𝑦𝑖
prot 𝑗

=
∑ 𝑦𝑖

pep 𝑚
1𝑖,𝑚𝑀

𝑖
 where 𝑀 is the 831 

set of peptides that map to protein 𝑗, 1𝑖,𝑚  is the indicator function that peptide 𝑚 was 832 
observed in mouse 𝑖, and 𝑖 is the scaling factor previously defined (Huttlin et al., 2010). Similar 833 
to the previously described peptide normalization in the CC, proteins were scaled relative to the 834 
bridge sample (pooled sample of all CC mice included in all batches) and log-transformed: 835 

𝑦̃𝑖
prot 𝑗

=  log2 (
𝑦𝑖

prot 𝑗
+ 1

𝑦𝑏[𝑖]
prot 𝑗

+ 1
). For the DO and founder strain samples, there was no bridge sample, 836 

and proteins were instead normalized as: 𝑦̃𝑖
prot 𝑗

=  log2(𝑦𝑖
prot 𝑗

+  1).  837 

Batch effects were removed from the protein data using the same LMM approach described for 838 
the peptide data (Equation 1). If more than 50% of samples were missing a protein, it was 839 
removed from further analysis. Batch effects, estimated as BLUPs, were then removed: 840 

𝑦̃̃𝑖
prot 𝑗

=  𝑦̃𝑖
prot 𝑗

− 𝑢̂𝑏[𝑖]. 841 

 842 
Heritability estimation 843 

We estimated heritability for all proteins in the CC, DO, and founder strains. The heritability 844 
model is similar to Equation 2, but for proteins instead of peptides and without the local[𝑖] 845 
term: 846 
Equation 3 847 

𝑦̃̃𝑖
prot 𝑗

=  + x𝑖, covar
T 

covar
+ 𝑢𝑖

kinship
+ 𝑖 848 

 849 
where terms are as previously defined. The genomic relationship matrix 𝐆 – corresponding to 850 

the kinship term ukinship ~ N(𝟎, GG
2) for the CC and DO – is estimated from all markers –“non-851 

loco” 𝐆 – because there are no other genetic terms in the model. In the founder strains, 𝐆 =852 

 XstrainXstrain
T  where Xstrain is the founder strain incidence matrix. Sex was modeled as a 853 

covariate for all three populations, and diet as well in the DO. Heritability is then calculated as 854 

ℎ2 =  
G

2

G
2+ 2. 855 

 856 
QTL analysis 857 

In the CC and DO, we performed a genome-wide pQTL scan for each protein, testing a QTL 858 
effect at positions across the genome, using a model similar to Equation 2: 859 
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Equation 4 860 

𝑧̃̃𝑖
prot 𝑗

=  + QTL𝑚[𝑖] + x𝑖, covar
T 

covar
+ 𝑢𝑖

kinship
+ 𝑖  861 

 862 

where 𝑧̃̃𝑖
prot 𝑗

is the standard normal quantile returned by the inverse cumulative distribution 863 

function of the normal distribution on the uniform percentiles defined by the ranks of 𝒚̃̃prot 𝑗, 864 
i.e., the rank-based inverse normal transformation (RINT) (Beasley et al., 2009) of protein 𝑗 for 865 
individual 𝑖, QTL𝑚[𝑖] is the effect of the putative QTL at marker 𝑚 on protein 𝑗 for individual 𝑖, 866 
equivalent to the local[𝑖] term in Equation 2 for the CC and DO, and all other terms as 867 
previously defined. The kinship effect was fit based on the “loco” 𝐆 specific to the chromosome 868 
of marker 𝑚. We used RINT for the QTL analysis to reduce the influence of extreme 869 
observations that can produce false positives, particularly when they coincide with a rare 870 
founder haplotype allele, which are of particular concern in the context of a CC sample 871 
population with 58 unique genomes. To test the QTL term, the model in Equation 4 is compared 872 
to a null model excluding QTL𝑚, summarized as the log10 likelihood ratio (LOD) score. 873 

The QTL model in Equation 4 was also used for variant association mapping at specific pQTL 874 
identified through the haplotype-based analysis by adjusting the QTL𝑚[𝑖] term: QTL𝑣[𝑖] =875 

 p𝑖,𝑣
T 

QTL
, where p𝑖,𝑣

T  is the marginal variant allele probability vector for variant 𝑣, which is 876 

calculated by collapsing and simplifying the underlying founder haplotype probabilities based 877 
on the known variant genotype in the founder strains (SQLite variant database: 878 
https://doi.org/10.6084/m9.figshare.5280229.v3).  879 

For the CC, we mapped pQTL based on strain averages where 𝑧̃̃𝑖
prot 𝑗

 is the average 880 

of 𝑦̃̃male, strain 𝑖
prot 𝑗

 and 𝑦̃̃female, strain 𝑖
prot 𝑗

 followed by RINT across the population of strains. Founder 881 

haplotype probabilities were reconstructed at the level of individual mice and were also 882 
averaged at all markers for strain-level mapping. A strain-level 𝐆 was then estimated from the 883 
strain-level founder haplotype probabilities. No fixed effect covariates were included when 884 
mapping on strain averages. We tried mapping pQTL in the CC on individual-level data, which 885 
returned largely consistent results, but notably fewer and weaker pQTL. In the CC, we also 886 
mapped pQTL to the mitochondrial genome and Y chromosome by testing whether the founder 887 
origin of the mitochondria or Y chromosome was associated with protein abundance. We fit 888 
Equation 4, treating the mitochondrial genome or Y chromosome as a single locus QTLY[𝑖] and 889 
QTLMT[𝑖], respectively, using the “non-loco” 𝐆 for the kinship effect. The founder strain of 890 
origin for the Y chromosome was determined for all CC strains. For the mitochondrial genome, 891 
six strains (CC031, CC032, CC041, CC051, CC059, CC072) possessed ambiguity between AJ and 892 

NOD, which we encoded as equal probabilities (p𝑖,MT
T = [0.5 0 0 0.5 0 0 0 0]). 893 

 894 
QTL significance thresholds 895 

We estimated significance thresholds for pQTL using permutations (Doerge and Churchill, 896 
1996). We accounted for varying levels of missing data by performing genome scans on 10,000 897 
permutations of the normal quantiles for each level of observed missingness in the CC and DO 898 
(ranging from 0 to 50%). Genome scans of the permuted data used the model in Equation 4, 899 
while excluding covariates and the kinship term, allowing permutations to be more applicable 900 
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across proteins with the same level of missingness. To control the genome-wide error rate per 901 
protein and the FDR across proteins (Chesler et al., 2005), the maximum LOD scores from the 902 
permutation scans were used to fit generalized extreme value distributions (GEV) (Dudbridge 903 
and Koeleman, 2004; Valdar et al., 2009) specific to the level of missingness, which were used 904 
to calculate genome-wide permutation p-values for the maximum LOD observed per protein: 905 
Equation 5 906 

𝑝perm
prot 𝑗

= 1 − 𝐹GEV, 𝑛NA[prot 𝑗](max LOD[prot 𝑗]) 907 

 908 
where 𝐹GEV, 𝑛NA[prot 𝑗] is the cumulative density function for the GEV fit from the permutations 909 

of quantiles with 𝑛NA number missing values, corresponding to the number missing for protein 910 
𝑗, and max LOD[prot 𝑗] is the maximum LOD score from the genome scan of protein 𝑗. We then 911 
used the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg, 1995) to calculate FDR 912 
q-values from all observed permutation p-values, which were used to interpolate a permutation 913 

p-value that corresponds to FDR < 𝛼: 𝑝perm, α
interp

 where 𝛼 ∈ [0.1, 0.5]. Significance thresholds on 914 

the LOD scale, specific to FDR < 𝛼 and 𝑛NA missing data points, were calculated: 915 

𝜆FDR < α
𝑛NA = 𝐹GEV, 𝑛NA

−1 (1 - 𝑝perm, FDR < α
interp

) where 𝐹GEV, 𝑛NA

−1  is the inverse cumulative density function 916 

for the GEV with 𝑛NA missing data points. As a final step to reduce random variation between 917 
sets of permutations, we regressed the estimated thresholds for a population and FDR level on 918 

the number of missing data points 𝑛NA, and created a table of fitted thresholds: 𝜆̂FDR < α
𝑛NA  for 𝛼 ∈ 919 

[0.1, 0.5] for both the CC and DO. Whether a pQTL met FDR < 𝛼 significance, the threshold 920 

corresponding to 𝛼 with the 𝑛NA for protein 𝑗 was used. For reference, 𝜆̂FDR < 0.1
0 =  7.89 and 921 

𝜆̂FDR < 0.5
0 =  6.30 in the CC, and 𝜆̂FDR < 0.1

0 =  7.87 and 𝜆̂FDR < 0.5
0 =  6.44 in the DO. 922 

 923 
Consistency of QTL between the CC and DO 924 

We evaluated the consistency of pQTL between the CC and DO by comparing their haplotype 925 
effects. Haplotype effects were estimated at the pQTL marker using the model in Equation 4. To 926 
stabilize the effects, they were modeled as a random effect: 

QTL
 ~ N(𝟎, 𝐈QTL

2 ), where QTL
2  is a 927 

variance component underlying the haplotype effects of the pQTL. We then estimated the 928 

haplotype effects as BLUPs (̃
QTL

). To declare pQTL consistent between the CC and DO, we 929 

evaluated whether their haplotype effects were significantly positively correlated: 𝑝QTL
𝑟 =930 

Pr(𝑟QTL > 0) where 𝑟QTL =  cor(̃
QTL

CC
, ̃

QTL

DO
) and 𝑟QTL√6(1 − 𝑟QTL

2 )−1 ~ 𝑡(6). To account for 931 

multiple testing, we used the BH procedure on the p-values for correlated effects and declared 932 
pQTL with 𝑞QTL

𝑟 < 0.1 as consistent between the CC and DO. 933 

Selecting which marker to fit the haplotype effects at is complicated by the fact that the CC and 934 
DO have different sets of markers and the genomic coordinate of the peak LOD score is also 935 
subject to variation. When comparing pQTL detected in both populations, we fit Equation 4 at 936 
the markers with the highest LOD score specific to each population, meaning they may not be 937 
the markers closest to each other. When comparing pQTL that were detected in only one 938 
population, we selected the marker in the population that failed to map the pQTL that was 939 
closest to the marker in the population that detected it. 940 
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 941 
Consistency of local QTL in the CC with the founder strains 942 

If the genetic effects on a protein are primarily local, the relative abundances for a protein in 943 
the founder strains should match the local pQTL effects observed in the CC and DO, which can 944 
be used to confirm findings and better support suggestive pQTL in the CC or DO. We evaluated 945 
the consistency of local pQTL in the CC with the founder strains, using an approach similar to 946 
how we compared pQTL effects between the CC and DO. For the founder strains, rather than 947 

fitting pQTL effects (̃
QTL

), we fit the founder effects as random terms (as described for the 948 

local term in Equation 2 for the founder strains) summarized as BLUPs (̃
strain

Founders
). We then 949 

calculated the Pearson correlation between local pQTL effects in the CC and founder effects in 950 

the founder strains: 𝑟local =  cor(̃
QTL

CC
, ̃

strain

Founders
). As when comparing QTL effects between the 951 

CC and DO, we then tested 𝑟local > 0, and corrected for multiple testing through the BH 952 
procedure. 953 
 954 
Mediation analysis 955 

We performed mediation analysis on each distal pQTL with LOD > 6 in the CC or DO, which 956 
involved a scan analogous to the QTL genome scans. The underlying model is 957 
Equation 5 958 

𝑧̃̃𝑖
prot 𝑡

=  + QTL[𝑖] + x𝑖, covar
T 

covar
+ mediator𝑞[𝑖] + 𝑖  959 

 960 
where QTL[𝑖] is as defined for QTL𝑚[𝑖] in Equation 4, but fixed at the marker 𝑚 of the 961 
detected distal pQTL for target protein 𝑡, mediator𝑞[𝑖] is the effect of candidate mediator 962 

protein 𝑞 on protein 𝑡 for individual 𝑖, and all other terms as previously defined. The effect of 963 

the mediator is modeled as: mediator𝑞[𝑖] = 
prot q

𝑧̃̃𝑖
prot 𝑞

, where 
prot q

 is the regression 964 

coefficient for the mediator protein 𝑞 and 𝑧̃̃𝑖
prot 𝑞

 is the RINT quantity of protein 𝑞 for individual 965 

𝑖. The likelihood of Equation 5 is compared to a null QTL model that excludes the QTL𝑖  term, 966 
producing a mediation LOD score. The mediation model is fit for all proteins as mediators, 967 
excluding protein 𝑡, resulting in a mediation scan.  968 

We assume that the vast majority of candidates are not true mediators of a specific pQTL and 969 
thus the distribution of mediation LOD scores approximates a null distribution. Assuming that 970 
the null distribution is approximately normal, we calculate the z-scores of the mediation LOD 971 

scores, and define mediators of the QTL at marker 𝑚 for protein 𝑡 as proteins with 𝑧𝑞
med < -4, 972 

where 𝑧𝑞
med is the z-score of the mediation LOD score for candidate mediator protein 𝑞. The 973 

rationale being that when testing the QTL term in Equation 5, if the mediator contains some of 974 
the information of the QTL, its presence in both the alternative and null models will result in a 975 
large drop in the LOD score of the detected pQTL. In order for a mediator to be a clear 976 
candidate driver of the distal pQTL, we required that the mediator TSS be within 10 Mbp of the 977 
pQTL marker. Strong mediators that were not near the pQTL often represent proteins that are 978 
correlated with protein 𝑡, such as co-regulated members of a protein-complex. 979 
 980 
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Sex effects on proteins analysis 981 

Proteins that exhibited differential abundance between the sexes, i.e., sex effects, were 982 
identified using an LMM similar to the heritability model (Equation 3) for the CC, DO, and 983 
founder strains, but instead testing the significance of the sex coefficient: 984 
Equation 6 985 

𝑦̃̃𝑖
prot 𝑗

=  + 
Male

𝑥𝑖, Male + x𝑖, covar
T 

covar
+ 𝑢𝑖

kinship
+ 𝑖 986 

 987 
where 

Male
 is the effect on protein 𝑗 of being male, 𝑥𝑖, Male is an indicator variable of being 988 

male, and all other terms as defined previously. Non-sex covariates and the specification of 989 

𝑢𝑖
kinship

 for the different populations are the same as described for heritability. 990 

A p-value for the sex effect was calculated by comparing the model in Equation 6 to a null 991 

model without the sex effect through the likelihood ratio test (LRT): 𝑝sex
prot 𝑗

=  Pr(X > ̂
prot 𝑗
2 ) 992 

where Pr(.) denotes the 
(1)
2  probability density function and ̂

prot 𝑗
2  is the observed LRT 993 

statistic for protein 𝑗. The LMM was fit with the qtl2 R package (Broman et al., 2019), using 994 
maximum likelihood estimates (MLE) for parameters rather than REML, which are more 995 
appropriate for asymptotic-based significance testing of fixed effects. Proteins with significant 996 
sex effects were selected based on FDR < 0.1 using the BH procedure (Benjamini and Hochberg 997 
1995).  998 

We performed gene set enrichment analysis through the clusterProfiler R package (Yu et al., 999 
2012). We defined gene sets based on having 𝑞sex < 0.01 and split them further into subsets 1000 
based on having higher abundance in males or higher abundance in females for both the CC 1001 
and DO. We used the quantified proteins in each population as the background gene set to 1002 
account for biases in the observed proteins. Hypergeometric set tests for enrichment of GO and 1003 
KEGG terms were performed with FDR multiple testing control (Storey et al., 2019). Enriched 1004 
GO and KEGG terms were selected based on having 𝑞set < 0.1. 1005 
 1006 
Protein-complex analysis 1007 

We categorized individual proteins as members of protein-complexes as defined by previous 1008 
annotations (Ori et al., 2016). For each protein-complex, we quantified how tightly co-1009 
abundant, i.e., cohesive, the members are, by calculating the median pairwise Pearson 1010 
correlation for each protein with the other members of the protein-complex. We summarized 1011 
cohesiveness within a protein-complex by recording the median and interquartile range across 1012 
the median correlations for the individual proteins.  1013 

To assess whether genetics or sex regulated protein-complexes as a whole, we estimated the 1014 
complex-heritability and complex-sex effect size. We took the PC1 from the set of proteins from 1015 
the complex after first removing the effects of key covariates from the individual proteins in 1016 
order to keep the PC1 from reflecting other drivers of variation instead of genetic factors or sex. 1017 
For complex-heritability, we removed the effect of sex in the CC, and both sex and diet in the 1018 
DO. For complex-sex effect size, we only removed the effect of diet from the DO. Complex-1019 
heritability was estimated using the model in Equation 3, with no covariates and the complex 1020 
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PC1 as the outcome. To estimate the complex-sex effect size: 𝜙sex
2 = 1 −1021 

(∑ 𝑒𝑖
2 | MA)𝑖 (∑ 𝑒𝑖

2 | M0)𝑖⁄ where ∑ 𝑒𝑖
2 | MA𝑖  is the sum of squared residuals (SSR) under the 1022 

alternative model (Equation 6) and ∑ 𝑒𝑖
2 | M0𝑖  is the SSR under the null model (Equation 6 1023 

excluding sex effect). Interval estimates for complex-heritability and complex-sex effect size 1024 
represent 95% subsample intervals. We randomly sampled without replacement 80 of the CC 1025 
and DO data 1,000 times and estimated the complex-heritability and complex-sex effect size for 1026 
each subsample as well as the 2.5th and 97.5th quantiles across the subsamples. We estimated 1027 
summaries for protein-complexes that had four or more proteins observed in the CC or DO, 1028 
after removing proteins with local pQTL (FDR < 0.5) or distal pQTL (FDR < 0.1), limiting the 1029 
potential that the PC1 reflects a strong pQTL not shared by other members of the complex. 1030 

1031 
Strain-protein outlier analysis 1032 

To identify CC strains with consistent extreme effects in both the female and male, we fit an 1033 
LMM: 1034 
Equation 8 1035 

𝑦̃̃𝑖
prot 𝑗

=  + 
Male

𝑥𝑖, Male + 𝑢strain[𝑖] + 𝑖  1036 

1037 

with all terms as previously defined. Effects for all CC strains for each protein 𝑗 (ûstrain
prot 𝑗

) were 1038 

estimated as BLUPs, which were then transformed to z-scores per protein (𝐳strain
prot 𝑗

). We defined 1039 

a strain-protein outlier to be a protein 𝑗 in CC strain 𝑖 for which |𝑧strain 𝑖
prot 𝑗

| > 2.5. We intersected 1040 

the strain-protein outliers with known CC strain-private genetic variants (Srivastava et al., 1041 
2017), identifying CC strain-private variants that likely have local effects on protein abundance. 1042 
We permuted the pairings between CC strain and protein for the 6,046 strain-protein outliers 1043 
to determine if the observed overlap of 69 privates was significant.  1044 

For each CC strain 𝑖, we defined sets of proteins that had consistently high, low, and extreme 1045 

abundance based on their strain effects: Ωstrain 𝑖
high

= {prot 𝑗: 𝑧strain 𝑖
prot 𝑗

> 2.5} ∀ 𝑗, Ωstrain 𝑖
low =1046 

{prot 𝑗: 𝑧strain 𝑖
prot 𝑗

< −2.5} ∀ 𝑗, and Ωstrain 𝑖
extreme = {prot 𝑗: |𝑧strain 𝑖

prot 𝑗
| > 2.5} ∀ 𝑗, respectively. We then 1047 

tested whether the CC strain-specific sets were enriched in GO and KEGG terms (𝑞set < 0.1), as 1048 
done with proteins with sex effects. 1049 

1050 
Data and software availability 1051 

All analyses were performed using the R statistical programming language (v3.6.1) (R Core 1052 
Team, 2018). The scripts and processed data used to generate the results are available at 1053 
figshare (https://doi.org/10.6084/m9.figshare.12818717). All processed data and pQTL results 1054 
are available for download and interactive analysis using the QTLViewer webtool for both the 1055 
CC (https://churchilllab.jax.org/qtlviewer/CC/Ferris) and DO 1056 
(https://churchilllab.jax.org/qtlviewer/DO/Svenson). The mass-spec proteomics data for the CC 1057 
liver samples have been deposited in ProteomeXchange (http://www.proteomexchange.org/) 1058 
via the PRIDE partner repository with dataset identifier PXD018886. The mass-spec data for the 1059 
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DO and founder strain liver samples were previously deposited to ProteomeXchange with 1060 
dataset identifier PXD002801.  1061 
 1062 
Acknowledgements 1063 

We would like to thank the members of the Churchill lab for feedback during the development 1064 
of this project and in the process of composing the manuscript. We would also like to thank 1065 
Lauren J. Donoghue of the University of North Carolina at Chapel Hill, John W. Keele of the 1066 
United States Department of Agriculture, Paul L. Maurizio of the University of Chicago, and 1067 
Bryan C. Quach of the Research Triangle Institute for their feedback on this manuscript. This 1068 
work has been supported by grants from the National Institutes of Health (NIH): F32GM134599 1069 
to G.R.K.; U19AI100625, P01AI132130, and R01ES029925 to F.P.-M.V. and M.T.F.; 1070 
R01GM067945 to S.P.G; and R01GM070683 to G.A.C. 1071 
 1072 
Author contributions 1073 

Conceptualization, M.T.F., S.P.G., and G.A.C.; Methodology, G.R.K., T.Z., S.P.G., and G.A.C.; 1074 
Software, G.R.K, D.P., and M.V.; Investigation, G.R.K. and T.Z.; Resources, T.Z., T.A.B., P.H., 1075 
G.D.S., F.P-M.V., M.T.F., and S.P.G.; Data Curation, G.R.K, T.Z., and M.V.; Writing – Original 1076 
Draft, G.R.K., T.Z., and G.A.C.; Writing – Review & Editing; Visualization, G.R.K.; Supervision, 1077 
S.C.M., M.T.F., S.P.G., and G.A.C.; Funding Acquisition, F.P-M.V., M.T.F., S.P.G., and G.A.C. 1078 
 1079 
Declarations of interests 1080 

The authors declare no competing interests. 1081 
 1082 
Supplemental Information 1083 

Table S1. Heritability and sex effects for the proteins analyzed in the CC, DO, and founder 1084 
strains, related to Figure 1 1085 
 1086 
Table S2. Detected pQTL (LOD > 6) in the CC and DO, related to Figures 2 and S1 1087 
 1088 
Table S3. Consistency of haplotype effects for pQTL detected (FDR < 0.5) in the CC and DO, 1089 
related to Figures 2 and S1 1090 
 1091 
Table S4. Mediation results for distal pQTL detected (LOD > 6) in the CC and DO, related to 1092 
Figures 2 and S1 1093 
 1094 
Table S5. Annotated protein-complexes (Ori et al., 2016) used in this study, with added mouse 1095 
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1345 
Figure S1. Comparison of lenient mapping results, mediation candidates, and sex effects among genetically diverse mouse 1346 
populations, related to Figures 1 and 2. Leniently detected (FDR < 0.5) pQTL in the (a) CC and (b) DO. The pQTL are plotted by 1347 
the genomic position of protein against their coordinate. Dot size is proportional to association strength (LOD score). (c) Venn 1348 
diagram of the overlap of analyzed proteins between the CC and DO. (d) A local pQTL was detected in the CC for mt-Nd1, a gene 1349 
encoded on the mitochondrial genome. The pQTL is characterized by low MT-ND1 in CC strains with the CAST mitochondrial 1350 
genome. For six CC strains, mitochondrial inheritance was ambiguous between AJ and NOD (white boxplot). (e) Venn diagram 1351 
of the overlap in local pQTL detected in the CC and DO. (f) The haplotype effects of local pQTL detected in both populations are 1352 
highly consistent, as measured by the correlation coefficient comparing the effects in the CC and DO. (g) More local pQTL are 1353 
consistent between the populations when also considering pQTL detected in only one of them. Red bars represent pQTL that 1354 
that had significantly correlated effects (FDR < 0.1). (h) Venn diagram of overlap of distal pQTL detected in the CC and DO. (i) 1355 
Using lenient detection resulted in more distal pQTL in both populations with consistent haplotype effects (41 out of 51). (j) In 1356 
contrast to local genetic effects, considering distal pQTL that were leniently detected in only one of the populations resulted in 1357 
many inconsistent effects comparisons, likely representing false positives or subtle distal effects specific to one population. The 1358 
founder strains can reveal under-powered local pQTL in the CC (and DO), as revealed by the correlations between haplotype 1359 
effects at putative local pQTL for genes with rare alleles in the CC (≤ 3 CC strains) and that did not have a local pQTL detected 1360 
(FDR < 0.5) and strain effects in mice from the founder strains (k). The enrichment in positive correlations suggests the founders 1361 
can provide additional information for detecting local pQTL in the CC. The gene Cyp2j5 had significant correlation (r = 0.96) 1362 
between the strain effects in the (l) founder strains with the (m) local haplotype effects in the CC, characterized by low CAST 1363 
and PWK effects. Mean and  2 standard deviation bars are shown for the founder strains, and boxplots for CC strains. Four CC 1364 
strains possessed the CAST allele and only one had the PWK allele, resulting in (n) poor power to detect the local pQTL of 1365 
Cyp2j5. Stringent and lenient significance thresholds are included as horizontal black and gray dashed lines, respectively. (o) 1366 
Comparison of mediation results for distal pQTL stringently detected (FDR < 0.1) in at least one of the populations. For distal 1367 
pQTL detected stringently in both populations, mediation results were strongly consistent (14 out of 19). If the distal pQTL were 1368 
detected leniently in the other population, mediation was still somewhat consistent (7 out of 19). When the distal pQTL was not 1369 
detected in the other population, often no mediator was detected, or the candidate mediator was missing from the other 1370 
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population. Observance of both sexes within the (p) CC and (q) founder strains improves power to detect sex effects. The -1371 
log10(p-value), or logP, from a linear mixed effect model (LMM) that takes into account strain replicates compared to the logP 1372 
from an unpaired t-test. The lower logP in the founder strains reflects the overall smaller sample size (32 mice compared to 116 1373 
in the CC). Dashed diagonal lines included for reference. 1374 
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Figure S2. Highly consistent local pQTL effects across the CC, DO, and founder strains, related to Figure 2. Local pQTL for (a) 1376 
Gosr2 and (e) Cyp2d22 have highly consistent effects across the CC (left) and founder strains (right). Boxplots are shown for the 1377 
CC strains and mean  2 standard deviation bars for the founder strains. The local pQTL effects are also highly consistent 1378 
between the CC and DO, both in terms of modeled effects and the actual data – for (b, c) Gosr2 and (f, g) Cyp2d22. For 1379 
comparisons of modeled effects (b, f), intervals represent  standard error bars. Dashed diagonal lines included for reference. 1380 
To visualize the effects in the actual data (c, g), the CC and DO data at the pQTL are represented as heatmaps with rows 1381 
indicating founder allele dosage at the local pQTL (expected allele counts) and columns indicating individual mice, ordered by 1382 
protein abundance. Clusters in rows towards the left or right sides represent founder haplotype effects, such as the high WSB 1383 
effect in Cyp2d22. Haplotype-based association scans at the pQTL are overlayed with variant assocations for (d) Gosr2 and (h) 1384 
Cyp2d22. When the pQTL effects are approximately bi-allelic, as with Gosr2 (d), the peak variant association and haplotype-1385 
based association are very close, consistent with a single variant largely driving the pQTL. Variants with an allele shared by only 1386 
129 and CAST, matching the effects pattern, are shown. When the effects were more complex than bi-allelic, as with Cyp2d22 1387 
(h), there are likely multiple causal variants, and haplotype-based association produces higher scores of assocation. WSB- and 1388 
PWK-private variants with LOD > 6 were included for Cyp2d22, highlighting LD blocks that potentially carry founder-specific 1389 
variants driving their extreme effects. The larger sample size and finer mapping resolution of the DO sample are evident in the 1390 
high LOD scores and narrower association peaks. Genomic positions of peak associations from variant- and haplotype-based 1391 
mapping are marked. Horizontal dashed lines at LOD of 6 included as reference.  1392 
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1393 
Figure S3. Similarity and differences in the genetic effects on Ercc3 between the CC and DO, related to Figure 2. Suggestive 1394 
distal pQTL for Ercc3 map to chromosome 7 in both the (a) CC and (b) DO, consisting of two peaks above Ercc2 and Gtf2h1, 1395 
genes that are approximately 30 Mbp apart and known to interact with ERCC3. Mediation analysis identified GTF2H1 and 1396 
ERCC2 as candidate drivers of the Ercc3 pQTL. Gray dots represent mediation scores for all quantified proteins on chromosomes 1397 
7 and 18. Horizontal dashed lines at LOD of 6 included for reference. To better understand the pQTL effects, the founder 1398 
haplotype inheritance was plotted as heatmaps with founder allele dosage (expected allele counts) as rows and individual mice 1399 
as columns, ordered by ERCC3 abundance, at the chromosome 7 locus near Gtf2h1. A low NOD effect was observed, indicated 1400 
by the dark blue box, which was weak to non-existent in the DO (dotted dark blue box), as well as a high WSB effect in both the 1401 
CC and DO (purple boxes). (c) In the CC, Gtf2h1 has a weak distal pQTL that mapped nearby Ercc2 and was mediated by ERCC2 1402 
with similar low NOD and high WSB effects. (d) In the DO, Gtf2h1 has a suggestive local pQTL (LOD < 6) and notably no 1403 
suggestive association near Ercc2. (e) Ercc2 has a strong local pQTL in the CC (FDR < 0.1), driven by a low NOD effect, whereas in 1404 
the (f) DO, a suggestive distal pQTL is observed near Gtf2h1. Diagrams for the relationships defined by pQTL and mediation in 1405 
the (g) CC and (h) DO. In both populations, Ercc2 and/or Gtf2h1 affect ERCC3 abundance, and potentially each other as well. 1406 
Teasing apart the directionality of effects is further complicated by the linkage disequilibrium (LD) between Ercc2 and Gtf2h1. 1407 
The low NOD effect at the Ercc2 locus is stronger in the CC, and the high WSB effect is strongest at the Gtf2h1 locus. (i) The 1408 
haplotype effects at the locus near Ercc2 are relatively similar, though the NOD effect is more extreme in the inbred CC 1409 
background. Intervals represent  standard error bars. Dashed diagonal line included for reference.  1410 
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1411 
Figure S4. Comparatively fewer detected genetic effects on protein-complex members, and the correlation between protein-1412 
complex heritability and cohesiveness, related to Figures 3, 4, 5, and 6. Histograms of the heritability of proteins that are not 1413 
annotated as members of a protein-complex (top) and that are members (bottom) in the (a) CC and (b) DO. Vertical dashed line 1414 
represents the median heritability, which were significantly different (pperm < 1e-4). A lower proportion of proteins that are 1415 
members of protein-complexes possess pQTL (pperm < 1e-4) in both the (c) CC and (d) DO. Black boxes represent stringently 1416 
detected (FDR < 0.1) pQTL, gray boxes represent leniently detected (FDR < 0.5) pQTL, and white boxes represent proteins that 1417 
had no pQTL detected. Numbers represent the percentage of proteins with detected pQTL at FDR < 0.1 within each category. 1418 
The correlation between protein-complex heritability and cohesiveness is stronger in the (e) CC (r = 0.33, p = 4.37e-6) than the 1419 
(f) DO (r = 0.17, p = 0.03). For protein-complex cohesiviness, points and bars represent medians and interquartile ranges,1420 
respectively. Protein-complex heritability was estimated from the first principal component (PC1) of the complex members, and1421 
bars represent 95% subsample intervals around the estimate. Exosome, chaperonin-containing T-complex, 26S Proteasome,1422 
and the mitochondrial ribosomal small subunit are highlighted and are examined in detail (Figures 4, 5, 6, S5, & S6).1423 
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1424 
Figure S5. A local recessive effect on EXOSC7 that impacts the whole exosome is exposed by the inbred genomes of the CC 1425 
strains, related to Figure 4. The founder haplotype inheritance at the Exosc7 local pQTL represented as a heatmap with founder 1426 
allele dosages (expected allele counts) as rows and individuals as the columns, ordered by EXOSC7 abundance, for the (a) CC 1427 
and (b) DO. The cluster on the left side in the PWK row (red box) for the CC reflects the low EXOSC7 abundance observed in CC 1428 
mice that are homozygous for the PWK allele at the locus. No homozygotes for PWK were observed in the DO, and the 1429 
heterozygous PWK carriers do not have low EXOSC7 abundance (dotted red box). (c) Comparison of the modeled allele effects 1430 
at the Exosc7 locus reveal a marked lower PWK effect specific to the CC, which is consistent with the effects of a recessive 1431 
allele. Intervals represent  standard error bars. Dashed diagonal line included for reference. (d) Mice from the PWK strain with 1432 
low EXOSC7 abundance were observed, though the effect is not as distinct as in the CC, possibly due to decreased accuracy 1433 
without a bridge sample and the relative nature of the mass-spec quantification. Founder strain mice are summarized with 1434 
mean  2 standard deviation bars.  1435 
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1436 
Figure S6. The founder strains differ in the balance between the constitutive proteasome and the inducible 1437 
immunoproteasome, related to Figure 6. The correlation pattern among members of the 26S proteasome in the founder 1438 
strains matches closely with those observed in the CC and DO (Figure 6a & b). The constitutive members of the 20S proteasome 1439 
(PSMB5, PSMB6, and PSMB7) are anti-correlated with the corresponding inducible immunoproteasome components (PSMB8, 1440 
PSMB9, and PSMB10) and the subunits from the 11S regulator – the regulator complex specific to the immunoproteasome – 1441 
highlighted with black boxes. Founder strains with high abundance of the constitutive proteasome members have low levels of 1442 
immunoproteasome proteins, and vice versa. The direction of this relationship depends on genetic factors, as revealed by the 1443 
founder strains, with WSB and AJ mice consistently possessing relatively high abundance of immunoproteasome members and 1444 
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low abundance of the corresponding constitutive members: (b) PSMB8 vs PSMB5, (c) PSMB9 vs PSMB6, and (d) PSMB10 vs 1445 
PSMB7. Intervals represent mean  2 standard deviation bars. Dashed lines represent the best fit line between corresponding 1446 
inducible and constitutive subunits. Two of the proteins from the 11S regulator of the immunoproteasome, (e) PSME1 and (f) 1447 
PSME2, have matching abundance in AJ, B6, NZO, and WSB mice as in the inducible immunoproteasome components, which is 1448 
largely consistent with joint regulation of constitutive/inducible members (g). The WSB mice are consistent with genetic 1449 
variation identified through QTL mapping near Psmb9 that drives PSMB9 and indirectly PSMB6 abundance relative to each 1450 
other in the recombinant CC and DO populations (Figure 6i-l). Founder strain mice are summarized with mean  2 standard 1451 
deviation bars. Horizontal dashed lines provide reference at 0 for 11S regulator proteins. 1452 
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1453 
Figure S7. Proteins with extreme abundance in CC strains that possess unique local variants, and CC strains with extreme 1454 
protein abundance patterns in functional pathways, related to Figure 7. Mutations became fixed in CC strains and were 1455 
previously identified (Srivastava et al., 2017). These private variants of CC strains potentially have local effects on protein 1456 
abundance. Examples include (a) Zfp952, (b) Ncln, (c) Armc8, (d) Arghap18, and (e) Plek. Zfp952, Ncln, and Armc8 each possess 1457 
a non-synonymous SNP variant in a CC strain which had strikingly low protein abundance. These variants may cause reduced 1458 
abundance, but alternatively, they may represent a coding polymorphism in the quantified peptides, resulting in false low 1459 
abundance due to the allele-specific nature of mass-spec quantification. The color or the dots indicates the founder allele at the 1460 
gene. Strain-specific variants associated with high abundance at the local protein were also observed, such as high ARHGAP18 1461 
abundance in CC017. (e) A novel SNP allele in CC004 at Plek was associated with low abundance, potentially representing a new 1462 
allele at a gene that already possessed local genetic variation from the founder strains that drove a (f) suggestive local pQTL. 1463 
Stringent and lenient significance thresholds are included as horizontal black and gray dashed lines, respectively. CC strain-1464 
specific sets of proteins with extreme abundance were identified that were significantly enriched in GO and KEGG functional 1465 
terms. (g) CC007 possessed distinctly low abundance of mitochondrial respiratory chain complex I proteins, as well as high 1466 
abundance in two assembly factor proteins from the complex, NDUFAF3 and NDUFAF4, suggesting compensatory mechanisms 1467 
may be occurring at the complex in the strain. Large dots represent the CC strain with extreme protein abundance. Other 1468 
detected CC strain-specific protein dynamics include low abundance of (h) glycogen metabolic process proteins for CC0011, (i) 1469 
cellular respiration proteins for CC030, and (j) high abundance of contractile fiber proteins for CC075.  1470 
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