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Abstract

Motivation: Due to the complexity of metagenomic community, de novo assembly on next generation
sequencing data is commonly unable to produce microbial complete genomes. Metagenomic binning is a crucial
task that could group the fragmented contigs into clusters based on their nucleotide compositions and read
depths. These features work well on the long contigs, but are not stable for the short ones. Assembly and
paired-end graphs can provide the connectedness between contigs, where the linked contigs have high chance
to be derived from the same clusters.

Results: We developed METAMVGL, a multi-view graph-based metagenomic contig binning algorithm by
integrating both assembly and paired-end graphs. It could strikingly rescue the short contigs and correct the
binning errors from dead ends subgraphs. METAMVGL could learn the graphs’ weights automatically and
predict the contig labels in a uniform multi-view label propagation framework. In the experiments, we observed
METAMVGL significantly increased the high-confident edges in the combined graph and linked dead ends to
the main graph. It also outperformed with many state-of-the-art binning methods, MaxBin2, MetaBAT2,
MyCC, CONCOCT, SolidBin and Graphbin on the metagenomic sequencing from simulation, two mock
communities and real Sharon data.

Availability and implementation: The software is available at https://github.com/ZhangZhenmiao/
METAMVGL.
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1 Introduction
During long-term genetic evolution, animals, including
humans, have formed complex ecosystems of symbi-
otic relationships with diverse microbes. The gut mi-
crobiome is a community with the highest microbial
density in the human body, including thousands of mi-
crobial species mixed in varying proportions and con-
stituting a dynamic system. Most gut microbes are
difficult to isolate and culture in vitro. Metagenomic
sequencing is designed to directly sequence a mixture
of microbes and explore microbial compositions and
abundances by data post-processing.

Due to the paucity of high-quality microbial refer-
ence genomes, current pipelines commonly target sin-
gle genes or species using species-specific markers (Li
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et al. (2014); Truong et al. (2015)). But novel mi-
crobes could be lost by alignment-based approaches.
Metagenome assembly is a promising strategy to ex-
plore the novel species by concatenating the short-
reads into long contigs, which are regarded as the
pieces of strain genomes. The fragmented contigs are
further grouped into strain-specific clusters, called con-
tig binning. This strategy have been widely adopted to
explore the novel microbes from the human gut micro-
biome (Almeida et al. (2019, 2020); Consortium et al.
(2010); Forster et al. (2019); Nayfach et al. (2019);
Pasolli et al. (2019); Poyet et al. (2019); Zou et al.
(2019)).

Many state-of-the-art contig binning algorithms have
been developed by considering contig nucleotide com-
positions (tetranucleotide frequencies (TNF), k-mer
frequencies, marker genes, codon usage) and sequence
depth. MaxBin2 (Wu et al. (2016)) uses Expecta-
tion–Maximization algorithm to maximize the proba-
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Figure 1 Visualization of the running process of METAMVGL compared with Graphbin in a simulated data. METAMVGL connected
dead end 1 and 2 to the main graph by paired-end reads, also enhanced its connectivity. We observed (i) Graphbin failed to correct
the two blue labels in the central of the graph, because it could not remove them before propagation due to lack of connectivity; (ii)
Graphbin mislabeled all the vertices in dead end 2, caused by a small number of wrongly labeled vertices in the dead end; (iii)
METAMVGL rescued all the labels in dead end 1 but Graphbin did not.

bility of a contig belonging to local cluster centers us-
ing TNF and sequence depth. These two types of infor-
mation are also used in MetaBAT2 (Kang et al. (2019))
to calculate contig similarities. MetaBAT2 constructs
a graph with contigs as vertices and their similari-
ties as edges’ weights, which is partitioned into groups
by applying a modified label propagation algorithm.
CONCOCT (Alneberg et al. (2014)) applies Gaussian
mixture models for contig clustering based on k-mer
frequencies and sequence depth across multiple sam-
ples. Besides considering TNF, MyCC (Lin and Liao
(2016)) also aggregates the contigs with complemen-
tary marker genes by affinity propagation. BMC3C
(Yu et al. (2018)) applies codon usage in the ensemble
clustering. These methods can not deal with the short
contigs (commonly<1kb), because they might lead to
unstable nucleotide composition distributions and se-
quence depth. We observed a majority of the contigs
(89.55%, Table S1 Sharon with metaSPAdes) in the
assembly graph were shorter than 1kb, which would
be dropped by binning algorithms.

To rescue those short contigs, Mallawaarachchi et al.
(2020) developed Graphbin to label the short contigs
and correct the potential binning errors by employing
label propagation on the assembly graph. In princi-
ple, the assembly graph should include k disconnected

subgraphs, each representing one species. In practice,
the subgraphs could be linked by repeat sequences and
some contigs are isolated from the main graph due to
the sequencing errors, unbiased coverage, etc, called
as dead ends. The performance of label propagation
heavily relies on the number of edges and label density
in the graph. The short contigs would be significantly
affected by dead ends in two ways: (i) contigs would
not be labeled if the dead end contains no label be-
fore propagation (Figure 1 dead end 1); (ii) labelling
errors are induced if only a small number of contigs
are labeled in the dead end (Figure 1 dead end 2).

Here we present METAMVGL (Figure 2), a multi-
view graph-based metagenomic contig binning algo-
rithm to address the above mentioned issues. META-
MVGL not only considers the contig links from assem-
bly graph but also involves the paired-end (PE) graph,
representing the shared paired-end reads between two
contigs. The two graphs are aggregated together by
auto-weighting, where the weights together with the
predicted labels are updated in a uniform framework
(Nie et al. (2016), Methods). Figure 1 gives a proof-
of-concept example on a simulated data, where the
paired-end reads connect the two dead ends (dead end
1 and dead end 2) to the main graph. Our experi-
ment results indicate METAMVGL substantially im-
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proves the binning performance of state-of-the-art bin-
ning algorithms, MaxBin2, MetaBAT2, MyCC, CON-
COCT, SolidBin and Graphbin in all simulated, mock
and Sharon datasets (Figure 3, Figure 4, Figure S1-
S4). Comparing with assembly graph, PE graph can
add up to 8942.37% vertices and 15114.06% edges to
the main graph (Table S2 Sharon with MEGAHIT).

2 Materials and methods
Figure 2 illustrates the workflow of METAMVGL,
which consists of two steps. In step 1, METAMVGL
constructs the assembly graph and PE graph with con-
tig labels computed by the available binning tools. In
step 2, we remove the ambiguous labels of vertices
if their neighbours are derived from different binning
groups. The two graphs are merged by updating their
weights iteratively. The unlabeled vertices are further
predicted by label propagation. Finally, METAMVGL
removes the ambiguous labels and generates the final
binning results.

2.1 Step 1: Preprocessing
2.1.1 Construct assembly graph
We define the assembly graph as AG(V,E), where the
vertices V = {v1, v2, ...vn} represent contigs, and edge
ei,j ∈ E exists if vi and vj are connected in the assem-
bly graph and with k−1 mer (continuous nucleotide of
length k−1) overlap. In principle, the assembly graph
should include k unconnected subgraphs, each repre-
senting one species and we can easily recognize con-
tig binning groups. In practice, the subgraphs could
be linked due to the inter-species repeat sequences
and complected by sequencing errors and unbalanced
genomic coverage. Commonly the assembly graph in-
cludes one main graph and several dead ends. Figure 2
demonstrates an assembly graph with dead ends (ver-
tices 11 and 12).

METAMVGL uses the assembly graph from metaS-
PAdes (Nurk et al. (2017)) and MEGAHIT (Li et al.
(2015)). The original assembly graph of metaSPAdes is
unitig-based graph, where the vertices are unitigs. The
contigs are sets of unitigs after resolving short repeats.
Hence we converted the unitig-based graph to contig-
based graph by adding an edge ei,j , if at least one
of the unitigs belonging to vi and vj connected each
other directly. MEGAHIT didn’t generate the assem-
bly graph explicitly, so we used contig2fastg module of
megahit toolkit to generate the graph in fastg format.

2.1.2 Construct PE graph
In order to deal with the dead ends in assembly graph,
we constructed PE graph by aligning short-reads to the
contigs. Paired-end reads were aligned to contigs us-
ing BWA-MEM(Li (2013)). For every two contigs, we

maintained a paired-end reads set (RS), including the
read names where the forward and reverse reads were
aligned to the two contigs, respectively. We calculated
the library insert size IS based on the uniquely aligned
paired-end reads from the same contigs. To alleviate
the influence of chimeric reads, we linked vi and vj if
at least half of the reads in RSi,j came from the two
stretches of length IS in both of the contigs (Bishara
et al. (2018)). We denote the PE graph as PE(V,E),
where V represents contigs, and E are edges supported
by the PE links. Based on our observation, PE graph
is complementary to the assembly graph to some de-
gree, because edges in assembly graph only capture the
overlaps between contigs, while PE graph can rescue
the contig links due to the gaps. Figure 2 illustrates
how dead ends of assembly graph can be linked to the
main graph using PE graph.

2.1.3 Initial binning
METAMVGL can accept the results from any con-
tig binning algorithms to generate initial labels. In
the experiments, we have tested MaxBin2, MetaBAT2,
MyCC, CONCOCT and SolidBin in SolidBin-SFS
mode. We used the default parameters for these algo-
rithms except MetaBAT2, where its minimum contig
length was set to 1.5kb to generate more labels.

2.2 Step 2: Auto-weighted multi-view binning
In auto-weighted multi-view binning, METAMVGL
applies a label propagation based algorithm (Nie et al.
(2016)) to learn the weights of assembly and PE graphs
automatically and predict the unlabeled contigs in a
uniformed framework. The binning is further purified
by ambiguous labels removal.

2.2.1 Remove ambiguous labels
The initial binning labels could be wrong especially for
the contigs from repeat sequences and their influence
would be amplified in label propagation. METAMVGL
computes the distance between two vertices as the
length of shortest path between them. Let CLV (v) be
a set of labels from v’s closest labeled neighbours in
graph G and contig v’s label is ambiguous if CLV (v)
contains a label that is different from v’s label. VA(G)
is a set including all the contigs with ambiguous la-
bels in graph G. In Figure 2, the closest labeled ver-
tices of v6 are {v4, v7}. Because v4 and v6 have differ-
ent labels, the label of v6 is marked ambiguous. Algo-
rithm 1 shows the process to remove ambiguous labels,
where the function CLV (Gi, L, vj) returns the indexes
of closest labeled vertices of vj in graph Gi (i ∈ 1, 2).
G1 and G2 refer to assembly graph and PE graph,
respectively. We applied Algorithm 1 to the graphs
before and after label propagation.
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Figure 2 The workflow of METAMVGL. In step 1, we construct the assembly graph and PE graph by aligning paired-end reads to
the contigs. The seed contigs are labeled by the available binning algorithms (vertices in orange and blue). In step 2, the ambiguous
labels are removed if their neighbours are derived from different binning groups. METAMVGL applies auto-weighted multi-view
graph-based algorithm to optimize the weight for each graph and predict binning groups of the unlabeled vertices. Finally, the second
round of ambiguous labels removal is performed.

Algo 1: Remove Ambiguous Labels

Input: Contigs: V = {v1, v2, ..., vn}, Labels of Contigs:
L = {l1, l2, ..., ln}, and Graphs: {G1, G2}

Output: Refined Labels: Loutput

VA(G1, G2)← ∅
for i← 1, 2 do

for j ← 1, 2, ..., n do
IsAmbiguous← FALSE
if lj 6= NULL then

foreach index ∈ CLV (Gi, L, vj) do
if lj 6= lindex then

IsAmbiguous← TRUE
end

end

end
if IsAmbiguous then

VA(G1, G2).insert(j)
end

end
end
foreach index ∈ VA(G1, G2) do

lindex ← NULL
end
Loutput ← {l1, l2, ..., ln}

2.2.2 Auto-weighted multi-view binning algorithm

Assume the initial binning algorithm annotates l con-

tigs with c labels, denoted as Yl = (y1, y2, ..., yl)
T ∈

Rl×c, where yij ∈ {0, 1}, and yij = 1 indicates

the vertex vi is labeled species j. We define a ma-

trix F = (Fl;Fu) ∈ Rn×c, where Fl = Yl and

Fu = (fl+1, fl+2, ..., fn)T are labels to be inferred.

Let Di ∈ Rn×n denote the degree matrix of Gi, and

Wi ∈ Rn×n be the adjacent matrix of Gi. The nor-

malized Laplacian matrix of Gi is defined as Li =

D
−1/2
i (Di−Wi)D

−1/2
i . According to Nie et al. (2016),

the above problem can be modeled as the following

optimization problem:

arg min
F

2∑
i=1

√
Tr(FTLiF ), s.t. Fl = Yl. (1)

The optimization problem is converted to

arg min
F

Tr(FTLF ), s.t. Fl = Yl, (2)

where L =
∑2

i=1 αiLi. αi is the weight of Gi, with
initial values of 1/2. We partition L from (l+ 1)th row
and column into four blocks as (Lll, Llu;Lul, Luu). F
and αi can be updated alternatively until convergence
by the following equations:

Fu = L−1
uuLulYl, F = (Yl;Fu), (3)

αi = 1

/(
2
√
Tr(FTLiF )

)
, i ∈ {1, 2}. (4)

Equation 3 can be considered label propagation in the
merged graph with automatically updated weight αi,
hence αi implies the confidence of each graph. We infer
the labels of all the vertices by li = arg maxj Fij , i =
1, 2, ..., n. Algorithm 2 shows the process of auto-
weighted multi-view binning, and Figure 2 is an ex-
ample of this algorithm.

2.3 Datasets
2.3.1 Simulated datasets
We simulated the metagenomic sequencing of three mi-
crobes with low, medium and high abundances from
ATCC MSA-1003. The components are:
• ATCC 17978: 0.18%,
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Algo 2: Auto-weighted multi-view binning

Input: Contigs: V = {v1, v2, ..., vn}, Labels of Contigs:
Linput, and Graphs: {G1, G2}

Output: Loutput

Linput ← Remove Ambiguous Labels (Linput)
Calculate Yl for Linput

for i← 1, 2 do
αi ← 1/2
Calculate Di and Wi for Gi

Li ← D
−1/2
i (Di −Wi)D

−1/2
i

end
repeat

L←
∑2

i=1 αiLi

Fu ← L−1
uuLulYl, F ← (Yl;Fu) (Equation 3)

for v ← 1, 2 do

αi ← 1/
(
2
√
Tr(FTLiF )

)
(Equation 4)

end

until Convergence;
for i← 1, 2, ..., n do

li ← argmax
j

Fij

end
Loutput ← Remove Ambiguous Labels ({l1, l2, ..., ln})

• ATCC BAA-611: 1.8%,
• ATCC 700610: 18%.

We downloaded the complete reference genomes of the
three species from the NCBI Nucleotide Database.
CAMISIM (Fritz et al. (2019)) generated the short-
reads for a mixture of the three genomes with cor-
responding abundance. Five simulated datasets were
generated with read depths as 30x (ATCC 30x), 50x
(ATCC 50x), 70x (ATCC 70x), 90x (ATCC 90x) and
110x (ATCC 110x).

2.3.2 Mock datasets

We evaluated binning performance on the two mock
community datasets following:

• BMock12 refers to metagenomic sequencing for a
mock community of 12 bacterial strains sequenced
in Illumina HiSeq 2500 (Sevim et al. (2019); NCBI
acc. no. SRX4901583). It contains 426.8 million
150bp reads with a total size of 64.4Gb.
• SYNTH64 is metagenomic sequencing for a syn-

thetic community with 64 diverse bacterial and ar-
chaea species (Shakya et al. (2013); NCBI acc. no.
SRX200676), sequenced by Illumina HiSeq 2000
with read length 100bp and total size 5.8Gb.

2.3.3 Real dataset

Sharon dataset (Sharon et al. (2013); NCBI acc. no.
SRX144807) contains 18 metagenomic data from time-
series infant facial samples, sequenced by Illumina
HiSeq 2000 with a total of 274.4 million 100bp reads.
We combined all the 18 datasets for co-assembly and
referred them as Sharon.

2.4 Evaluation criteria
To assess the binning result, we annotated the poten-
tial species the contigs come from. For simulated and
mock datasets, we aligned the contigs to the available
reference genomes and selected the ones with unique
alignments. For Sharon dataset, we used kraken2
(Wood et al. (2019)) to annotate the species by k -mer
similarities.

Assume there are s species, and the binning result
have k groups. To evaluate the binning result, we
define the assessment matrix N = (nij)

(k+1)×(s+1),
where nij represents the number of contigs in ith

bin that are annotated jth ground truth species. The
(k + 1)th row denotes unbinned contigs. The (s+ 1)th

column indicates contigs without annotation. We ap-
plied (i) Precision, (ii) Recall, (iii) F1-Score and (iv)
Adjusted Rand Index (ARI) to evaluate the binning

performance. Let N =
k∑

i=1

s∑
j=1

nij , the four metrics

were calculated as follows:

(i). Precision = 1
N

k∑
i=1

max
j≤s

(nij),

(ii). Recall = 1

N+
s∑

j=1

n(b+1)j

s∑
j=1

max
i≤k

(nij),

(iii). F1-Score =
2× Precision×Recall
Precision+Recall

,

(iv). ARI =

k∑
i=1

s∑
j=1

(
nij

2

)
− t

1

2

(
k∑

i=1

( s∑
j=1

nij

2

)
+

s∑
j=1

( k∑
i=1

nij

2

))
− t

,

where t =
1(
N
2

) k∑
i=1

( s∑
j=1

nij

2

) s∑
j=1

( k∑
i=1

nij

2

)
.

3 Results
METAMVGL was compared with 6 binning tools,
MaxBin2, MetaBAT2, MyCC, CONCOCT, SolidBin
in SolidBin-SFS mode, and Graphbin based on the as-
sembly graphs generated by MEGAHIT and metaS-
PAdes. We analyzed the binning performance on 5
simulated datasets with different sequence depths, 2
mock datasets of BMock12 and SYNTH64, and a real
community of Sharon dataset.

3.1 Evaluation on simulated datasets
Figure 3 shows the binning results of the simulated
datasets. The contigs and assembly graph were gen-
erated by MEGAHIT (Figure 3 (a)-(d)) and metaS-
PAdes (Figure 3 (e)-(h)), MaxBin2 was applied as the
initial binning tool for Graphbin and METAMVGL.

All the three binning tools (MaxBin2, Graphbin and
METAMVGL) yielded extremely high precision and
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Figure 3 The evaluation results of METAMVGL, Graphbin with initial binning tool of MaxBin2 on simulated datasets. (a)-(g) are
results based on MEGAHIT assembler, and (e)-(h) are results on metaSPAdes.

ARI (Figure 3 (a), (d), (e) and (h)), due to a low com-
plexity of the simulated community. Because of consid-
ering assembly and PE graph jointly, METAMVGL la-
beled more contigs than Graphbin and MaxBin2 across
different sequence depths, as shown in Figure 3 (b) and
(d). We also found both Recall and F1-Score increased
as sequencing depths became deeper until ATCC 70x
(Figure 3 (b), (c), (f) and (g)). This observation was
mirrored with the results in the paper of CAMISIM
(Fritz et al. (2019)), suggesting a deep sequencing
depth would introduce assembly noise even it might
help in detecting the low-abundance microbes.

3.2 Evaluation on mock datasets
We illustrate the binning performance in mock datasets
with initial binning tool of MaxBin2 (Figure 4 (a), (b),
(d) and (e)). In general, the graph-based methods were
always better than MaxBin2, but the results were dif-
ferent in choosing different assemblers. Graphbin and
METAMVGL could significantly improve the recalls
using metaSPAdes but the elevation became unobvi-
ous by MEGAHIT. This is because metaSPAdes gen-
erated more accurate and complete assembly graph
than MEGAHIT. In the mock datasets, METAMVGL
was just slightly better than Graphbin, suggesting the
PE graph largely overlapped with the assembly graph
(Table S2 BMock12 and SYNTH64 ). This observation
only occurred if perfect assembly graph was generated
due to a low microbial complexity in the community.

Results of other initial binning tools can be found in
Figure S1-S4, which are are akin to the observations
from MaxBin2.

3.3 Evaluation on Sharon datasets
Figure 4 (c) and (f) describe the binning results in
Sharon dataset. METAMVGL substantially increased
the recall in comparison with both Graphbin (2.12
times for MEGAHIT; 2.46 times for metaSPAdes) and
MaxBin2 (2.29 times for MEGAHIT; 3.24 times for
metaSPAdes). METAMVGL also obtained the high-
est precision for metaSPAdes. All the three binning
tools were comparable with ARI.

The outstanding recall of METAMVGL confirmed
the capability of PE graph to connect dead ends to
main graph when the assembly graph became incom-
plete in a real microbial community. We observed
that MEGAHIT produced very fragmented assembly
graph in Sharon dataset, in which the main graph
only had 59 vertices with 64 edges, while the total
number was 15,660 vertices (Table S2 Sharon with
MEGAHIT). The fragmented assembly graph in real
datasets was also mentioned as a limitation in Graph-
bin (Mallawaarachchi et al. (2020)). With PE graph,
METAMVGL yielded 5,335 vertices and 9,737 edges in
the main graph, rescuing a large number of unlabeled
contigs from dead ends (Figure 4 (c)). Although the
assembly graph was less fragmented (23.69% vertices
in main graph) for metaSPAdes, PE graph still added
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Figure 4 The results of METAMVGL, Graphbin with the initial binning tool of MaxBin2 in BMock12, SYNTH64 and Sharon.
MEGAHIT and metaSPAdes are used to generate assembly graphs. (a)-(b), (d)-(e) are results of mock datasets. (c) and (f) are
Sharon results. Results for other initial binning tools (MetaBAT2, MyCC, CONCOCT and SolidBin) are in Figure S1-S4.

28.97% edges to the main graph (Table S2 Sharon with
metaSPAdes), and improved the recall substantially.

4 Discussion
De novo assembly together with contig binning meth-
ods provided us a practical way to explore the novel
microbes from metagenomic sequencing. But the cur-
rent binning tools worked stably on only long contigs,
the smaller ones were commonly neglected in the sub-
sequent analysis. We observed a large proportion of
contigs were shorter than 1kb, which introduced sig-
nificant influence in bin completeness. Recent work
(Mallawaarachchi et al. (2020)) proved short contigs
could be rescued from assembly graph by consider-
ing their connections with the labeled ones. Assem-
bly graph is accurate but relies heavily on the nature
of microbial community. The high sequencing depth,
sequencing errors and unbalanced coverage could gen-
erate considerable dead ends, which could introduce
both missing labels and labelling errors (Figure 1).

In this paper, we developed METAMVGL, a multi-
view graph-based approach integrating both assembly
and PE graphs. The model could automatically cal-
culate the weights of the two graph and perform la-
bel propagation to predict the labels of short contigs.
For the experiments, we observed METAMVGL could

substantially increase the recalls with satisfying preci-
sion, especially for the sequencing data from the real
complex microbial community. The integration of as-
sembly and PE graph was still far from complete and
there still require to consider the other information to
reveal contig long range connectedness from long-read
sequencing (PacBio and Oxford Nanopore) or linked-
read sequencing (Tell-seq and stLFR).

Additional files

Additional file 1: Table S1. Basic statics of contigs in real, mock, and

simulated datasets, assembled by metaSPAdes and MEGAHIT.

Additional file 2: Table S2. Statistics of the biggest component of assembly

graph, PE graph, and merged graph, in real, mock, and simulated datasets.

Additional file 3: Figure S1. The results of METAMVGL, Graphbin with

initial binning tool of MetaBAT2 in BMock12, SYNTH64 and Sharon.

Additional file 4: Figure S2. The results of METAMVGL, Graphbin with

initial binning tool of MyCC in BMock12, SYNTH64 and Sharon.

Additional file 5: Figure S3. The results of METAMVGL, Graphbin with

initial binning tool of CONCOCT in BMock12, SYNTH64 and Sharon.

Additional file 6: Figure S4. The results of METAMVGL, Graphbin with

initial binning tool of SolidBin in BMock12, SYNTH64 and Sharon.
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