
Paiva et al. – Use of NIR on fern systematics 1 

Using near-infrared spectroscopy to discriminate closely related 

species: A case study of neotropical ferns 

 

Darlem Nikerlly Amaral Paiva1,3, Ricardo de Oliveira Perdiz2, and Thaís Elias Almeida1 

 
1 Universidade Federal do Oeste do Pará, Programa de Pós-graduação em Biodiversidade, Rua 

Vera Paz, s/n (Unidade Tapajós) Bairro Salé, 68040-255, Santarém, PA, Brazil; 
2 Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-graduação em Ciências 

Biológicas, Avenida André Araújo, 2936, Manaus, AM, 69060-001, Brazil.  
3 Author for correspondence 

 

Email address: DNAP: nikerllyjc@hotmail.com 

   ROP: ricoperdiz@gmail.com 

   TEA: blotiella@gmail.com, ORCID: 0000-0002-1611-1333 

 

ABSTRACT 

Identifying plant species requires considerable knowledge and can be difficult without complete 

specimens. Fourier-transform near-infrared spectroscopy (FT-NIR) is an effective technique 

for discriminating plant species, especially angiosperms. However, its efficacy has never been 

tested on ferns. Here we tested the accuracy of FT-NIR at discriminating species of the genus 

Microgramma. We obtained 16 spectral readings per individual from the adaxial and abaxial 

surfaces of 100 specimens belonging to 13 species. The analyses included all 1557 spectral 

variables. We tested different datasets (adaxial+abaxial, adaxial, and abaxial) to compare the 

correct identification of species through the construction of discriminant models (LDA, PLS) 

and cross-validation techniques (leave-one-out, K-fold). All analyses recovered an overall high 

percentage (>90 %) of correct predictions of specimen identifications for all datasets, regardless 

of the model or cross-validation used. On average, there was > 95 % accuracy when using PLS-

DA and both cross-validations. Our results show the high predictive power of FT-NIR at 

correctly discriminating fern species when using leaves of dried herbarium specimens. The 

technique is sensitive enough to reflect species delimitation problems and possible 

hybridization, and it has the potential of helping better delimit and identify fern species. 

Key words: barcoding; discrimination of plant species; FT-NIR; integrative taxonomy; 

metabolomics; Microgramma. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.10.19.343947doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.19.343947
http://creativecommons.org/licenses/by-nc-nd/4.0/


Paiva et al. – Use of NIR on fern systematics 2 

 INTRODUCTION 

 Defining and identifying species using qualitative morphological traits can be 

challenging even though species identification is fundamental to some areas of science and 

sustainable dynamics (Galtier 2018; Pinheiro et al. 2018). Correct identifications also contribute 

significantly to understanding the evolutionary history of many species and the diversity of 

biological groups in rich and threatened areas, such as tropical forests (Costello 2015). 

Considering the biological and historical diversity of polymorphisms in plants, allied with 

centuries of describing species using alpha taxonomy tools, the correct identification of a 

specimen requires experts with considerable knowledge (Ahrends et al. 2011; Lacerda and 

Nimmo 2010; Richard and Evans 2006).  

 A problem when identifying plant species is the absence of complete specimens, 

including both sterile and fertile material, such as flowers or fruits of seed plants (Gomes et al. 

2013). Difficult to access and insufficient or unrepresentative collections of species widely 

distributed in highly diverse areas can also pose a problem when identifying specimens 

(Lacerda and Nimmo 2010). Among the traditional identification methods used for plants, keys 

stand out and are widely employed (Smith 2017). However, polymorphisms and the complexity 

of shapes, associated with homoplasies and cryptic taxa, for example, create the need for more 

elaborate tools aimed primarily at the identification, conservation, and elucidation of unclear 

relationships of plants (Durgante et al. 2013; Pinheiro et al. 2018).  

 In addition to the use of macromorphology, DNA barcoding is an internationally 

recognized tool and widely used in species identification, ecological studies, and forensic 

analyses (Li et al. 2015; Shokralla et al. 2014). In studies of animal groups that used this 

molecular approach, the technique proved to be highly efficient (e.g., Ohira et al. 2018; Porco 

et al. 2012; Pérez-Losada et al. 2012). Using DNA barcoding has been less successful at 

identifying plants compared to animals (Li et al. 2015). According to Fazekas et al. (2012), this 

is partially due to hybridization, polyploidy, and speciation related to reproductive systems. 

However, these are not problems common to all plant groups; the success in using DNA 

barcoding is lineage-dependent (Li et al. 2015). Identifying herbarium specimens using this 

method is also more difficult compared to fresh material, since dried specimens require a greater 

combination of primers that increases the chances of incorrect sequencing (Li et al. 2015; Vere 

et al. 2012). Furthermore, the widespread use of this technique is still limited because of the 

high cost (Stein et al. 2014). 

 Alternatively, one of the most promising tools currently used in botanical identification 

is Fourier-transform near-infrared spectroscopy (FT-NIR) (e.g., Lang et al. 2017; Rodríguez-
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Fernandez et al. 2011). The principle of the technique is to irradiate fractions of biological 

material (e.g., a dry leaf) in the infrared region. As a result, a set of absorbance values at 

different wavelengths (the spectra) is defined for the material (Workman and Weyer 2007). The 

spectra reflect molecular bonds, such as C-H, N-H, S-H or O-H, and are therefore related to 

biological molecules and the metabolome of the irradiated tissue (Stuart 2005).  

 Research using near-infrared spectroscopy to discriminate plant species is gaining more 

and more attention in plant taxonomy, especially for angiosperms (Durgante et al. 2013; Kim 

et al. 2004; Krajšek et al. 2008; Lang et al. 2017). The tool has been shown to be more practical 

and accurate than genetic or morphological methods (Castillo et al. 2008), is capable of 

consistently discriminating phylogenetic relationships of flowering plant species (Kim et al. 

2004), and has been used in different works to aid in species circumscription and identification 

of several plant groups (Damasco et al. 2019; Durgante et al. 2013; Lang et al. 2017; Prata et 

al. 2018; Shen et al. 2020). However, the technique has not been tested to identify other groups 

of embryophytes, such as ferns and lycophytes, or bryophytes. (Guzmán et al. 2020).  

 Ferns are the second most diverse group of vascular plants, occur from tundras to 

tropical forests, and occupy niches from the ground to the canopy (Moran 2008). Due to the 

absence of flowers, fruits, and seeds, fern identification relies mainly on rhizome, frond, and 

sorus morphology (Schoute 1938). Sporophyte characters such as indument (trichomes and 

scales), leaf shape, and the structure and arrangement of sori are fundamental elements in the 

differentiation between species (Christenhusz and Chase 2014; Schoute 1938).  

 Microgramma (Polypodiaceae) comprises ca. 30 species, occurs in the Neotropics and 

tropical Africa (Almeida 2014), and is monophyletic according to the most recent 

circumscriptions (Salino et al. 2008; Almeida et al. in press). The genus exhibits wide 

morphological variation, especially in the leaves (e.g., it has both monomorphic and dimorphic 

species), leaf indument, and sorus arrangement (Almeida 2014). Additionally, intraspecific 

phenotypic variation and interspecific morphological overlap are found in closely related 

species, and there are species complexes, which may result in misidentifications in the genus 

(Almeida et al. in press). Using Microgramma as a model, our goal was to test the effectiveness 

of Fourier-transform near-infrared spectroscopy (FT-NIR) at discriminating and identifying 

closely related species in the fern lineage.  

 

 METHODS 

 Sampling–Dried leaves were selected from specimens at the BHCB, HSTM, and INPA 

herbaria (acronyms according to Thiers 2020 onwards: http://sweetgum.nybg.org/science/ih/). 
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One hundred specimens belonging to thirteen species of Microgramma were analyzed 

(Appendix): M. baldwinii Brade, M. crispata (Fée) R.M.Tryon & A.F.Tryon, M. dictyophylla 

(Kunze ex Mett.) de la Sota, M. geminata (Schrad.) R.M.Tryon & A.F.Tryon, M. lindbergii 

(Mett. ex Kuhn) de la Sota, M. lycopodioides (L.) Copel., M. megalophylla (Desv.) de la Sota, 

M. percussa (Cav.) de la Sota, M. persicariifolia (Schrad.) C.Presl, M. reptans (Cav.) A.R.Sm., 

M. squamulosa (Kaulf.) de la Sota, M. thurnii (Baker) R.M.Tryon & Stolze, and M. vacciniifolia 

(Langsd. & Fisch.) Copel. All specimens had their identification confirmed by an expert (senior 

author). Only species with a minimum of five available specimens, with both fertile and sterile 

leaves, were selected. When possible, samples with fronds that were very damaged by insects 

or with signs of fungi or other epiphilic organisms were avoided. Sixteen spectral readings were 

obtained for each specimen (when possible), which included four readings, two on the adaxial 

surface and two on the abaxial surface, of four different leaves. No distinction between fertile 

and sterile leaves was made. The acquisition of the spectra lasted 30 seconds per reading and 

was taken using a Thermo Nicollet spectrophotometer, FT-NIR Antaris II Method 

Development System (MDS). The spectral readings consisted of 1,557 leaf absorbance values 

in the region of 4,000 to 10,000 cm-1 (1000 to 2500 nm). Each measurement produced by the 

equipment was an average of 16 readings with a wavelength resolution of 8 cm-1. The 

equipment was calibrated every 4 hours of use. A black body was placed over the frond to 

prevent light scattering.  

 

 Analyses–All analyses were implemented in the statistical program R version 4.0.2 (R 

Core Team 2020). Three datasets using all FT-NIR spectrum wavelengths were tested to 

construct the spectral models: data of (i) adaxial+abaxial surfaces, (ii) adaxial surface only, and 

(iii) abaxial surface only. The datasets were explored using a principal component analysis 

(PCA). This technique allows the visualization of data of a smaller set of variables but still 

preserves the maximum information from the original variable set (Hongyu et al. 2016), thus 

allowing an exploratory analysis of the behavior of the spectra. The results of the PCA were 

represented in two-dimensional graphs using the first two main components with higher 

variation in the data. 

 To predict species based on spectral data, we used two supervised pattern recognition 

techniques: linear discriminant analysis (LDA) and partial least squares discriminant analysis 

(PLS-DA) (Berrueta and Héberger 2007). The LDA is a technique that discriminates and 

classifies objects based on previously defined groups (Sharma and Paliwal 2015), where the 

dependent variables corresponded to the species (categories) and the independent variables 
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represent the absorbance values in the near-infrared. The PLS-DA, which also classifies the 

samples according to defined categories, is based on finding components that better explain the 

variations of the variables between classes, giving less weight to the noise and uncorrelated 

variations (Mevik and Cederkvist 2004). Both models were tested using the three different 

datasets. 

 Cross-validation techniques were used to assess model performance and species 

discrimination. The K-fold validation technique (Burman 1989) is where the set of calibration 

samples is divided into K subsets, with a subset taken out for validation and the remaining K-1 

subsets used to build the model. Thus, at the end of K steps, the data is used in both test subsets 

and validation (Yadav et al. 2016). Here we use K = 10, described as the value that presents the 

best performance in the sampling, with the least bias in the error rate estimates (Kohavi 1995). 

 The leave-one-out (LOO) technique uses k-1 samples to generate the discriminant 

function and the sample not included in the model serves to validate it, obtaining the percentage 

of the model's prediction (Kohavi 1995). Thus, we compared the predictions of individual 

identities for each species in each of the datasets. 

 

 RESULTS 

 We found considerable variation in the near-infrared spectral data among the sampled 

species (Fig. 1). Among the three datasets tested, the adaxial+abaxial (i) dataset showed 97.8 

% of the spectral variation, the adaxial (ii) dataset showed 97.6 % of the spectral variation, and 

the abaxial (iii) dataset was the most representative with a spectral variation of 98.1 % (Fig. 2). 

For the abaxial (iii) dataset, individuals belonging to the same species tended to group more 

cohesively and consequently less mixed compared to the remaining two datasets 

(adaxial+abaxial [i] and adaxial [ii]) (Fig. 2). 

 All datasets had high predictive results in the identification of species (correct 

predictions higher than 90 %) for both models (PLS and LDA) and validation techniques (K-

fold and LOO) (Table 1). Among the best percentages for plant discrimination (over 96 %) 

were the LDA model with the (iii) abaxial dataset for both the K-fold and leave-one-out 

validation techniques, and the PLS-DA model with the (i) adaxial+abaxial dataset and leave-

one-out validation. 
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Table 1 – Average percentage of correct identifications using a discriminant analysis and all of the FT-

NIR spectrum wavelength data (1000–2500 nm) for the three datasets, (i) adaxial+abaxial leaf surfaces, 

(ii) adaxial surface only and (iii) abaxial surface only, for both models (LDA = linear discriminant 

analysis, PLS-DA = partial least squares discriminant analysis) and validation tests (K-fold and leave-

one-out). 

 

 LDA PLS-DA 

Dataset K-fold LOO K-fold LOO 

Adaxial+abaxial 95.3 93.0 96.2 96.7 

Adaxial 95.4 95.8 93.9 94.3 

Abaxial 96.2 96.2 94.6 95.1 

 

 
Figure 1 – Average near-infrared spectral data for the thirteen sampled Microgramma species. 

  

 The adaxial+abaxial (i) dataset alone had the best percentage only for the PLS model 

and leave-one-out validation (96.7 %), and both validations in a similar way resulted in elevated 

correct identifications for the three datasets tested (adaxial+abaxial, adaxial, abaxial).  

 All individuals of M. crispata and M. megalophylla were 100 % correctly predicted in 

both models and validations tests, with no confusion of readings with any sample related to any 

other species (Figs 3, 4). For six species, M. dictyophylla, M. geminata, M. lindbergii, M. 

lycopodioides, M. percussa, and M. reptans, the correct prediction of the identities of 

individuals in all models and validations ranged from 90 to 100 % (Figs. 3, 4).  
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 Two species (15.3 %), M. persicariifolia and M. squamulosa, had correct predictions 

between 80 and 100 % among the models and validations tests (Figs. 3, 4). For M. baldwinii, 

the abaxial (iii) dataset underperformed in both the LDA and PLS-DA models and validations 

(Figs. 3, 4). Additionally, in the PLS-DA model for this species, the adaxial+abaxial (i) dataset 

had 88 % and 81 % correct predictions for the K-fold and LOO validations, respectively. The 

remaining models and validations recovered 100 % correct predictions. For M. persicariifolia, 

the lowest prediction value (83 %) was found in the PLS model for the abaxial dataset, for both 

validations; the remaining models and validations recovered 100 % correct predictions. 

Regarding M. squamulosa, only the abaxial (iii) dataset had 100 % correct predictions in both 

models and validations (Figs. 3, 4). 

 The two species with the lowest percentages of correct predictions were M. thurnii and 

M. vacciniifolia. For M. thurnii, of the 12 different combinations of the datasets and tests, only 

two recovered one of the lowest percentages of correct predictions (75 %): the PLS model, with 

the adaxial (ii) dataset, for both validations. Four tests recovered more than 90 % correct 

predictions, and six had 100 % correct identifications (Figs. 3, 4). For this species, the PLS-DA 

models underperformed compared to the LDA models. 

 Microgramma vacciniifolia was the species with the lowest percentage of correct 

predictions (73 %), which was found by the PLS model with the adaxial+abaxial and adaxial 

datasets; although, for the abaxial dataset there was 100 % accuracy in the identifications (data 

not shown). Prediction errors for M. vacciniifolia individuals occurred mainly with spectra 

associated with M. geminata and M. squamulosa in both models. Even so, the lowest percentage 

observed was 73 % in the PLS model (Fig. 4).  

 

 DISCUSSION 

 This is the first time that Fourier-transform near-infrared spectroscopy (FT-NIR) was 

tested for discriminating ferns species. Our results show that FT-NIR is a powerful tool that can 

be easily applied to species identification using spectral data of leaves. For all different 

scenarios tested (species, datasets, models, and validations), more than 85 % had an accuracy 

equal or greater than 90 % (Figs. 3, 4), with an average above 93 % (Table 1).  

 Regarding the accuracy of FT-NIR at species identification, we recognize the 

importance of using well-defined species circumscriptions and well-identified samples for 

constructing spectral models. In this work, when incorrectly identified specimens were used for 

the control group (an individual of M. reptans incorrectly determined as M. baldwinii), the  
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Figure 2 – Principal component analysis (PCA) plot of the first two principal component axes for spectral data. 
A. Abaxial surface dataset (iii), all species. B. Abaxial surface dataset (iii), individually represented species. C. 
Adaxial surface dataset (ii), all species. D. Adaxial surface dataset (ii), individually represented species. E. 
Adaxial+abaxial surface dataset (i), all species. F. Adaxial+abaxial surface dataset (i), individually represented 
species.   
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Figure 3 – Confusion matrices resulting from the linear discriminant analysis (LDA) for the LOO and K-fold 

validations. (A) LOO validation, adaxial+abaxial surface data; (B) K-fold validation, adaxial+abaxial surface 

data; (C) LOO validation, abaxial surface data only; (D) K-fold validation, abaxial surface data only; (E) LOO 

validation, adaxial surface data only; (F) K-fold validation, adaxial surface data only. The names of the species 

observed are in rows and columns. The values on the diagonal correspond to correct predictions and those outside 

the diagonal correspond to incorrect predictions. Abbreviations: M. bald = M. baldwinii; M. cris = M. crispata; 

M. dict = M. dictyophylla; M. gemi = M. geminata; M. lind = M. lindbergii; M. lyco = M. lycopodioides; M. 
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mega = M. megalophylla; M. perc = M. percussa; M. pers = M. persicariifolia; M.rept = M. reptans; M. squa = 

M. squamulosa; M. thur = M. thurnii; M. vacc = M. vacciniifolia. 

___________________________________________________________________________ 

 
accuracy decreased to 85.5 %, and after redoing the analysis with the correct identification, the 

correct prediction of the individuals of M. baldwinii reached 93.4 %. 

 The chemical composition and other structural characteristics of leaves vary within and 

between species, as a result of the developmental stage and a combination of environmental 

factors, ontogeny, and composition of the plant epidermis (Mediavilla et al. 2014). Ferns are 

characterized by the presence of sori, which are usually on the abaxial surface of the fronds 

(Schoute 1938). Some lineages exhibit leaf dimorphism, with leaves morphologically and 

physiologically specialized for photosynthesis or reproduction, and in some cases, there are 

extreme differences between both types (Wagner and Wagner 1977). In our study, we used 

species that are both monomorphic (M. baldwinii, M. dictyophylla, M. geminata, M. lindbergii, 

M. lycopodioides, M. megalophylla, M. percussa, M. persicariifolia, and M. thurnii) and 

dimorphic (M. crispata, M. reptans, M. squamulosa, and M. vacciniifolia). The dataset for the 

abaxial leaf surface, which can be more affected by the presence of sori, had (on average) higher 

percentages of discriminating samples than the other tested datasets (Table 1). Given our 

results, we believe the presence of sori has minimal influence on the spectral readings and 

subsequent discrimination power among species. However, this can vary among different 

lineages, and further tests controlling for fertile and sterile frond spectral readings are 

recommended. 

 One of the species that was more difficult to discriminate was M. vacciniifolia, where 

ca. 40 % of the samples were incorrectly predicted as M. squamulosa. These species are 

sympatric in eastern and central Brazil and exhibit wide morphological variation (Almeida 

2014). Our results using near-infrared spectroscopy (NIR) could be revealing inconsistencies 

in their current taxonomic circumscriptions. Also, the existence of hybrids between these 

species (Sota 1973) might explain the related spectral readings and the lower percentage of 

correct predictions. The technique has been shown to detect differences in the physical and 

biochemical compositions expressed in plant samples, even between closely related species, 

populations, and hybrids (Atkinson et al. 1997; Cui et al. 2012; Humphreys et al. 2008).  
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Figure 4 – (A) K-fold validation, adaxial+abaxial surface data; (B) LOO validation, adaxial+abaxial surface 

data; (C) LOO validation, abaxial surface data only; (D) K-fold validation, abaxial surface data only; (E) K-fold 

validation, adaxial surface data only; (F) LOO validation, adaxial surface data only. The names of the species 

observed are in rows and columns. The values on the diagonal correspond to correct predictions and those outside 

the diagonal correspond to incorrect predictions. Abbreviations: M. bald = M. baldwinii; M. cris = M. crispata; 

M. dict = M. dictyophylla; M. gemi = M. geminata; M. lind = M. lindbergii; M. lyco = M. lycopodioides; M. 
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mega = M. megalophylla; M. perc = M. percussa; M. pers = M. persicariifolia; M.rept = M. reptans; M. squa = 

M. squamulosa; M. thur = M. thurnii; M. vacc = M. vacciniifolia. 

___________________________________________________________________________ 

 

 Our best results show that the best models and validations can, on average, correctly 

predict the identification of species 96.7 % of the time when using all wavelengths to construct 

the models, which is comparable to previously published taxonomic works. Prata et al. (2018) 

demonstrated for the first time that near-infrared spectroscopy on leaves of subspecies of the 

Pagamea guianensis complex can discriminate taxa with high precision. Fan et al. (2010) tested 

and proved the reliability of the technique at discriminating Ephedra plants from different 

habitats and collection seasons, while Lang et al. (2017) showed the effectiveness of the 

technique at discriminating species, genera, and families of tree species from eighteen different 

angiosperm families. For groups of closely related plants, the technique has shown excellent 

results for species of Protium (Burseraceae), confirming the differences in spectral signatures 

among species (Damasco et al. 2019). 

 The high predictive power of FT-NIR at discriminating fern species, presented here, is 

superior to that observed for this lineage using a single region of two combined DNA barcodes, 

for which the best performance was 75 % correct predictions (Li et al. 2011; Wang et al. 2016). 

Identifying ferns and other plant groups using DNA barcoding is also an expensive technique 

and different lineages require specific combinations of molecular markers, which can make this 

technique complicated (Li et al. 2011; Lima et al. 2018). However, barcoding gametophytes 

has shown promising results for identifying species of ferns, which represents a great 

contribution to what is known about the evolution of this group (Schneider and Schuettpelz 

2006). Our work does not intend to minimize the importance of other techniques used in plant 

systematics, but rather tested the reliability and effectiveness of FT-NIR at discriminating 

species in a group known to be problematic. Further, it highlights the potential of using this 

method in studies about plant systematics.  

 

 CONCLUSION 

 Our results show that near-infrared spectroscopy (NIR) is a highly effective, cost-

effective, and non-destructive technique that can be used to discriminate closely related species. 

In addition to the possibility of obtaining spectral data quickly with minimal damage to samples, 

the technique provides greater reliability at discriminating morphologically similar fern species, 

as previously found for some angiosperms. The accuracy of the identifications is comparable 
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to and even surpasses that of DNA barcoding, even for species from highly diverse and 

heterogeneous areas, such as tropical forests. We believe that NIR has great potential to be used 

in integrative taxonomic studies that aim to better understand species circumscriptions in the 

fern lineage. 
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APPENDIX 

Specimens used for spectral data capture. Herbaria acronym (in parentheses) follow Thiers 

(2020 onwards: http://sweetgum.nybg.org/science/ih/). 

Taxon Country Voucher 

Microgramma crispata Brazil Almeida 4430 (HSTM) 

Microgramma crispata Brazil Souza 1565 (BHCB) 

Microgramma crispata Brazil Krieger 10715 (BHCB) 

Microgramma crispata Brazil Lima 126 (HSTM) 

Microgramma crispata Brazil Salino 13919 (HSTM) 

Microgramma crispata Brazil Dittrich 2187 (HSTM) 

Microgramma lycopodioides Brazil Suemitsu 522 (HSTM) 

Microgramma lycopodioides Brazil Almeida 4222 (HSTM) 

Microgramma lycopodioides Brazil Giacomin 2577 (HSTM) 

Microgramma lycopodioides Brazil Giacomin 1791 (HSTM) 

Microgramma lycopodioides Panama Salino 15437 (BHCB) 

Microgramma lycopodioides Brazil Viana 3386 (BHCB) 

Microgramma lycopodioides Bolivia Almeida 3130 (BHCB) 

Microgramma lycopodioides Brazil Salino 10067 (BHCB) 

Microgramma lycopodioides Brazil Giacomin 2002 (HSTM) 
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Microgramma lycopodioides Brazil Giacomin 1933 (BHCB) 

Microgramma dictyophylla Brazil Almeida 2605 (BHCB) 

Microgramma dictyophylla Brazil Vidal 739 (BHCB) 

Microgramma dictyophylla Brazil Almeida 2230 (HSTM) 

Microgramma dictyophylla Brazil Almeida 2588 (HSTM) 

Microgramma dictyophylla Brazil Freitas 33 (INPA) 

Microgramma persicariifolia Brazil Almeida 2738 (HSTM) 

Microgramma persicariifolia Brazil Mota 2411 (BHCB) 

Microgramma persicariifolia Brazil Almeida 2203 (BHCB) 

Microgramma persicariifolia Brazil Salino 304 (BHCB) 

Microgramma persicariifolia Brazil Suemitsu 500 (HSTM) 

Microgramma thurnii Brazil Almeida 2563 (HSTM) 

Microgramma thurnii Brazil Almeida 2587 (BHCB) 

Microgramma thurnii Brazil Araújo 115 (INPA) 

Microgramma thurnii Brazil Acevedo 8152 (INPA) 

Microgramma thurnii Brazil Almeida 3757 (INPA) 

Microgramma vacciniifolia Brazil Souza 1565 (BHCB) 

Microgramma vacciniifolia Brazil Almeida 2314 (HSTM) 

Microgramma vacciniifolia Brazil Salino 6573 (HSTM) 

Microgramma vacciniifolia Brazil Giacomin 1707 (HSTM) 

Microgramma vacciniifolia Brazil Salino 8166 (HSTM) 

Microgramma vacciniifolia Brazil Salino 14386 (HSTM) 

Microgramma vacciniifolia Brazil Salino 5380 (HSTM) 

Microgramma vacciniifolia Brazil Salino 1800 (HSTM) 

Microgramma vacciniifolia Brazil Almeida 4802 (HSTM) 

Microgramma vacciniifolia Brazil Salino 6116 (HSTM) 

Microgramma baldwinii Brazil Almeida 4596 (HSTM) 

Microgramma baldwinii Brazil Ribeiro 2728 (INPA) 

Microgramma baldwinii Brazil Vieira 937 (INPA) 

Microgramma baldwinii Brazil Poole 1645 (INPA) 

Microgramma baldwinii Brazil Nelson 304 (INPA) 

Microgramma baldwinii Brazil Freitas 602 (INPA) 

Microgramma baldwinii Brazil Nee 46235 (INPA) 

Microgramma squamulosa Brazil Giacomin 1655 (HSTM) 

Microgramma squamulosa Bolivia Almeida 3105 (BHCB) 

Microgramma squamulosa Brazil Almeida 3175 (HSTM) 
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Microgramma squamulosa Brazil Almeida 3363 (HSTM) 

Microgramma squamulosa Brazil Almeida 2310 (HSTM) 

Microgramma squamulosa Brazil Lima 65 (HSTM) 

Microgramma squamulosa Brazil Dittrich 1655 (HSTM) 

Microgramma squamulosa Brazil Almeida 4878 (HSTM) 

Microgramma geminata Brazil Salino 10900 (HSTM) 

Microgramma geminata Brazil Salino 14326 (HSTM) 

Microgramma geminata Brazil Salino 2313 (HSTM) 

Microgramma geminata Brazil Almeida 3071 (HSTM) 

Microgramma geminata Brazil Salino 8208 (HSTM) 

Microgramma geminata Brazil Salino 6679 (HSTM) 

Microgramma geminata Brazil Salino 6574 (HSTM) 

Microgramma geminata Brazil Salino 2560 (HSTM) 

Microgramma geminata Brazil Salino 1655 (HSTM) 

Microgramma lindbergii Brazil Almeida 3068 (HSTM) 

Microgramma lindbergii Brazil Almeida 228 (HSTM) 

Microgramma lindbergii Brazil Salino 4449 (HSTM) 

Microgramma lindbergii Brazil Salino 3760 (HSTM) 

Microgramma lindbergii Brazil Salino 929 (HSTM) 

Microgramma lindbergii Brazil Echternacht 238 (HSTM) 

Microgramma percussa Brazil Albuquerque 198 (INPA) 

Microgramma percussa Brazil Albuquerque 281 (INPA) 

Microgramma percussa Brazil Coelho 88 (INPA) 

Microgramma percussa Brazil Albuquerque 717 (INPA) 

Microgramma percussa Brazil Madison 618 (INPA) 

Microgramma percussa Brazil Maia 58 (INPA) 

Microgramma percussa Brazil Amaral 317 (INPA) 

Microgramma percussa Brazil Ferreira 3498 (INPA) 

Microgramma percussa Brazil Quaresma 9 (INPA) 

Microgramma megalophylla Brazil Rodrigues 2554 (INPA) 

Microgramma megalophylla Brazil Rodrigues 8840 (INPA) 

Microgramma megalophylla Brazil Silva 105 (INPA) 

Microgramma megalophylla Brazil Silva 1637 (INPA) 

Microgramma megalophylla Brazil Albuquerque 1041 (INPA) 

Microgramma megalophylla Brazil Coelho 41 (INPA) 

Microgramma megalophylla Brazil Madison 190 (INPA) 
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Microgramma megalophylla Brazil Amaral 500 (INPA) 

Microgramma reptans Brazil Almeida 2630 (HSTM) 

Microgramma reptans Brazil Costa 4 (HSTM) 

Microgramma reptans Brazil Almeida 2185 (HSTM) 

Microgramma reptans Brazil Silva 35 (HSTM) 

Microgramma reptans Brazil Giacomin 2576 (HSTM) 

Microgramma reptans Brazil Fraga 3990 (INPA) 

Microgramma reptans Brazil Madison 44 (INPA) 

Microgramma reptans Brazil Madison 412 (INPA) 

Microgramma reptans Brazil Freitas 590 (INPA) 

Microgramma reptans Brazil Freitas 650 (INPA) 

Microgramma reptans Brazil Mota 2413 (INPA) 

Microgramma reptans Brazil Almeida 3596 (INPA) 
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