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Abstract

Motivation: Marker genes, defined as genes that are expressed primarily in a

single cell type, can be identified from the single cell transcriptome; however,

such data are not always available for the many uses of marker genes, such as

deconvolution of bulk tissue. Marker genes for a cell type, however, are highly

correlated in bulk data, because their expression levels depend primarily on the

proportion of that cell type in the samples. Therefore, when many tissue samples

are analyzed, it is possible to identify these marker genes from the correlation

pattern.

Results: To capitalize on this pattern, we develop a new algorithm to detect

marker genes by combining published information about likely marker genes with

bulk transcriptome data in the form of a semi-supervised algorithm. The al-

gorithm then exploits the correlation structure of the bulk data to refine the

published marker genes by adding or removing genes from the list.

Availability and implementation: We implement this method as an R pack-

age markerpen, hosted on https://github.com/yixuan/markerpen.

Contact: roeder@andrew.cmu.edu
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1 Introduction

Cell-type-specific (CTS) genes, also known as marker genes, are genes that are highly

expressed in one cell type, but lowly expressed in other types. These genes, which

define cellular identity, are key to the analysis of RNA transcriptional data. Knowledge

of marker genes gives insights into the core set of genes whose expression is shared among

all cells of a given type, and will fill critical gaps in our understanding of cell biology

and possibly the cellular origins of pathologies (Kelley et al., 2018). Marker genes are

used to annotate cell clusters (Kiselev et al., 2017), to study cellular composition of

bulk tissues (Oldham et al., 2008; Xu et al., 2013; Kelley et al., 2018; Luecken and

Theis, 2019), to estimate cell type fraction via deconvolution (Gaujoux and Seoighe,

2012; Zhong et al., 2013; Abbas et al., 2009; Newman et al., 2015; Avila Cobos et al.,

2018), and to estimate CTS expression directly from bulk tissue (Wang et al., 2020a,b).

Because marker genes are defined by their strong differential expression among cell

types, a common approach to identifying them is to conduct statistical tests on CTS

transcriptome data, typically single-cell RNA sequencing (RNA-seq). Genes that have

significant expression differences between one specific cell type and all others are re-

garded as marker genes for this type (Kiselev et al., 2017). Despite the obvious appeal

of this direct approach, the availability of CTS transcriptome data is a great challenge

for many studies. The cost for single-cell sequencing is generally high, and in some

cases, viable cells are hard to obtain for tissues like human brain. Even if public data

sets are available, they might not correspond well with the data in hand, being col-

lected at a different developmental period or a different functional portion of the organ.

Furthermore, there is a trade-off between sequencing depth and the number of cells

that can be analyzed, and for this reason the resulting single-cell transcriptome is quite

noisy. An alternative way to obtain reference transcriptome data is to use single-cell

RNA-seq data from another species (Zeisel et al., 2015); however, the quality of the

obtained marker genes based on data from a different species is questionable. To this

end, there is a need for a reliable statistical technique for detecting marker genes that

does not require well matched single-cell RNA-seq data.

The objective of this inquiry is to develop a method for identifying a set of marker

genes that describe the expression of the cells that constitute a tissue sample directly

from the bulk transcriptome. We will take advantage of the conjecture that marker

genes identifying a common cell type are highly correlated in samples of bulk transcrip-

tome data, because their expression levels depend primarily on the proportion of that
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cell class in each sample (Oldham et al., 2008; Kelley et al., 2018). Motivated by this

insight, we develop a new algorithm called MarkerPen, short for marker gene detection

via penalized principal component analysis, to detect marker genes by combining prior

marker information with bulk transcriptome data. MarkerPen is a semi-supervised algo-

rithm that requires two pieces of information: a list of potential marker genes, typically

obtained from the literature, past experience, or available single-cell RNA-seq data;

and a bulk RNA-seq data set, viewed as a mixture of pure cells. The algorithm then

exploits the bulk data to refine the published marker genes by adding and removing

genes from the list.

In summary, MarkerPen is motivated by the following two key findings: (1) marker

genes are statistically highly correlated under mild and sensible assumptions; (2) highly

correlated genes can be detected by estimating the leading eigenvectors of the corre-

lation matrix. We formulate the MarkerPen algorithm as a modified sparse principal

component analysis (sparse PCA, Jolliffe et al., 2003; Zou et al., 2006; Zou and Xue,

2018), which simultaneously selects highly correlated genes and encodes prior informa-

tion about markers into the model. Our simulation study and multiple data analyses

of human brain transcriptomes demonstrate the superior performance of the proposed

method.

2 Materials and methods

2.1 Related work

The MarkerPen algorithm follows the path of two pioneering publications, Xu et al.

(2013) and Kelley et al. (2018), who noted that marker genes tend to be highly corre-

lated in bulk tissue. MarkerPen solves the marker detection problem by making better

use of bulk RNA-seq data. The motivation for these methods is straightforward: many

tissues and subjects have been assessed for bulk tissue expression; the data tend to be of

better quality; and collecting bulk data is less costly. Although bulk data alone do not

provide CTS transcriptome information, they can be combined with prior knowledge

of marker genes to improve the quality of published markers. For example, Xu et al.

(2013) first obtained CTS genes in mouse brain as potential markers for human brain,

and then performed co-expression network analysis on human brain bulk data to select

highly correlated genes of each type as the refined marker genes. This method has shown

good empirical results, but has the drawback that genes can only be removed from the
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candidate list, but not added from the complementary set. More recently, Kelley et al.

(2018) applied a similar approach to the human brain transcriptome. They first built

an unsupervised co-expression network for all genes, and then identified gene clusters

that were maximally enriched with published markers. Each gene was then assigned a

fidelity score for each cell type, as an indicator for the strength of association between

the gene and the cell type. These scores, however, were based on the aggregation of

multiple data sets, and hence the selected marker sets may be suboptimal for a specific

study.

Both methods described above assume that marker genes tend to be highly cor-

related, which is an intuitive assumption supported empirically in numerous species

(Oldham et al., 2008; Fertuzinhos et al., 2014; Ponomarev et al., 2010; Hilliard et al.,

2012; Bakken et al., 2016; Hawrylycz et al., 2015), but lacks rigorous statistical justi-

fication. To resolve this shortcoming, in the supplementary material (Section S.1) we

explicitly study the statistical properties of marker genes, and show that under weak

assumptions the marker genes for the same cell type are highly correlated in the bulk

data. Given this fact, we are then able to utilize the correlation structure to detect

marker genes via the MarkerPen algorithm.

2.2 The MarkerPen algorithm

Because high mutual correlation is a necessary condition for marker genes, the first

step of marker gene selection is to find a subset from the whole genome such that genes

in this set are highly correlated with each other. If the true correlation matrix Σ is

available, then such a goal can be achieved by computing PCA on Σ, as the eigenvectors

of Σ, also known as factor loadings, indicate the contribution of each gene to form a

gene group. In the case of a marker gene group, the eigenvector contains a few strong

signals and a large number of small values, where the large coefficients correspond to

highly correlated genes (Section S.2, Figure S1).

However, in practice, only the sample correlation matrix S is given, and S can be

of very high dimension. Theoretical results show that conventional PCA is likely to

fail in high dimensions (Johnstone and Lu, 2009; Jung and Marron, 2009), so in this

case the sparse PCA method is preferred, which directly estimates a sparse eigenvector,

meaning that most entries in this vector are zeros. Sparse PCA has many different

variants, and in this article we consider the Fantope projection and selection algorithm

(FPS, Vu et al., 2013), because it solves a convex optimization problem that has a
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global convergence guarantee. Let Γp×d denote the eigenvectors of Σ associated with

the largest d eigenvalues, where p is the number of genes, and then FPS estimates the

top-d projection matrix Πp×p = ΓΓT by solving

max
X

tr(SX)− λ‖X‖1,1

s.t. O � X � I and tr(X) = d,

where tr(A) is the trace of a matrix A, ‖X‖1,1 =
∑

i,j |Xij| is the sum of absolute

values of the elements in X, λ is a tuning parameter that controls the sparsity of

eigenvectors, and O � X � I means all eigenvalues of X are between 0 and 1. Once

we get an estimate Π̂ for the projection matrix Π, we can recover the eigenvectors Γ by

computing the eigen decomposition of Π̂, Π̂ = Γ̂D̂Γ̂T.

In practice, there is abundant prior information about the marker gene list in the

literature, which provides useful knowledge about the relationship between cell types

and genes; however, such information is not exploited by FPS, resulting in low utiliza-

tion of the available information. To fix this issue, the proposed MarkerPen algorithm

modifies the original FPS such that prior information about markers can be combined

with the collected bulk data. For simplicity, we first consider the detection of marker

genes for one cell type. Let G be the indices of published marker genes for a cell type

C, and then we solve

max
X

tr(SX)− λpG,w(X)

s.t. O � X � I, X ≥ 0, and tr(X) = 1, (1)

to estimate the projection matrix Π = γγT, where γ is the leading eigenvector, pG,w(X) =∑
i,j p̃G,w(Xij) is a penalty function defined as

p̃G,w(Xij) =


|Xij|, i, j ∈ G

w2|Xij|, i /∈ G, j /∈ G

w|Xij|, otherwise

,

and X ≥ 0 means all elements of X are nonnegative. The added constraint X ≥ 0 is

based on the fact that marker genes are positively correlated, so both the eigenvector

γ and the projection matrix Π have nonnegative entries. The extra tuning parameter
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w ≥ 1 is used to put larger sparsity penalty on genes that are not in the prior list G, so

that genes outside G are less likely to be selected as marker genes, unless they show large

signals. The optimization problem (1) can be solved via the proximal-proximal-gradient

method (Ryu and Yin, 2017), with details in the supplementary material (Section S.3).

After we obtain the estimate for the leading eigenvector γ, we select genes that have

coefficients greater than some threshold ε > 0, and treat them as marker genes for cell

type C. For multiple cell types C1, C2, . . ., we repeatedly apply the algorithm above to

compute different marker gene groups sequentially.

2.3 Data sources

In the next section we validate the performance of MarkerPen using a broad range of

bulk and single-cell RNA-seq data, and here we provide some basic information of each

data set. Below are the bulk tissue data used in this article:

1. MSBB The Mount Sinai/JJ Peters VA Medical Center Brain Bank cohort

(Wang et al., 2018) contains RNA-seq data from human temporal cortex, with

425 control samples and 425 samples from patients with Alzheimer’s disease (AD,

Braak score ≥ 4). Only the control samples are used.

2. ROSMAP The Religious Orders Study and the Rush Memory and Aging

Project (Mostafavi et al., 2018; De Jager et al., 2018) collects RNA-seq data from

the human dorsolateral prefrontal cortex (DLPFC), with 288 control samples and

348 AD samples. Only the control samples are used.

3. MayoRNAseq The Mayo Clinic RNA-seq data set (Allen et al., 2016; Allen

et al., 2018) contains human temporal cortex RNA-seq data with 28 control sam-

ples and 82 AD samples. Only the control samples are used.

4. BrainVar The BrainVar data set (Werling et al., 2020) consists of 176 samples

from the human DLPFC across development, from 6 post-conception weeks to

young adulthood. To be comparable with other data sets we exclude pre-natal

brains and focus on subjects that are at least 6 months old (epoch 3), finally with

a sample size of 45.

5. CMC The human brain RNA-seq data collected by the CommonMind Con-

sortium (Fromer et al., 2016) contain 258 adult schizophrenia subjects and 279
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adult control subjects, and only the control samples are used. As the original

data set spans a broad range of ages, we further split the control group into two

subsets, resulting in groups with ages less than or equal to 70 (sample size 164)

and greater than 70 (sample size 115).

We also use single-cell and single-nucleus RNA-seq data sets:

1. Mathys et al. (2019) provides single-nucleus transcriptomes from DLPFC of 48

subjects with varying degrees of AD pathology. Only the data from 17 control

subjects are used.

2. Darmanis et al. (2015) obtains single-cell RNA-seq data of human cortical tissues

from eight adults and four embryonic samples. Only the adult data are used.

3. Li et al. (2018) collects single-nucleus RNA-seq data from DLPFC of three adult

brains.

4. Zeisel et al. (2015) provides mouse cerebral cortex single-cell RNA-seq data.

3 Results

3.1 Quality of selected markers

In this section we demonstrate the quality of marker genes selected by MarkerPen from

three different angles.

First, as explained in Section 2.1, we expect to see that marker genes for the same

cell type are highly correlated in the bulk data. Therefore, the quality of selected

marker genes can be visually examined by the correlation matrix. We study human

brain bulk tissue RNA-seq data, and use the MSBB data set for illustration. To apply

the MarkerPen algorithm, the prior marker gene list is obtained from existing literature,

including 184 marker genes for astrocytes, 130 genes for oligodendrocytes, 319 genes

for neurons (all three from Cahoy et al., 2008), 100 genes for microglia (Hickman et al.,

2013), and 237 genes for endothelial cells (Butler et al., 2016). Figure 1A shows the

sample correlation matrix of the published marker genes in the MSBB bulk data. It

can be seen that the correlation matrix roughly forms five blocks, but the boundary

between the blocks is not very clear as much noise exists.

Then we apply the MarkerPen algorithm to refine the given marker gene list. For

each cell type, we restrict the search range to the union of the published marker genes
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and the top 500 genes that have the highest fidelity scores given by Kelley et al. (2018).

Figure 1C demonstrates the sample correlation matrix of the refined genes, in which 50

genes are selected for each cell type. It is clear that after the refinement, genes in the

same block have much stronger mutual correlation, whereas genes in different blocks are

only weakly correlated. In other words, genes refined by MarkerPen have a correlation

structure that better fits the property of marker genes.

Figure 1: (A) Sample correlation matrix of published marker genes in the MSBB bulk
data. (B) Gene expression of single-cell reference data from Mathys et al. (2019) on
published marker genes. (C) Sample correlation matrix of refined marker genes output
by MarkerPen. (D) Gene expression of single-cell reference data on refined marker
genes.

Second, by definition, marker genes should be largely expressed in one cell type

but weakly expressed in others. Therefore, it is helpful to examine the expression

level of selected marker genes in purified single-cell data. We use the single-nucleus

transcriptome data from Mathys et al. (2019) to demonstrate this idea. For each cell

type, we randomly select 100 samples (50 for endothelial due to the limited number in

the data set), and plot the logarithm-scale expression matrix on published and refined

marker genes in Figure 1B and D, respectively. In Figure 1B, we can observe that many

genes in the published list behave like noise, as they show very low expression level in

virtually all cell types. In contrast, this defect has been greatly reduced in Figure 1D,

where most noise genes have been removed by MarkerPen. This finding further justifies
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the MarkerPen selection algorithm.

Finally, considering that the transcriptome data from Mathys et al. (2019) and the

MSBB bulk data may not fully match, it is more appropriate to study the purified cells

from the same subjects as in the bulk data. However in practice, this is not always

possible. Instead, we can use the bMIND algorithm (Wang et al., 2020b) to estimate

CTS gene expression for each subject in the bulk data. The output of bMIND can be

viewed as the average of denoised single-cell data for the subjects in the bulk data. We

plot the estimated CTS gene expression matrix on three types of markers: the published

marker genes, the markers selected by MarkerPen, and the bMIND markers that are

directly selected from the estimated CTS gene expression. The bMIND markers are

treated as the ground truth. However, because marker genes form a highly correlated

set, there is not a unique set of optimal genes to serve this purpose. In our evaluation

we look to see if the set of selected markers matches the good properties exhibited in

the bMIND set. The first row of Figure 2 demonstrates the results for the MSBB data

set, from which we can find that published markers contain a lot of noise, whereas the

MarkerPen output is very similar to that of bMIND. Also included in Figure 2 are the

results for two additional bulk data sets: the ROSMAP and MayoRNAseq data. They

both give similar results that validate the quality of MarkerPen genes.

3.2 Performance in downstream analysis

As marker genes are essential tools for many downstream analyses such as cell type

fraction deconvolution, in this section we use simulation experiments to evaluate the

performance of our algorithm in such tasks. Cell type fraction deconvolution is a prob-

lem commonly seen in bulk RNA-seq data analysis. Because the deconvolution result

depends on the selection of marker genes, the quality of the selected markers can be

measured by the estimation error of cell type fractions. We design a simulation exper-

iment to compare MarkerPen with two supervised marker gene selection algorithms,

with experiment setting described in the supplementary material (Section S.4, Figure

S2, S3).

In practice, deconvolution can be conducted with or without single-cell reference

samples, and the quality of reference samples may also vary. To reflect these different

scenarios, we design three models for simulating the observed data:

1. Matched reference case Reference samples and the bulk data are simulated

from the same signature matrix.
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Figure 2: CTS gene expression of the MSBB, ROSMAP, and MayoRNAseq data sets
on three types of marker genes: the published markers, the ones selected by Mark-
erPen, and the bMIND markers that can be treated as the truth. Ast=astrocytes,
Oli=oligodendrocytes, Mic=microglia, Neu=neurons.

2. Noisy reference case The bulk data use a perturbed version of the signature

matrix: some percentage of the genes, ranging from 5% to 30%, are set to noise.

This indicates that some genes may be markers in the reference data, but they

play no role in the bulk data.

3. No reference case No reference samples are simulated.

For model 1 and model 2, both the bulk data and the reference samples are available,

and we use a supervised method, dtangle (Hunt et al., 2018), to accomplish the de-

convolution. For model 3, only the bulk data and the marker gene list are available,

so we apply a semi-supervised algorithm for deconvolution, the digital sorting algo-

rithm (DSA, Zhong et al., 2013). The choice of deconvolution algorithms is beyond

the scope of this article, as the main purpose of this section is to evaluate the effect of

marker gene selection for a fixed deconvolution method. In practice any deconvolution

algorithm that needs marker genes can be used in place of the methods investigated

here.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2020. ; https://doi.org/10.1101/2020.11.07.373043doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.07.373043
http://creativecommons.org/licenses/by-nc-nd/4.0/


In our experiments, we use the mouse brain single-cell RNA-seq data from Zeisel

et al. (2015) to simulate the true signature matrix. We select seven major cell types

(astrocytes, oligodendrocytes, microglia, endothelial, interneurons, S1 pyramidal neu-

rons, and CA1 pyramidal neurons) from the whole single-cell data, and restrict to 2452

genes that are known to be associated with the cell types (Table S1 of Zeisel et al.,

2015). Following the steps in Section S.4, we simulate the fraction matrix, reference

samples, and the bulk data according to a stochastic model. From the signature matrix,

we randomly select 50 genes from each cell type block, and treat them as known marker

genes. Of course, due to the possible perturbation of the signature matrix, some of the

claimed marker genes will be noise in the bulk data, and hence provide little informa-

tion about the cell type. This treatment is used to mimic the quality of marker genes

in reality.

We repeat the procedure above 30 times, so that in every simulation run, the gen-

erated data are different but follow the same stochastic model. We compute the de-

convolution estimation errors in each simulation run, and summarize their distribution

density curves in Figure 3.

Figure 3: Impact of marker gene selection algorithm on deconvolution estimation error,
displayed as distribution density curves. The vertical axis stands for different marker
gene selection methods. MarkerPen: the proposed method. P-value and Ratio: se-
lection methods based on reference samples, implemented in the dtangle R package.
Published: using all published marker genes without selection.
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In Figure 3, each panel represents one model for the reference sample. It is clear that

when the reference sample and bulk data are matched, all marker gene selection methods

behave equally well, compared with the last row that stands for no selection. However,

when the noise level increases, selection methods purely based on the reference sample

become much worse, whereas the proposed MarkerPen is quite robust and accurate.

When no reference sample is available, reference-based selection methods do not apply,

but MarkerPen still shows improvement via semi-supervised marker gene selection.

These findings highlight the power of MarkerPen in refining published marker genes.

3.3 Robustness

In Section 3.2 we have studied the accuracy of MarkerPen in downstream deconvolution

tasks. Then a natural question is how robust MarkerPen is across different data sets.

To answer this question, we experiment on the combination of four bulk data sets and

three single-cell and single-nucleus reference data sets, and study the variation of their

deconvolution results. Descriptions of these data sets are given in Section 2.3.

For each pair of data sets, we estimate the cell type fractions for each observation,

using three marker gene selection methods: the proposed MarkerPen, the supervised

method based on single-cell or single-nucleus reference data, and a fixed set of marker

genes given by the BRETIGEA R package (McKenzie et al., 2018). Figure 4A shows

the estimated fractions averaged over all observations in the data set. It is easy to see

that the supervised algorithm and BRETIGEA generate significantly different results

under three reference data sets, whereas MarkerPen is much more consistent and robust.

We then compute a metric (Section S.5) to measure the variation of estimated fractions

across different reference data sets, and show the values in Figure 4B. The first four

panels give the comparison in each bulk data set, and the last panel shows the result

over all data sets. In all settings MarkerPen is much more robust to the choice of

single-cell reference data compared with others.

4 Conclusion and discussion

We have presented the MarkerPen algorithm for identifying cell-type-specific marker

genes from bulk tissue data. Unlike most marker gene detection methods that heavily

rely on single-cell reference samples, MarkerPen is a semi-supervised method that only

requires the bulk data and a prior marker gene list. This feature makes the algorithm
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Figure 4: (A) Estimated average cell type fraction on different bulk data sets using
three single-cell reference data sets and three marker gene selection methods. De-
convolution is conducted using the dtangle package. Neu=neurons, Ast=astrocytes,
Oli=oligodendrocytes, Mic=microglia, End=endothelial. (B) Comparison of the frac-
tion variation metric for three marker gene selection methods under various bulk data
sets. This metric is used to quantify the variation of fraction estimates across different
single-cell and single-nucleus reference data sets.

especially useful when tissue level data are not well matched with available single-cell

data. More importantly, using well selected marker genes corrects the bias and error of

downstream analyses of bulk tissue samples. Furthermore, MarkerPen interfaces nicely

with other marker gene selection algorithms. For example, supervised methods applied

to single-cell RNA-seq data can provide the prior gene list for MarkerPen.

A promising application of MarkerPen is to study the evolution of marker genes over

developmental stages. Preliminary studies of the CMC data reveal that some marker

genes identified from younger subjects are less correlated in older brains. The BrainVar

data, which include brains sampled over all developmental stages, would provide an

ideal data set to further investigate how marker genes change over time; however, it

will be more challenging to compare marker genes of mature brains with those of fetal

brains. We leave this topic for future explorations.

The use of single-cell RNA-seq has increased. However, there are drawbacks to

single-cell data, including its noisy nature and the limited number of subjects from

whom cell are harvested for study. By contrast, bulk transcriptome data are less noisy,
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and they can readily be sampled from many subjects at a reasonable cost. With larger

sample sizes, bulk tissue samples can be much more informative for downstream analy-

ses, such as eQTL mapping. With the help of good marker genes, many deconvolution

methods can provide accurate estimates of cell type fractions (Zhong et al., 2013; Gau-

joux and Seoighe, 2013; Newman et al., 2015; Hunt et al., 2018; Newman et al., 2019).

Furthermore, cell type fractions are input of methods such as MIND (Wang et al.,

2020a) and bMIND (Wang et al., 2020b) to estimate CTS expression profiles from bulk

tissue samples, permitting cell-type analysis for features such as eQTLs. The perfor-

mance of these algorithms is highly dependent on the selection of good marker genes,

hence MarkerPen can play a critical role in the analysis of CTS expression.

There are two limitations to the current version of MarkerPen. First, although

MarkerPen is based on the eigen decomposition of correlation matrices, its computa-

tional complexity is greater than ordinary principal component analysis. In practice,

one might need to limit the search range of genes to a few thousand. Despite this re-

striction, the algorithm has been implemented in the markerpen R package with core

part written in efficient C++ code. Another challenge for MarkerPen is to detect cell

types that are similar, such as neuron subtypes. These subtypes do not induce a strict

block structure in the correlation matrix, making it harder to identify subtype-level

marker genes.

MarkerPen can be extended in several directions. For instance, the current algo-

rithm that selects marker genes performs the calculation on one cell type at a time.

It may achieve better performance, however, by jointly selecting mutually exclusive

marker genes for multiple cell types. Another promising direction would be to extend

MarkerPen to analyzing unannotated single-cell RNA-seq data. It might be useful in

selecting marker genes for clustering unlabeled cells.
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