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1 Abstract

2 Statistical learning (SL) is the ability to extract regularities from the environment. In the domain 

3 of language, this ability is fundamental in the learning of words and structural rules. In lack of 

4 reliable online measures, statistical word and rule learning have been primarily investigated 

5 using offline (post-familiarization) tests, which gives limited insights into the dynamics of SL and 

6 its neural basis. Here, we capitalize on a novel task that tracks the online statistical learning of 

7 language rules combined with computational modelling to show that online SL responds to 

8 reinforcement learning principles rooted in striatal function. Specifically, we demonstrate - on 

9 two different cohorts - that a Temporal Difference model, which relies on prediction errors, 

10 accounts for participants’ online learning behavior. We then show that the trial-by-trial 

11 development of predictions through learning strongly correlates with activity in both ventral and 

12 dorsal striatum. Our results thus provide a detailed mechanistic account of language-related SL 

13 and an explanation for the oft-cited implication of the striatum in SL tasks. This work, 

14 therefore, bridges the longstanding gap between language learning and reinforcement learning 

15 phenomena.
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16 Introduction

17 Statistical Learning (SL) is the ability to extract regularities from distributional information in 

18 the environment. As a concept, SL was most popularized by the work of Saffran and colleagues, 

19 who first demonstrated infants’ use of the transitional probabilities between syllables to learn 

20 both novel words(1) as well as simple grammatical relations(2). The idea of a mechanism for SL 

21 has since raised a considerable amount of interest, and much research has been devoted to 

22 mapping the scope of this cognitive feat. This work has been crucial in describing the SL 

23 phenomenon as it occurs across sensory modalities (auditory(3–5), visual(6,7) and haptic(8)), 

24 domains(7) (temporal and spatial), age groups(9,10), and even species (non-human 

25 primates(11), and rats(12)). After all this research, however, little is yet known about the 

26 mechanisms by which SL unfolds and their neural substrates.

27 Work on SL has recently moved towards the use of online measures of learning, which afford a 

28 more detailed representation of the learning dynamics than typically used post-familiarization 

29 test scores(13,14). Online measures capitalize on the gradual development of participants’ 

30 ability to predict upcoming sensory information (e.g., an upcoming syllable or word) as the 

31 regularities of the input are learned (e.g., a statistical word-form or a grammatical pattern). 

32 Indeed, prediction is often understood as the primary consequence of SL(15,16). Interestingly, 

33 however, the status of prediction as a mechanism for SL, rather than the consequence of it, that 

34 is, its causal implication in learning, has not been explicitly investigated. 

35 In the current study, we examined the online development of predictions as a fundamental 

36 computation for SL. In particular, we used an amply validated algorithm of reinforcement 

37 learning –Temporal Difference(17,18) (TD)– to model participants’ online learning behavior 

38 and investigate its neural correlates. Note that, in adopting a model of reinforcement learning, a 

39 domain where reward generally plays an important role, we are not assuming (nor discarding) 

40 the phenomenological experience of reward (e.g., intrinsic reward(19,20)) during SL. Instead, 

41 we assessed whether particular computational principles reflected in TD learning can account 

42 for participants’ SL behavior and their brain activity during learning.
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43 TD models are based on the succession of predictions and prediction errors (the difference 

44 between predicted and actual outcomes) at each time-step, by which predictions are gradually 

45 tuned. In contrast to models typically used to explain SL (e.g., (21,22)), a vast body of research 

46 supports the neurobiological plausibility of TD learning, with findings of neural correlates of 

47 predictions and prediction errors both using cellular-level recordings and functional Magnetic 

48 Resonance Imaging (fMRI). Several brain areas, notably the striatum, have been implicated in 

49 the shaping of predictions over time and the selection of corresponding output behavior(23–

50 28). Interestingly, activity in the striatum has also been documented in SL in relation to 

51 rule(29,30) as well as phonological word-form learning(31), but the precise role of these 

52 subcortical structures in this domain remains unspecified. 

53 With the aim of clarifying the mechanisms for SL and their neural underpinnings, we 

54 combined computational (TD) modeling with fMRI of participants’ brain activity while 

55 performing a language learning task. In particular, participants completed an incidental non-

56 adjacent dependency learning paradigm. In natural languages, non-adjacent dependencies are 

57 abundant and reflect important morphological and syntactic probabilistic rules (e.g., the 

58 relationship between un and able in unbelievable). Sensitivity to non-adjacent dependencies is 

59 therefore important for grammar learning as well as for the early stages of word learning (i.e. 

60 speech segmentation), both in prelexical-development(2) and beyond (i.e., second language 

61 acquisition(32)). The main advantage of this particular rule-learning task over similar SL tasks 

62 (e.g., (2,33)) is that it provides a reliable measure of online learning(34) that we can then model. 

63 We used a TD algorithm for its greater sensitivity to temporal structure compared to simpler 

64 RL models (e.g. Rescorla-Wagner(35)). Note that this an important prerequisite for non-

65 adjacent dependency learning specifically, since the to-be-associated elements are separated in 

66 time. Nonetheless, we additionally investigated the adequacy of these simpler algorithms.

67 We expected the interplay of predictions and prediction errors, as modeled by the TD 

68 algorithm, to closely match participants’ online rule-learning behavior. In addition, and in line 
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69 with the aforementioned research on both reinforcement learning and SL, we expected striatal 

70 activity to be associated with the computation of predictions. 

71 Results

72 Two independent cohorts (Behavioral group: N = 19; fMRI group: N = 31) performed the 

73 same incidental non-adjacent dependency learning task (see Methods for details). In brief, 

74 participants were exposed to an artificial language, which, unbeknownst to them, contained 

75 statistical dependencies between the initial (A) and final (C) elements of three-word phrases. 

76 Orthogonal to SL, participants’ instructions were to detect the presence or absence of a given 

77 target word, which was always the final C element of one of the two A_C dependencies 

78 presented. Online SL was measured as participants’ decrease in reaction times (RTs) over trials, 

79 which reflects the gradual learning of the predictive value of the initial element A in respect to 

80 the dependent element C of each phrase (i.e., the equivalent of learning that un predicts able in 

81 unbelievable). In line with previous research(34), we expected faster reaction times in a Rule 

82 block with such dependencies compared to a No Rule block with no statistical dependencies 

83 (i.e. equally probable element combinations). This indicates that participants learned the 

84 dependency between A and C elements, and were thus able to use the identity of the initial 

85 word A to predict the presence or absence of their target word C.

86 This behavioral paradigm was initially tested in a group of nineteen volunteers (Behavioral 

87 group: N = 19; 15 women; mean age = 21 years, SD = 1.47). After ruling out Order effects 

88 (Rule block first/No Rule block first; main effect of Order and all its interactions with other 

89 factors p > 0.4), a repeated-measures ANOVA with Rule (Rule/No Rule) and Target 

90 (Target/No Target) as within-participant factors confirmed that learning of the dependencies 

91 occurred over the Rule block. In particular, responses to phrases in the Rule block were overall 

92 faster compared to the No Rule block (F(1,18) = 13.6, p < 0.002, Partial η² = 0.43; mean 

93 difference = 149.40ms, SE = 40.51; Fig. 1A). A significant effect of Target (F(1,18) = 24.46, p < 

94 0.001, Partial η² = 0.58) further indicated, as reported previously(34), that responses to target C 

95 elements were faster than to no target C elements (mean difference = 68.66ms, SE = 13.88). 
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96 Importantly, we found no interaction between Rule and Target (F(1,18) = 0.53, p > 0.48), 

97 suggesting that both dependencies were learned comparably. 

98 Figure 1. Behavioral group’s rule-learning and temporal difference (TD) model results. (A) Mean reaction times and 

99 error bars in the Rule and No Rule blocks. The graph shows faster reaction times for Rule compared to No Rule 

100 phrases, indicating successful learning. ** p < 0.01 (B) Plot of participants’ mean reaction times (blue) against the TD 

101 model’s estimates of the development of predictions over learning (red; inverted as 1-P(A) before averaging and z-

102 scoring for display purposes). Vertical bars are the SD. RTs = reaction times. Reaction times were initially normalized 

103 between 0 and 1 (Methods) and are plotted with the model estimates in z-score values. P(A) = TD model’s predictions 

104 from the initial word (A) of the dependencies. 

105 We next assessed the extent to which a TD model (see Methods) could predict participants’ 

106 rule-learning behavior. If participants’ reaction times reflect rule-learning in terms of the ability 

107 to predict the last element (C) of a phrase from the identity of the initial (A) element, their 

108 overall development should be mimicked by the model parameter representing the predictive 

109 value of the initial (A) element (P(A); see Methods). That is, with time, the predictive value of 

110 the initial A element according to the TD model should change (increase) in a way resembling 

111 participants’ reaction times. Note that reaction times can reflect prediction learning as well as 

112 fluctuations due to decision processes, motor response preparation and execution, random 

113 waxing and waning of attention, and system noise, which are not the object of this investigation. 

114 Indeed, we used modelling to strip these off and so derive a purer measure of prediction 

115 learning. Figure 1B shows the development of participants’ reaction times over trials plotted 

116 against the development of the predictive value of the initial word A (P(A)) as computed by the 

117 TD model (inverted as 1-P(A) and z-scored for display purposes). Model fit was evaluated at 

118 the individual level by the Model Fit Index (see Methods), calculated as 1 minus the Log-

119 Likelihood Ratio (LLR) between the Log-Likelihood Estimate (LLE) for the TD model and 

120 the LLE for a model predicting at chance. Model Fit Index values of 1 would indicate an exact 

121 model fit. Our results show a group average Model Fit Index of 0.74 (std = 0.05), indicating that 

122 the TD model was 3 to 4 times better than the chance model at adjusting to participants’ 

123 reaction times. We additionally compared the performance of the TD model against that of a 
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124 Rescorla-Wagner (RW) model(35) (Supplementary Information, Fig. S1). In contrast to the 

125 TD model, the RW model treats each AX_ combination as a single event, therefore combining 

126 the predictive values of the two (A plus X) elements (35–37), and so does not take into account 

127 non-adjacent relations (which are captured by the TD model through the devaluation of the 

128 prediction parameter; see Methods). A paired-samples t-test indicated that Model Fit Index 

129 values produced by the TD model were significantly better than those produced by the RW 

130 Model (mean difference = 0.098, SE = 0.013; t(18) = 7.65, p < 0.001, d = 0.83), which only 

131 achieved an average Model Fit Index of 0.64 (2 to 3 times better than the chance model; std = 

132 0.1). The TD model was, therefore, superior to the RW in adjusting to participants’ reaction 

133 time data.

134 We then replicated these behavioral results on a new cohort of participants from whom we 

135 additionally acquired fMRI data while performing the incidental non-adjacent dependency 

136 learning task (fMRI group; N = 31; 20 women; mean age = 23 years, SD = 3.62). We used the 

137 same analytical procedure to evaluate rule learning at the behavioral level and model adequacy 

138 thereafter. Having discarded block order effects (main effect of Order and all interactions: p > 

139 0.1), a repeated-measures ANOVA with factors Rule (Rule/No Rule) and Target (Target/No 

140 Target) indicated that rule-learning occurred in the Rule block (F(1,30) = 4.96, p < 0.034, 

141 Partial η² = 0.14), again with faster mean reaction times to rule compared to no rule phrases 

142 (mean difference = 42.67ms, SE = 19.16; Fig. 2A). As expected, reaction times to target C 

143 elements were faster than to no target C elements (mean difference = 57.2ms, SE = 43.28; 

144 F(1,30) = 54.15, p < 0.001, Partial η² = 0.64). As with the behavioral group’s data, the null 

145 interaction between the factors Rule and Target (F(1,30) = 0.168, p > 0.68) indicated that both 

146 target and no target dependencies were similarly learned. 

147 Figure 2. fMRI group’s rule-learning and TD model results. (A) Mean reaction times and error bars in the Rule and 

148 No Rule blocks. Faster reaction times for Rule compared to No Rule phrases indicate successful learning. * p < 0.05 

149 (B) Plot of participants’ mean reaction times (blue) against the TD model’s estimates of the development of predictions 

150 over learning (red; inverted as 1-P(A) before averaging and z-scoring for display purposes). Vertical bars are the SD. 
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151 RTs = reaction times. Reaction times were initially normalized between 0 and 1 (Methods) and are plotted with the 

152 model estimates in z-score values. P(A) = TD model’s predictions from the initial word (A) of the dependencies.

153 We next fitted the TD model to the fMRI group behavioral dataset. The development of 

154 participants’ reaction times is plotted in Figure 2B with the development of the predictive value 

155 of the initial element (A) according to the TD model. At a group level, the mean Model Fit 

156 Index was 0.71 (std = 0.04), again indicating a fit between 3 and 4 times better than that of a 

157 model predicting at chance. This was also significantly better than the average Model Fit Index 

158 produced by the RW Model (mean difference = 0.11, SE = 0.01; t(30) = 12.20, p < 0.001, d = 

159 1.26), which only reached a benchmark of 0.6 (again, 2 to 3 times better than the chance 

160 model; std = 0.08; Fig. S1). 

161 These results, therefore, represent a replication of our previous findings from the Behavioral 

162 group, both in terms of the participants’ overall statistical learning behavior and the adequacy of 

163 the TD model in providing a mechanistic account of its dynamics. 

164 To investigate the brain areas or networks sensitive to the trial-wise computations related to 

165 statistical rule-learning from speech, we used a measure of the trial-by-trial development of 

166 predictions from the initial word A of rule phrases (P(A); see Methods) as estimated by the TD 

167 model for each participant. Specifically, we correlated this proxy for prediction learning with 

168 participants’ trial-wise BOLD signal measures for the Rule block, time-locked to the onset of 

169 the A element of each phrase. The contrast between P(A)-modulated Rule block activity against 

170 an implicit baseline (Methods) yielded a large cluster covering most of the striatum (i.e., 

171 bilateral caudate nuclei, putamen, and ventral striatum; Fig. 3 and Table S1). Also, noteworthy, 

172 there were two additional clusters, one in the left superior posterior temporal gyrus extending 

173 medially to Rolandic opercular regions and another including right inferior and middle occipital 

174 areas. While formalized as prediction learning, we note that activity in these regions could also 

175 reflect the gradual increase in prediction error on the initial element A of each phrase. This is 

176 because predictions and prediction errors on the A element should be commensurate with 

177 each other, since it can never be anticipated (see Methods).  An investigation of prediction error 
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178 responses on the C (target/non-target) elements was not possible due to the presence of button 

179 presses on these elements as required by the task.

180 Figure 3. Brain regions related to prediction learning (Rule P(A) – Baseline). Activity in the Basal Ganglia (bilateral 

181 caudate nuclei, putamen, and ventral striatum) and in the left posterior superior temporal gyrus (STG) was modulated 

182 the trial-by-trial development of predictions (P(A)) as estimated by the TD model (contrast: Rule P(A) - Baseline). 

183 Results are reported for clusters FWE-corrected at p < 0.001 at the cluster level (minimum cluster size = 20), with an 

184 additional p < 0.001 uncorrected threshold at the voxel level. Neurological convention is used with MNI coordinates 

185 shown at the bottom right of each slice.

186 In order to further support the specificity of these results, we completed a series of control 

187 analyses. First, while, by definition, no rule can be derived from the No Rule block, this does 

188 not preclude the engagement of particular brain regions in the attempt to capture the 

189 relationship between specific phrase elements. In other words, we cannot ascertain that similar 

190 type-computations are not taking place in the No Rule block, even when these will accrue no 

191 substantial knowledge. Therefore, to assess the specificity of the reported clusters in prediction 

192 learning, we next contrasted P(A)-modulated activity for Rule and No Rule blocks directly (see 

193 Methods). That is, we compared the brain activity related to the trial-by-trial predictive value of 

194 stimuli A during the Rule block to its counterpart during the No Rule block. Significant 

195 differences centered on the same two relatively large clusters (Figure S2) observed in the main 

196 analysis, namely bilateral caudate, putamen and ventral striatum and right middle occipital 

197 cortex (not shown in the figure), with previous left temporal areas not reaching significance by 

198 our selected threshold (Table S2). The converse contrast (P(A)-modulated No Rule vs P(A)-

199 modulated Rule) did not produce any significant results. 

200 It is generally understood that the final goal of (TD) learning is to inform behavior(37). Even if 

201 we consider predictions themselves as some form of covert behavior(38) used to optimize 

202 online learning and processing, our paradigm also required participants to make an overt 

203 response (a button press) to the presence of their target word. Reaction times are often used as 

204 modulators of a condition’s related BOLD signal to extract the variability pertaining to such 

205 motor responses. However, as previously illustrated (Fig. 1 and Fig. 2), reaction times in the 
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206 Rule block will tend to show a close relationship to online learning. Hence, a more suitable 

207 baseline to remove response related brain activity is the reaction times to the No Rule block, 

208 that is, where no specific rule-learning can occur. We therefore contrasted P(A)-modulated 

209 Rule block activity with the reaction time (RT)-modulated No Rule block activity (activity 

210 estimates for the contrast between P(A)-modulated Rule and RT-modulated Rule activity are 

211 also reported in Fig. S4 and Table S4). Significant prediction-related Rule activity remained in 

212 the dorsal striatum, particularly in bilateral caudate nuclei and right putamen (Figure S3 and 

213 Table S3). Altogether, therefore, our analyses (main and control) demonstrate that activity 

214 within the striatum was related to the computations that facilitate statistical rule-learning from 

215 speech as predicted by the TD model.

216 Discussion

217 In this study, we provide evidence for the SL of non-adjacent dependencies as an instance of 

218 reinforcement learning. A TD model of reinforcement learning, which capitalizes on the 

219 iteration of predictions and prediction errors, was able to mimic participants’ reaction time data 

220 reflecting gradual SL over trials. This was replicated on two independent cohorts, producing 

221 similar model fits that were also clearly superior to those of simpler learning models. Functional 

222 neuroimaging data of participants’ online learning behavior also allowed us to examine the 

223 neural correlates of prediction-based SL. In line with neuro-computational models of TD 

224 learning, the trial-by–trial development of predictions from the initial word of the dependencies 

225 was strongly related to activity in bilateral striatum. Importantly, striatal activity was unrelated to 

226 the overt motor responses required by the task (i.e., button presses) or more general 

227 computations, supporting the implication of the striatum specifically in prediction-based SL.

228 Evidence for the adequacy of a TD algorithm in capturing participants’ online learning behavior 

229 offers novel insights into the mechanisms for SL. In particular, our results underscore the 

230 causal role of predictions for learning, compelling us to reassess the commonly assumed 

231 relationship between SL and predictive processing. Indeed, SL not only enables predictions 

232 (predictions as a consequence of SL), as generally understood (see p.e.(13)), but also capitalizes 
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233 on predictions (predictions as a cause of SL). This new understanding of SL can thus offer 

234 interesting reinterpretations of previously reported correlations between SL abilities and 

235 predictive processing(15), raising questions about the direction of causality. 

236 Moreover, our results make an important contribution to the understanding of the neuro-

237 biological basis of SL. While previous research(13,39) has shown a similar behavioral 

238 development of online SL (cf. Fig. 1), brain imaging data and its link to a mechanistic 

239 explanation of learning were lacking. Here we used a measure of online SL behavior in 

240 combination with computational modeling and fMRI data to unveil the basic mechanism 

241 underlying learning and its brain correlates. A complementary approach to describing online 

242 SL, which involves the frequency-tagging of participants’ neurophysiological responses over 

243 learning(40–42), has recently been used to track the emergence of new representations (in time 

244 and neuro-anatomical space) as participants learn. We add to these findings by providing a 

245 mechanistic account for how these representations (i.e., learning) come to be and a plausible 

246 neuro-anatomical substrate for its key computations. In particular, we show that the gradual 

247 development of predictions for SL is related to robust and widespread activity in bilateral 

248 striatum. This finding adds a valuable degree of specificity to the oft-reported implication of 

249 these subcortical structures in artificial grammar learning and SL more generally(29–31). 

250 Furthermore, both the adequacy of a TD model and the involvement of the striatum in 

251 prediction-based SL place this cognitive ability squarely in the terrain of reinforcement learning. 

252 Indeed, the link between prediction learning and activity in the striatum is one of the most 

253 robust findings in the reinforcement learning literature, from intracranial recordings to fMRI 

254 studies(24–28,37,43–45). Activity in the ventral striatum, in particular, has been associated with 

255 the delivery and anticipation of rewarding stimuli of different types (i.e. from primary to higher-

256 order rewards)(46). More specifically, the ventral striatum interacts in complex ways with the 

257 dopaminergic system (mainly Ventral Tegmental area/Substantial Nigra pars compacta; 

258 VTA/SNc) with responses consistent with the computation of reward P.E.(23,47–49). Under 

259 this light, our reported pattern of activity in the ventral striatum is consistent with the gradual 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.28.428582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428582
http://creativecommons.org/licenses/by/4.0/


12

260 transfer over learning of prediction error related dopaminergic responses from rewarding to 

261 predictive stimuli as found in classic conditioning paradigms(50,51). That is, a gradual increase 

262 in response on A elements may be expected as their predictive value is learned, since these 

263 elements can never be anticipated. Alternatively, activity in the ventral striatum could reflect 

264 inhibitory signals aimed to attenuate dopaminergic inputs from the VTA/SNc(52) in response 

265 to C elements as these become more predictable. 

266 From a theoretical standpoint, it may be necessary to distinguish between the response of the 

267 reward system for learning and the phenomenological experience of reward(20,53). Recent 

268 evidence(54–56), nonetheless, supports the notion of language learning as intrinsically 

269 rewarding(19), and suggests quantitative over qualitative differences between endogenous and 

270 exogenous sources of reward(20). So far, the adequacy of reinforcement learning algorithms for 

271 the learning of intrinsically rewarding tasks has mainly remained theoretical(20,57). Our results 

272 now contribute to this literature by showing their suitability in specific instances of SL. 

273 Still within the computations of the TD model, activity in the caudate nuclei of the dorsal 

274 striatum could respond to the updates at each timestep of the outcome value representations 

275 associated with each stimulus in ventromedial and orbitofrontal areas(58). Caudate activity 

276 could also promote the (attentional) selection of behaviorally relevant elements in the phrase in 

277 frontal cortical areas(59–61). While this attentional selection should initially pertain to C 

278 elements (the target of the monitoring task), a shift towards A elements may be expected as 

279 their predictive value increases. This interpretation is consistent with the finding of a gradual 

280 increase in the P2 ERP component (related to attentional deployment) over the exposure to (A 

281 elements of) non-adjacent dependencies but not to similar but unstructured material(62,63). 

282 Finally, activity in bilateral putamen could relate to the selection of the specific motor actions in 

283 pre/motor regions(64). The fact that the response of this area is reduced but not eliminated 

284 when regressing out overt motor responses (button presses; Fig. S3; cf. Fig. 3) raises the 

285 possibility that putaminal activity additionally reflects the selection of covert motor responses, 

286 namely, of (speech) motor programs corresponding to the predicted (C) elements. The 
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287 selection of these motor-articulatory plans may be used to generate sensory-level 

288 predictions(38) ultimately translating into increasingly faster RTs for predicted C elements. In 

289 this view, activity in the pSTG (see Fig. 3) would reflect the downstream (i.e. sensory) 

290 consequences of this selection(38). We conjecture that prediction-based SL is fundamentally 

291 linked to such motor engagement as part of the learning mechanism orchestrated by the 

292 striatum. This is consistent with the observation that participants more adept to predicting 

293 speech inputs embedded in noise, known to involve the speech motor system(65), are also 

294 better statistical learners(15), and agrees with the well-accepted role for these structures in 

295 procedural learning(66,67) and the managing of motor routines(49,64,68). Note that this speech 

296 motor engagement for learning should become of critical importance when putative alternative 

297 learning mechanisms (e.g., purely sensory based) are weakest, for example, when a temporal 

298 separation is imposed between the elements to be associated, as in our non-adjacent 

299 dependency learning task. 

300 In contrast to previous research on grammar learning(31,69,70), the trial-wise development of 

301 predictions did not reveal significant activity in the left inferior frontal gyrus (though see Fig. 

302 S5). As noted by Karuza and colleagues(14), a possible explanation for this concerns the 

303 emphasis that particular models of learning place on specific computations, with TD models 

304 being most sensitive to subcortical (rather than neo-cortical) activity(14). Future research should 

305 investigate alternative models of learning as a means to relate other neural correlates of SL, 

306 such as the left inferior frontal gyrus, to other subroutines of the learning process.

307 In sum, by the combination of an online measure of SL, computational modeling, and 

308 functional neuroimaging, we provide evidence for SL as a process of gradual prediction learning 

309 strongly related to striatal function. This work, therefore, makes a valuable contribution to our 

310 understanding of the mechanisms and neurobiology of this cognitive phenomenon, and 

311 introduces the provoking possibility of language-related SL as an instance of reinforcement 

312 learning orchestrated by the striatum.

313 Materials and Methods
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314 Participants

315 Two independent cohorts participated in the study. We first collected data from twenty 

316 volunteers from the Facultat de Psicologia of the Universitat de Barcelona as the behavioral 

317 group. Data from one participant was not correctly recorded, so the final cohort comprised 

318 nineteen participants (15 women, mean age = 21 years, sd = 1.47). We used the partial η² 

319 obtained for the main effect of Rule in the behavioral group to compute a sample size analysis 

320 for the fMRI group. To ensure 90% of power to detect a significant effect in a 2 x 2 repeated 

321 measures ANOVA at the 5% significance level based on this measure of effect size, 

322 MorePower(71) estimated that we would need a sample size of at least 16 participants. 

323 However, considering i) that we expected participants to perform worse inside of the fMRI 

324 scanner, and ii) the recommendation that at least 30 participants should be included in an 

325 experiment in which the expected effect size is medium to large(72), we finally decided to 

326 double the recommended sample size for the fMRI experiment. The fMRI group thus 

327 consisted of 31 participants (20 women, mean age = 23 years, sd = 3.62) recruited at the 

328 Universidad de Granada. All participants were right-handed native Spanish speakers and self-

329 reported no history of neurological or auditory problems. Participants in the fMRI group were 

330 cleared for MRI compatibility. The study was approved by the ethics committee of the 

331 Universitat de Barcelona and the ERC ethics scientific office and was conducted in accordance 

332 with the Declaration of Helsinki. Participation was remunerated and proceeded with the written 

333 informed consent of all participants.

334 Rule Learning Paradigm

335 Two different artificial languages were used in the rule-learning task. Each language comprised 

336 twenty-eight bi-syllabic (consonant-vowel-consonant-vowel) pseudo-words (henceforth, words). 

337 Words were created using Mbrola speech synthesizer v3.02b (Dutoit et al. 1996) through 

338 concatenating diphones from the Spanish male database ‘es1’ (http://tcts.fpms.ac.be/synthesis/) 

339 at a voice frequency of 16 KHz. The duration of each word was 385ms. Words were combined 

340 to form three-word phrases with 100ms of silence inserted between words. Phrase stimuli were 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.28.428582doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.28.428582
http://creativecommons.org/licenses/by/4.0/


15

341 presented using the software Presentation® (Neurobehavioral Systems) via Sennheiser® over-

342 ear headphones (pilot group) and MRI-compatible earphones (SensimetricsTM, Malden, MA, 

343 USA; fMRI group). 

344 The learning phase consisted of a Rule block and a No Rule block, each employing a different 

345 language. The order of blocks was counterbalanced between participants. We also 

346 counterbalanced the languages assigned to Rule and No Rule blocks. The Rule block consisted 

347 of 72 rule phrases (phrases with dependencies) whereby the initial word (A) was 100% 

348 predictive of the last word (C) of the phrase. We used two different dependencies (A1_C1 and 

349 A2_C2) presented over 18 different intervening (X) elements to form AXC-type phrases. 

350 Twelve of the 18 X elements were common to both dependencies, while the remaining 6 were 

351 unique to each dependency. These 36 rule phrases were presented twice over the Rule block, 

352 making a total of 72 AXC-type rule phrases issued in pseudo-random order. The probability of 

353 transitioning from a given A element to a particular X was therefore 0.056. Phrases in the No 

354 Rule block were made out of the combination two X elements and a final C element (either C1 

355 or C2, occurring with equal probability). Note that, while C elements could be predicted with 

356 100% certainty in the Rule block, these could not be predicted from the previous X elements in 

357 the No Rule block. X elements were combined so that each X word had an equal probability to 

358 appear in first and second position but never twice within the same phrase. Forty-eight no rule 

359 phrases were presented twice over the No Rule block, making a total of 96 pseudo-randomized 

360 XXC-type no rule phrases. Each three-word phrase, in both Rule and No Rule blocks, was 

361 considered a trial. A recognition test was issued at the end of each block to assess offline 

362 learning (see Supplementary Information for further details).

363 To obtain an online measure of incidental learning, participants were instructed to detect, as 

364 fast as possible via a button press, the presence or absence of a given target word. The target 

365 word for each participant remained constant throughout the block and was no other than one 

366 of the two C elements of the language (C1 or C2, counterbalanced). A written version of the 

367 participant’s target word was displayed in the middle of the screen for reference throughout the 
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368 entire learning phase. Importantly, participants were not informed about the presence of rules, 

369 so this word-monitoring task was in essence orthogonal to rule-learning. Yet, if incidental 

370 learning of the dependencies occurred over trials in the Rule block, faster mean reaction times 

371 should be observed for this block compared to the No Rule block where the appearance or 

372 non-appearance of the target word could not be anticipated from any of the preceding 

373 elements. 

374 Participants in the behavioral group indicated the detection or non-detection of the target word 

375 by pressing the left and right arrow keys of the computer keyboard, respectively. They were 

376 required to use their left index finger to press the left arrow key, and the right index finger to 

377 press the right arrow key. Participants in the fMRI group responded using the buttons 

378 corresponding to thumb and index fingers in an MRI compatible device held in their right 

379 hand. Response buttons were not counterbalanced for either group. Inter-trial interval was fixed 

380 at 1000ms in the pilot study and jittered (with pseudo-random values between 1000 and 

381 3000ms) for testing during fMRI acquisition. At the end of a given phrase, a maximum of 

382 1000ms was allowed for participants to respond. Reaction times were calculated from onset of 

383 the last word in the phrase until button press. Only trials with correct responses were entered 

384 into subsequent analyses. Participants’ Rule Effects were calculated as the mean reaction time 

385 difference between no rule and rule trials. A repeated-measures ANOVA on participants’ 

386 reaction time data with within-subjects factors Rule (Rule/No Rule) and Target (Target/No 

387 Target) and Order as a between-subjects factor was initially performed to discard block order 

388 effects. A repeated-measures ANOVA with factors Rule (Rule/No Rule) and Target (Target/No 

389 Target) was subsequently performed to assess the statistical significance of rule learning. 

390 Temporal Difference model 

391 We modelled subjects’ learning of the dependencies using a Temporal Difference (TD) 

392 model(17,18). Drawing from earlier models of associative learning, such as the Rescorla-

393 Wagner (RW) model(35), the main assumption of TD models is that learning is driven by a 
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394 measure of the mismatch between predicted and actual outcome(17,18,37,73) (i.e., prediction 

395 error (P.E.). This scalar quantity is computed as:

396 ∂ (t) = o (t) – p (t-1) (equation 1)

397 where ∂ (t) is the P.E. term at a given time-point t within a trial, which amounts to the 

398 discrepancy between the outcome o at that time-point, and the prediction p at the previous 

399 time-point (t-1). 

400 Computationally, learning through TD is therefore conceptualized (and modelled) as 

401 prediction learning(37), where predictions p at each time-step are updated according to: 

402 p (t) = p (t-1) + α · ∂ (equation 2) 

403 where α is a free parameter that represents the learning rate of the participant and determines 

404 the weight attributed to new events and the P.E. they generate(17). 

405 One of the advantages of TD models over simpler models of learning, such as the RW, is that 

406 they account for the sequence of events leading to an outcome, rather than treating each trial as 

407 a discrete temporal event. That is, although each trial for the participant (i.e., each three-word 

408 phrase) was equivalently treated as a trial for the TD model, model updates occurred at the 

409 presentation of each individual element (see below). TD models are thus sensitive to the 

410 precise temporal relationship between the succession of predictions and outcomes that take 

411 place in a learning trial(17). Note that this is particularly valuable in trying to account for the 

412 learning of non-adjacent dependencies as distinct from adjacent ones, making a TD model 

413 preferable in such cases. This feature is implemented as a temporal discounting factor, this is an 

414 additional free parameter γ that represents the devaluation of predictions that are more distant 

415 from the outcome(44,74). Thus, upon ‘hearing’ the final element of a rule (AXC) phrase, the 

416 prediction from the initial element A was updated according to:

417 p (A,t) = p (A,t-1) + α · ∂  · γ (equation 3)
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418 To obtain the free parameters α and γ for each participant, their reaction times were 

419 normalized between 0 and 1 by the function 1 ./ (1 + exp(zRTs)). We then selected the α and γ 

420 values that produced the minimum Log-Likelihood Estimate (LLE), indicating the best possible 

421 fit between the model predictions and the participant’s transformed RTs. For this, we used 

422 Matlab®’s (Matlab® R2017 by Mathworks®) fmincon function, which implements a Nelder-

423 Mead simplex method(75).  The model was then run for each block (Rule and No Rule) 

424 separately, from which trial-wise prediction (p(A,t) and p(X,t)) values for the different phrase 

425 elements A and X (resulting in matrices P(A) and P(X), respectively) were computed. We 

426 assigned o a value of 1 for target outcomes at the end of a trial, and a value of -1 for no target 

427 outcomes. Note that the sign choice represents a convenient yet arbitrary means to distinguish 

428 target and no target outcomes within the same model. This could have been inverted (o (target) 

429 = - 1, o (no target) = 1) with no difference in the model’s results. Following convention(37), the 

430 P.E. at the presentation of the second element of a phrase (X) was always computed as the 

431 difference between the values of P(X,t) and P(A,t). Finally, it is important to note that, at the 

432 time element A is presented, it is not possible to differentiate the prediction’s value from the 

433 P.E. the same element A elicits. The reason is that, according to TD models, all events in a trial 

434 will elicit a P.E.. Thus, the P.E. for the initial (unpredicted) element (A) will be ∂ (A) = p (A) – 

435 p (baseline) which, given that p (baseline) = 0, renders ∂ (A) = p (A)(37). This is therefore 

436 crucial in the interpretation of the reported brain activity related to this parameter (see main 

437 text). 

438 To illustrate the consistency between participants’ reaction times and model predictions, both 

439 which we assume to be proxies for statistical rule-learning, we plotted the development of P(A) 

440 computed by the model (inverted as 1-P(A)) averaged across participants against the mean 

441 reaction times of the participants over trials in the Rule block (both z-scored; main text Fig. 1 

442 and Fig. 2). 

443 To assess the fit of the TD model, we computed for each participant the Log-Likelihood Ratio 

444 (LLR) between the TD model’s LLE and the LLE produced by a model predicting at chance. 
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445 To make fit assessment more intuitive, a Model Fit Index was then calculated as 1 – LLR, 

446 where higher Model Fit Index values equate to a better fit. The overall fit of the TD model was 

447 assessed at the group level by averaging across participants Model Fit Index. 

448 fMRI acquisition and apparatus

449 The rule-learning task comprised a single run with 830 volumes. Functional T2*-weighted 

450 images were acquired using a Siemens Magnetom TrioTim syngo MR B17 3T scanner and a 

451 gradient echo-planar imaging sequence to measure blood oxygenation level dependent (BOLD) 

452 contrast over the whole brain [repetition time (TR) 2000ms, echo time (TE) 25ms; 35 slices 

453 acquired in descending order; slice-thickness: 3.5 mm, 68 × 68 matrix in plane resolution = 3.5 

454 × 3.5 mm; flip angle = 180 º]. We also acquired a high-resolution 3D T1 structural volume 

455 using a magnetization-prepared rapid-acquisition gradient echo (MPRAGE) sequence [TR = 

456 2500ms, TE = 3.69ms, inversion time (TI) = 1100ms, flip angle = 90°, FOV = 256 mm, spatial 

457 resolution = 1 mm3/voxel].

458 fMRI preprocessing and analysis

459 Data were preprocessed using Statistical Parameter Mapping software (SPM12, Welcome Trust 

460 Centre for Neuroimaging, University College, London, UK, www.fil.ion.ucl.ac.uk/spm/). 

461 Functional images were realigned, and the mean of the images was co-registered to the T1. The 

462 T1 was then segmented into grey and white matter using the Unified Segmentation 

463 algorithm(76) and the resulting forward transformation matrix was used to normalize the 

464 functional images to standard Montreal Neurological Institute (MNI) space. Functional 

465 volumes were re-sampled to 2 mm3 voxels and spatially smoothed using an 8 mm FWHM 

466 kernel.

467 Several event-related design matrices were specified for convolutions with the canonical 

468 hemodynamic response function. Trial onsets were always defined as the onset of the first word 

469 of the phrase. To identify brain regions related to the trial-by-trial development of subjects’ 

470 predictions/prediction errors, a model with the conditions Rule Target, Rule No Target, No 
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471 Rule Target and No Rule No Target, and all offline test conditions was specified at the first 

472 level, including a parametric modulator (a vector) corresponding to the trial-wise 

473 prediction/prediction error (p(A)) for each of the conditions of interest (Rule Target, Rule No 

474 Target, No Rule Target and No Rule No Target). For each participant, the contrasts Rule P(A) 

475 vs implicit and Rule P(A) vs. No Rule P(A) were calculated and entered into corresponding 

476 one-sample t-tests. An additional model was specified with the aim of removing response 

477 related activity from the P(A)-modulated regressor. This included the inverted reaction time per 

478 trial as the first parametric modulator for each condition and the p(A) as its second parametric 

479 modulator. Note that the reaction times for the Rule block will relate to rule learning as well as 

480 motor activity, while the reaction times corresponding to the No Rule block will predominantly 

481 relate to motor responses. For this reason, to identify brain regions modulated by the P(A) in 

482 the Rule block while extracting response-related motor activity, for each participant we 

483 calculated the contrast Rule P(A) vs No Rule RTs in addition to the more conventional contrast 

484 Rule P(A) vs Rule RTs, entering these into one-sample t-tests at the second level. 

485 In all cases, data were high-pass filtered (to a max. of 1/90 Hz). Serial autocorrelations were also 

486 estimated using an autoregressive (AR(1)) model. We additionally included, in all the models 

487 described above, the movement parameter estimates for each subject computed during 

488 preprocessing to minimize the impact of head movement on the data. We used the Automated 

489 Anatomical Labelling Atlas(77) included in the xjView toolbox 

490 (http://www.alivelearn.net/xjview8/) to identify anatomical and cytoarchitectonic brain areas. 

491 Group results are reported for clusters at a p < 0.001 FWE-corrected threshold at the cluster 

492 level with a minimum cluster extent of 20 voxels and an additional p < 0.001 uncorrected 

493 threshold at the voxel level.
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502 Supplementary Information Captions

503 Figure S1. Plot of (A) Behavioral group and (B) fMRI group participants’ mean reaction times (blue) against the 

504 Rescorla-Wagner model’s estimates of the development of predictions over learning (red; inverted as 1-P(A) before 

505 averaging and z-scoring for display purposes). Vertical bars are the SD. RTs = reaction times. Reaction times were 

506 initially normalized between 0 and 1 (Methods) and are plotted with the model prediction estimates in z-score values. 

507 P(A) = Rescorla-Wagner model’s predictions from the initial word (A) of the dependencies.

508 Figure S2. Brain regions related to prediction learning (Rule P(A) – No Rule P(A)). Activity in the Basal Ganglia 

509 (bilateral caudate nuclei, putamen, and ventral striatum; see Table S2) was modulated the trial-by-trial development of 

510 predictions (P(A)) as estimated by the TD model (contrast: Rule – No Rule). Results are reported for clusters FWE-

511 corrected at p < 0.001 at the cluster level (minimum cluster size = 20), with an additional p < 0.001 uncorrected 

512 threshold at the voxel level. Neurological convention is used with MNI coordinates shown at the bottom right of each 

513 slice.

514 Figure S3. Brain regions related to prediction learning (Rule P(A) – No Rule RTs). Subtracting the activity for the No 

515 Rule block modulated by participants’ reaction times from the P(A)-modulated Rule block activity had virtually no 

516 effect on Basal Ganglia activity estimates (see Table S3). Significant centered on the caudate nuclei and the right 

517 putamen. Results are reported at a p < 0.001 FWE-corrected threshold at the cluster level with 20 voxels of minimum 

518 cluster extent, with an additional uncorrected p < 0.001 threshold at the voxel level. Neurological convention is used 

519 with MNI coordinates shown at the bottom right of each slice.

520 Figure S4. Brain regions related to prediction learning (Rule P(A) – Rule RTs). Significant activations by the contrast 

521 between P(A)-modulated Rule and RT-modulated Rule activity (see also Table S4) were found in a widespread left-

522 lateralized network of areas, including a large portion of the inferior frontal gyrus, parts of the pre- and post-central 

523 gyri, and of the superior temporal gyrus in and around the left auditory cortex. Interestingly, bilateral caudate nuclei 

524 were also statistically significant along with a small portion of the thalamus. Results are reported for clusters FWE-

525 corrected at p < 0.001 at the cluster level (minimum cluster size = 20), with an additional p < 0.001 uncorrected 

526 threshold at the voxel level. Neurological convention is used with MNI coordinates shown at the bottom right of each 

527 slice.
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528 Table S1. Whole brain fMRI Rule P(A)-modulated activity vs. implicit baseline. Group-level fMRI local maxima for 

529 the P(A)-modulated Rule against implicit baseline contrast (see also red-yellow regions in Fig. 3, main text). Results are 

530 reported for clusters FWE-corrected at p < 0.001 at the cluster level (minimum cluster size = 20), with an additional p 

531 < 0.001 uncorrected threshold at the voxel level. MNI coordinates were used. BA, Brodmann Area.

532 Table S2. Whole brain fMRI P(A)-modulated activity for Rule vs. No Rule. Group-level fMRI local maxima for the 

533 P(A)-modulated Rule minus P(A)-modulated No Rule contrast (see also red-yellow regions in Fig. S2). Results are 

534 reported for clusters FWE-corrected at p < 0.001 at the cluster level (minimum cluster size = 20), with an additional p 

535 < 0.001 uncorrected threshold at the voxel level. MNI coordinates were used. BA, Brodmann Area.

536 Table S3. Whole brain fMRI activity for the P(A)-modulated Rule vs. RT-modulated No Rule contrast. Group-level 

537 fMRI local maxima for the P(A)-modulated Rule minus RT-modulated No Rule contrast (see also red-yellow regions 

538 in Fig. S3). Results are reported at a p < 0.001 FWE-corrected threshold at the cluster level with 20 voxels of minimum 

539 cluster extent, with an additional uncorrected p < 0.001 threshold at the voxel level. MNI coordinates were used. BA, 

540 Brodmann Area.

541 Table S4. Whole brain fMRI Rule P(A)-modulated activity vs. Rule RT-modulated activity. Group-level fMRI local 

542 maxima for the P(A)-modulated Rule minus RT –modulated Rule contrast (see also red-yellow regions in Fig. S4). 

543 Results are reported for clusters FWE-corrected at p < 0.001 at the cluster level (minimum cluster size = 20), with an 

544 additional p < 0.001 uncorrected threshold at the voxel level. MNI coordinates were used. BA, Brodmann Area.

545 Text S1. Offline Recognition Test. Following each block, participants’ knowledge of the rules was assessed via a 

546 recognition test. Participants were presented with correct sentences (phrases that conformed the rules) and incorrect 

547 sentences (phrases that violated the rules). In half the trials, incorrect sentences consisted of violations of the A_C 

548 dependencies where A and C elements maintained their correct order within the phrase but belonged to different rule 

549 structures (i.e., A1xC2, A2xC1). In the other half, incorrect sentences contained order violations, where A and C 

550 elements from a dependency swapped positions (i.e., C1xA1 and C2xA2). The complete offline test consisted in a 

551 total of 48 test phrases (24 per dependency). Participants were required to discriminate phrases that could belong to 

552 the previously heard language from phrases that could not by pressing the appropriate button. A maximum of 1500 

553 ms was allowed to respond, after which there was a jittered interval (1-3 secs.) before the next trial began. Participants’ 

554 ability to discriminate rule items from violations was assessed by computing d prime scores (d′) from their responses. 

555 For each participant, the proportion of hits (i.e., yes responses to correct phrases) and false alarms (i.e., yes responses 

556 to incorrect phrases) was used to calculate the d′ score. Hit and false alarm rates of zero or one were corrected 

557 according to Macmillan and Kaplan (1985). We computed two distinct d’ scores by using false alarms to 1) order 

558 violations (d’ Cat) and 2) to dependency violations (d’ Dep). These scores were then submitted to one-sample t-tests 

559 against 0 to determine statistical significance. After a Rule block, the test for the corresponding language’s Rule block 
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560 was administered. After a No Rule block, the test for the corresponding language’s Rule block was administered. We 

561 thus expected learning of the language’s specific dependencies (significant d’ Dep) only in the Rule block but learning 

562 of positional information (significant d’ Cat) after both Rule and No Rule blocks. Participants from both groups 

563 exhibited a similar pattern of results suggesting that they were able to significantly discriminate correct phrases from 

564 dependency violations only after the Rule block (Behavioral group Rule block: mean d’ Dep = 0.92, std = 1.46, t(21) 

565 = 2.97, p < 0.01; Behavioral group No Rule block: mean d’ Dep = 0.14, std = 0.52, t(21) = 1.3, p > 0.2; fMRI group 

566 Rule block: mean d’ Dep = 0.36, std = 0.96, t(30) = 2.1, p < 0.04; fMRI group No Rule block: mean d’ Dep = 0.12, 

567 std = 0.49, t(30) = 1.3, p > 0.19) and correct phrases from category violations after both Rule and No Rule blocks 

568 (Behavioral group Rule block: mean d’ Cat = 1.74, std = 1.19, t(21) = 6.87, p < 0.001; Behavioral group No Rule block: 

569 mean d’ Cat = 1.82, std = 1.18, t(21) = 7.23, p < 0.001; fMRI group Rule block: mean d’ Cat = 1.36, std = 1.12, t(30) = 

570 6.75, p < 0.001; fMRI group No Rule block: mean d’ Cat = 1.37, std = 1.01, t(30) = 7.55, p < 0.001).
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