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Abstract

In genome-wide association studies (GWAS) it is now common to search for, and find,

multiple causal variants located in close proximity. It has also become standard to ask

whether different traits share the same causal variants, but one of the popular methods

to answer this question, coloc, makes the simplifying assumption that only a single causal

variant exists for any given trait in any genomic region. Here, we examine the potential

of the recently proposed Sum of Single Effects (SuSiE) regression framework, which can be

used for fine-mapping genetic signals, for use with coloc. SuSiE is a novel approach that

allows evidence for association at multiple causal variants to be evaluated simultaneously,

whilst separating the statistical support for each variant conditional on the causal signal

being considered. We show this results in more accurate coloc inference than other pro-

posals to adapt coloc for multiple causal variants based on conditioning or masking. We

therefore recommend that coloc be used in combination with SuSiE to optimise accuracy of

colocalisation analyses when multiple causal variants exist.

Introduction

Colocalisation is a technique used for assessing whether two traits share a causal variant in

a region of the genome, typically limited by LD. In its original form, it made the simplifying

assumption that the region harboured at most one causal variant per trait[1]. The approach

proceeds by enumerating all variant-level hypotheses - the possible pairs of causal variants

(or none) for the two traits - and the relative support for each in terms of Bayes factors.

Each one of these combinations is associated to exactly one global hypothesis

H0 : no association with either trait in the region

H1 : association with trait 1 only

H2 : association with trait 2 only

H3 : both traits are associated, but have different causal variants

H4 : both traits are associated and share the same causal variant
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The Bayes factors for each of these global hypotheses may be calculated by summing the

related Bayes factors for each variant-level hypothesis, and simple combination with prior

probabilities of each hypothesis allows us to calculate posterior probabilities.

This simple summation is enabled by the single causal variant assumption, which implies

that each pair of variants being causal are mutually exclusive events. However, the assump-

tion is unrealistic, as multiple causal variants may exist in proximity. A suite of Bayesian

fine mapping methods have been developed recently which calculate posterior probabilities

of sets of causal variants for a given trait[2, 3, 4]. However, the marginal posterior proba-

bilities calculated from these are no longer mutually exclusive events, so they could not be

easily adapted to the colocalisation framework. Instead, all possible combinations of models

between two traits could be considered, but this combinatorial problem is computationally

expensive[5].

The single causal variant assumption was recently relaxed instead by adopting an ap-

proach of repeatedly conditioning on the top signal to identify secondary signals, and at-

tempting to colocalise each pair of signals between the traits[6]. This allows the simple

combination of Bayes factors through summation, but explicitly assumes that the causal

variants are known in the conditioning. This is both untrue and runs counter to the goal

of colocalisation which is to assess the chance of causal variant sharing without needing to

specify causal variant identity - after all, if we knew the identity of the causal variant(s),

no analysis would be required. Further, the stepwise regression approach upon which con-

ditioning is based is also known generally to produce potentially unreliable results[7], a

phenomenon that can be exacerbated by the extensive correlation between genetic variants

caused by linkage disequilibrium (LD)[5]. Thus, this solution remains unsatisfactory.

A related approach, masking, has also been proposed, which instead of conditioning on

the most likely causal variant, simply hides that variant and those in some LD with it[6]. This

approach was developed to enable coloc to be applied to multiple causal variant datasets

without necessitating aligning alleles in the GWAS datasets with those in the reference

dataset used to estimate an LD matrix, but suffers from the same issues as conditioning.

Recently, the Sum of Single Effects (SuSiE) regression framework[8] was developed which

reformulates the multivariate regression and variable selection problem as the sum of indi-

vidual regressions each representing one causal variant of unknown identity. Conditional on

the regression being considered, the variant-level hypotheses are again mutually exclusive.

This allows the distinct signals in a region to be considered simulataneously, and enables

quantification of the strength of evidence for each variant being responsible for that sig-

nal. Here we describe the adaptation of coloc to use the SuSiE framework and demonstrate

improved efficacy over the previously proposed approaches, conditioning and masking.

Methods

Adaptation of coloc approach

SuSiE returns a matrix of posterior probabilities, with rows corresponding to regressions,

and columns to variants. Variant-level Bayes factors for each detected signal can be back-
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calculated by noting that

prior odds for variant i to be causally associated =
πi

1−
∑
πi

posterior odds for variant i to be causally associated =
Pi

P0

Bayes factor comparing hypotheses that variant i is

causally associated to not causally associated =
posterior odds for variant i

prior odds for variant i

where πi is the prior probability of causality for variant i which may be fixed or estimated

internally by SuSiE, Pi is the posterior probability that variant i is causal, calculated by

SuSiE, and P0 is the posterior probability that there is no association for this regression

(H0). Typically we do not distinguish a priori between variants, and πi = π for all i. The

vectors of Bayes factors thus defined (one vector per regression for which P0 is small) can

then be analysed in the standard coloc approach, for every pair of regressions across traits.

The new coloc.susie function in the coloc package (https://github.com/chr1swallace/

coloc/tree/susie) takes a pair of summary datasets in the form expected by other coloc

functions, runs SuSiE on each (by calling functions in the susieR package) and performs

colocalisation as described.

Decreasing the computational burden

While SuSiE has been shown to have greater accuracy than other fine mapping approaches[8],

it becomes computationally expensive as the number of variants in a region increases because

the number of potential models increases exponentially. Both coloc and fine mapping require

dense genotyping data to make an accurate assessment, so computational complexity can

become a considerable burden in larger genomic regions. In such regions, we propose that

the fine mapping result can be approximated by running SuSiE only on a subset of variants

with some weak evidence for association (eg excluding those with p values above 0.5), and

setting the Bayes factors at those variants not considered to the minimum Bayes factor over

all other variants. We use the term “trimming” to describe this approach hereafter.

Simulation strategy

We examined the performance of the approximation described above to decrease the com-

putational burden, and of using SuSiE for colocalisation by simulation. To investigate the

validity of the approximation, we repeatedly simulated GWAS summary data for a sin-

gle trait in small genomic regions (1000 SNPs) by resampling haplotypes from public 1000

Genomes data. We simulated 1000 such examples, and analysed each dataset twice, once

with the approximation and once using all SNPs, and calculated the difference between pos-

terior inclusion probabilities (PIP, the probability that the variant is included in the true

multi-SNP causal model) at the (simulated) causal variants from each run.

For colocalisation, we simulated data for two traits in the same way, such that each

trait had one or two causal variants and each pair of traits shared zero, one or two causal

variants. We simulated 10,000 examples from each collection, with each example analysed

independently. Analysis compared different approaches:

1. single causal variant coloc analysis of every pair of traits
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2. multiple causal variant coloc analysis using a conditioning approach to allow for mul-

tiple causal variants

3. multiple causal variant coloc analysis using a masking approach to allow for multiple

causal variants

4. multiple causal variant coloc analysis using SuSiE to allow for multiple causal variants,

including data trimming based on |Z| score

Recall that coloc does not directly identify the causal variant, but it does provide posterior

probabilities for each variant to be considered causal, given that H4 is true. We labelled

each comparison considered by coloc according to which pair of causal variants most closely

corresponded to according to the r2 between the causal variants and the lead trait variant

reported by coloc (that with the largest Bayes factor). If r2 between the reported variant

and a specific causal variant j was > 0.5 and it was higher than the r2 between the reported

variant and any other causal variant, the reported variant was labelled “j”, otherwise “un-

known”. We compared the average posterior probability profiles between methods, stratified

according to this labelling scheme.

Results

First we assessed the impact of trimming data on the accuracy and speed of SuSiE. We

found that trimming had a very minimal effect on PIP estimates at the causal variants in

single causal variant data sets when SNPs with |Z| < 1 or lower were trimmed, but that

errors begain to accumulate on larger regions (3000 SNPs) with 2 causal variants, where a

threshold of |Z| < 0.5 might be preferred (Fig 1). Either of these thresholds reduced the

median time for a SuSiE run per region more than ten fold (Fig 2).

The results of the coloc simulation study are given in Supplementary Table 1, and pre-

sented graphically in Fig 3. We found that inference with SuSiE coloc was broadly equivalent

to that with other approaches when both traits really did contain only a single causal variant

(top two row sets of Fig 3). When either one or both traits had two causal variants (bottom

two row sets of Fig 3), all methods apart from single coloc were broadly similar in terms of

favouring H4 when comparing truly colocalising signals (“AA” or “BB” comparisons). Sin-

gle coloc tended to equivocate between H3 and H4 when testing AB-like signals (ie where

the peak signals in each trait related to distinct causal variants) which should be inferred

H3. This is a known feature of coloc, which may detect the colocalising signal even when

additional non-colocalising signals are present,[1] and as such is not strictly an error, but

does produce inconclusive results with posterior support split between H3 and H4. Either

conditioning or masking also tends to have this pattern, either because the AB-like signal

is tested first and the colocalising signal has not been conditioned out, or because the colo-

calising signal was conditioned out but used an imperfect tag of the true causal variant to

condition on, leaving a shadow of the truly colocalising signal.

SuSiE seems to resolve this issue, with AB-like comparisons clearly having strongest

posterior support for H4. Interestingly, results are similar across the range of different

possible thresholds for trimming, with trimming producing a slight improvement in coloc

accuracy, particularly in regions with more SNPs.
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Figure 1: Histograms of the difference in PIP estimates at the causal variants between anal-
ysis with the full model and data trimmed to |Z| above some threshold. The percentage
of observations falling in the central column corresponding to the smallest PIP difference of
−0.05 < PIP < 0.05 is shown. We include a threshold of 0 to demonstrate that results are con-
sistent across multiple runs with the same full data. Datasets differ in the number of SNPs in a
region (1000, 2000, 3000), and the number of causal variants (“CV”, 1 or 2). “variant” indicates
which of the two causal variants the PIP is estimated for in the case of 2 causal variants.
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Figure 2: Time to run SuSiE per region in relation to the number of SNPs in the region (1000,
2000 or 3000), the number of causal variants (1 or 2) and the threshold used to trim SNPs by
their —Z— scores. The point shows the median time over 1000 simulations, and the vertical
range its interquartile range.
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Figure 3: Average posterior probability distributions in simulated data. The four classes of
simulated datasets are shown in three rows, with the scenario indicated in the left hand column.
For example, the top row shows a scenario where traits 1 and 2 have distinct causal variants A
and B. Within each scenario, there are three rows, corresponding to 1000, 2000 or 3000 SNP
regions. Columns indicate the different analysis methods, with susie x indicating that SuSiE was
run with data trimmed at |Z| < x. For any method except “single”, more than one colocalisation
test may be performed. We estimated which pair of variants were being tested according to the
LD between the variant with highest fine mapping posterior probability of causality for each
trait and the true causal variants A and B. If r2 > 0.8 between the fine mapped variant and
true causal variant A, and r2 with A was higher than r2 with B, we labeled the test variant A,
and vice versa for B. Where at least one test variant could not be unambigously assigned, we
labelled the pair “?”. The shaded proportion of each bar corresponds to the average posterior
for the indicated hypothesis, and the total height of each bar has been scaled to the proportion
of comparisons that were run, out of those that could have been conducted, and typically does
not reach 1 because there is not always power to perform all possible tests.
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Discussion

While coloc has been a popular method for identifying sharing of causal variants between

traits, the common simplifying assumption of a single causal variant has been criticised,

because it does not accord with findings that causal variants for the same trait may cluster

in location (e.g. because they act via the same gene)[9]. Using the new SuSiE framework

appears to resolve this issue better than the previously proposed conditional approach. It

allows multiple signals to be distinguished, and then colocalisation analysis conducted on

all possible pairs of signals between the traits.

Despite the adoption of a novel iterative procedure to fit the SuSiE model, the proce-

dure is still slow for large regions with many SNPs, which can be a barrier to its adoption

for a technique like coloc which has always boasted speed as an advantage. As only SNPs

with some posterior support for causality can contribute to colocalisation comparisons, we

considered approximating the SuSiE posterior by using a trimmed set of data, discarding

SNPs with |Z| scores below some small threshold, on the assumption that a causal SNP with

detectable association should produce a Z score of reasonable magnitude. (For reference,

whilst we only consider discarding SNPs with |Z| < 1.5 at most, the standard genome-wide

significance threshold of p < 5×10−8 corresponds to |Z| > 5.45). Thus, this approximation

makes the assumption that true causal variants will have at least some weak marginal evi-

dence of association, and we note that it is possible to construct examples which will violate

this assumption, for example if two causal variants in strong LD but with opposite directions

of effects exist. Given the trend for more limited differences in PIP estimates with smaller

trimming thresholds and the slightly improved performance of coloc with larger thresholds,

we suggest a threshold of |Z| < 1 is acceptable to allow SuSiE coloc to run at speed in

larger regions, but leave the threshold as a user-set parameter which we recommend should

be reported along with any results. Coloc benefits from comparing posterior probabilities

across SNPs for two traits which may enable some robustness against inaccuracies. However,

this does apply to single trait fine mapping and therefore our results do not imply that in

general SuSiE fine mapping studies will benefit from trimming data.

Availability

Code to perform the simulations may be found at https://github.com/chr1swallace/

coloc-susie-paper.

A version of coloc including SuSiE is at https://github.com/chr1swallace/coloc/

tree/susie.
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