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Abstract 
New, rapid, accurate, scalable, and cost-effective species discovery and delimitation 
methods are needed for tackling “dark taxa”, that we here define as clades for which <10% 
of all species are described and the estimated diversity exceeds 1000 species. Species 
delimitation for these taxa should be based on multiple data sources (“integrative taxonomy”) 
but collecting multiple types of data risks impeding a discovery process that is already too 
slow. We here develop explicit methods to avoid this by applying Large-scale Integrative 
Taxonomy (LIT). Preliminary species hypotheses are generated based on inexpensive data 
that are obtained quickly and cost-effectively in a technical exercise. The validation step is 
then based on a more expensive type of data that are only obtained for specimens selected 
based on objective criteria. We here use this approach to sort 18 000 scuttle flies (Diptera: 
Phoridae) from Sweden into 315 preliminary species hypotheses based on NGS barcode 
(313bp) clusters. These clusters were subsequently tested with morphology and used to 
develop quantitative indicators for predicting which barcode clusters are in conflict with 
morphospecies. For this purpose, we first randomly selected 100 clusters for in-depth 
validation with morphology. Afterwards, we used a linear model to demonstrate that the best 
predictors for conflict between barcode clusters and morphology are maximum p-distance 
within the cluster and cluster stability across different clustering thresholds. A test of these 
indicators using the 215 remaining clusters reveals that these predictors correctly identify all 
clusters that conflict with morphology. The morphological validation step in our study 
involved only 1 039 specimens (5.8% of all specimens), but a newly proposed simplified 
protocol would only require the study of 915 (5.1%: 2.5 specimens per species), as we show 
that clusters without signatures of incongruence can be validated by only studying two 
specimens representing the most divergent haplotypes. To test the generality of our results 
across different barcode clustering techniques, we establish that the levels of conflict are 
similar across Objective Clustering (OC), Automatic Barcode Gap Discovery (ABGD), 
Poisson Tree Processes (PTP) and Refined Single Linkage (RESL) (used by Barcode of Life 
Data System (BOLD) to assign Barcode Index Numbers (BINs)). OC and ABGD achieved a 
maximum congruence score with morphology of 89% while PTP was slightly less effective 
(84%). RESL could only be tested for a subset of the specimens because the algorithm is 
not public. BINs based on 277 of the original 1 714 haplotypes were 86% congruent with 
morphology while the values were 89% for OC, 74% for PTP, and 72% for ABGD.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.04.13.439467doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439467
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Introduction 
“I saw with regret, (and all scientific men have shared this feeling) that whilst the number of 
accurate instruments was daily increasing, we were still ignorant” 

― Alexander von Humboldt 

In a recent report, global reinsurance giant Swiss Re concluded that biodiversity and 
ecosystem services (BES) “underpin all economic activity in our societies globally…55% of 
global GDP is moderately or highly dependent on BES” (Swiss Re Institute 2020). At the 
same time, the world of ESG (Environmental, Social and Governance) investing has hit 
mainstream with biodiversity as a key topic (Kishan and Marsh 2021). Natural capital is 
reliant on biodiversity and ecosystem services that are, in turn, critically dependent on 
functionally diverse invertebrate groups like insects. They contribute a wide range of 
ecosystem services (Losey and Vaughan 2006), comprise over half of described species 
(Chapman 2009), and are hosts for millions of unique bacterial species, nematodes, and 
mites (Larsen et al. 2017). The economic value of insects in the United States alone is 
estimated to exceed 57 billion USD annually (Losey and Vaughan 2006). Insects may 
comprise most of the described species on earth and be critical to the functioning of our 
planet, but the described diversity constitutes only a small fraction of the true diversity. This 
highlights the need for completing one of the great incomplete tasks in science, an inventory 
of all of life. This mission requires the development of efficient tools for delimiting and 
identifying invertebrates, given that—despite centuries of study—most eukaryotic species 
remain unknown to science (Mora et al. 2011). We lack even a consensus estimate of the 
number of species on our planet, yet alone a clear picture of their abundances, composition, 
ranges, functions, and forms (Mora et al. 2011; Locey and Lennon 2016).  

The bulk of the planet’s unknown diversity is in neglected groups, some of which are so 
diverse that a reasonably precise estimate of true species numbers is currently impossible. 
Such clades used to be called “open-ended taxa” (Bickel 2009), but recently the term “dark 
taxa” is more commonly used, although it was originally coined for the growing number of 
sequences in GenBank that were not linked to formal scientific names (Page 2011, 2016). 
As used today, “dark taxa” refers to species-rich taxa of small body size for whom most of 
the species-level diversity is undescribed (Hausmann et al. 2020). Here, we accept the 
current usage, but also propose that it should only be applied to taxa for which the 
undescribed fauna is estimated to exceed the described fauna by at least one order of 
magnitude and the total diversity exceeds 1000 species. 
 
Dark taxa are so abundant that they should be included in any holistic biodiversity 
assessment. For example, we estimate that on average each of the 36 two-week Malaise 
trap samples from Sweden studied here included 1000 phorids. If 10 traps had been run for 
two weeks in each of the 450 000 km2 of Sweden, 4.5 billion specimens would have 
obtained which surely would have only been well below 1% of the living flies in the habitats 
given that the traps are only 1.1 m wide. This means that at any point in time, there must be 
well over a trillion phorids active in Sweden. They represent substantial biomass and have 
numerous albeit largely unknown roles in the country’s ecosystems. Any number of 
biological services may rely on phorids. This includes those species that live in the high-
latitude regions that are already witnessing visible effects of climate change; yet we know 
nothing about the natural history of these species. Contrast this with what we know about a 
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single charismatic insect species like the Large Blue butterfly (Phengaris arion), also 
resident in Sweden. Its distribution, life history, associations, and behaviours are all well 
documented, and this single species has been the subject of sustained conservation and 
reintroduction campaigns across multiple countries (Thomas 1995, Andersen et al. 2014). It 
is unlikely that the Large Blue is so critical to ecosystems that they will collapse without it, 
but the Large Blue is an important symbol of conservation biology, a charismatic taxon that 
resonates with us (Yong 2009). We are not arguing against the attention paid to such 
species, but we here emphasize is that we need a new field in zoology that focuses on the 
taxonomy, systematics, and ecology of dark taxa. The reason has been succinctly 
summarised by Curtis for microbes where he referenced another large blue: “For if the last 
blue whale choked to death on the last panda, it would be disastrous but not the end of the 
world. But if we accidentally poisoned the last two species of ammonia-oxidizers, that would 
be another matter. It could be happening now and we wouldn’t even know...” (Curtis 2006).  
 
Tackling these groups with traditional taxonomic techniques has been very slow because a 
single site can yield thousands of specimens belonging to hundreds of species (Puillandre et 
al. 2012; Srivathsan et al. 2019). Usually, most specimens belong to a handful of common 
species, making the discovery and identification of new or rare species much like finding a 
needle in the proverbial haystack. In other samples, the situation is more like finding a 
needle among many other needles, with high species numbers at more even abundances 
(Brown 2021). Examining samples using traditional techniques requires a great deal of time, 
expertise, and a particular skillset (slide mounting, dissections, etc). Additionally, the sheer 
quantity of species makes the task of recalling details of morphospecies difficult. Who can 
remember what species number 34 looked like by the time you get to morphospecies 
number 459? This is challenging even with voluminous notes, detailed drawings, and 
repeated referrals to voucher specimens. The result of these challenges has been “cherry-
picking”, where a few morphologically distinct and/or species-poor lineages within 
hyperdiverse taxa are targeted for description while the most diverse subclades remain 
unstudied. Unfortunately, this practice is of limited value for advancing the knowledge of dark 
taxa in the era of biodiversity decline. 

The proposal of DNA barcoding for the identification of organisms (Hebert et al. 2003) and 
DNA taxonomy (Tautz et al. 2003; Blaxter 2004; Vogler and Monaghan 2007) in the early 
2000s highlighted the potential of DNA sequences for accelerating species discovery and 
species identification. However, the widespread use of DNA barcodes remained too 
expensive for large-scale implementations until Sanger sequencing was replaced with 
various 2nd and 3rd generation sequencing technologies. Only recently have next generation 
sequencing barcodes (NGS barcodes) become sufficiently cheap and easy to obtain for truly 
reversing the traditional workflow of first sorting specimens with morphology and then 
collecting DNA sequences for a select subset of specimens later (Puillandre et al. 2012; 
Kekkonen and Hebert 2014; Wang et al. 2018; Yeo et al. 2020). The analysis of such large 
barcode datasets has revealed that 10-20% of all barcode clusters differ depending on the 
method and parameters used for molecular species delimitation (Yeo et al. 2020), and in 
some taxa incongruence can be much higher (Kekkonen and Hebert 2014). This is not 
surprising because a single short barcode marker contains a limited amount of information 
relevant to species boundaries (Kwong et al. 2012; Pentinsaari et al. 2016). This means that 
data for multiple character systems are needed for delimiting species (Integrative taxonomy: 
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Dayrat 2005; Padial and Miralles 2010; Schlick-Steiner et al. 2010; Puillandre et al. 2012; 
Ratnasingham and Hebert 2013; Zhang et al. 2013; Pante et al. 2015; Vitecek et al. 2017).  

Despite this recognised need, efficient quantitative approaches to integrative taxonomy are 
still underdeveloped. Integrative taxonomy has mostly used traditional morphospecies 
sorting followed by barcoding of a few representative specimens and then focused more on 
description than on efficient delimitation (Butcher et al. 2012; Riedel et al. 2013; Lücking et 
al. 2016). Alternatively, some authors have started to describe species based on COI 
clusters alone. However, this is known to yield incorrect boundaries for a significant number 
of species and this practice has thus been rejected by researchers who otherwise embrace 
molecular data for taxonomic purposes (Puillandre et al. 2012; Ratnasingham and Hebert 
2013; Zhang et al. 2013; Srivathsan et al. 2021). 

Large-scale integrative taxonomy involving DNA barcodes was first proposed by Puillandre 
et al. (2012) who obtained COI barcodes from 1000 specimens and derived primary species 
hypotheses using multiple molecular delimitation methods (Automated Barcode Gap 
Discovery and General Mixed Yule Coalescence Method). The cluster conflict between 
methods was visualised, and other data sources (nuclear, morphological, and geographic) 
were used to test the primary hypotheses. However, this raises the issue of what we call the 
“data conundrum” for the integrative taxonomy of dark taxa. Collecting multiple types of data 
for all specimens yields high quality species limits, but also dramatically slows down 
taxonomic progress, while acceleration is what is needed. Puillandre et al. (2012) used 
congruence between barcode clusters obtained with different molecular delimitation methods 
as a first indication of whether a primary species hypothesis was likely to be valid. However, 
this approach has the downside that misleading signal in the molecular data would not be 
detected because all molecular species delimitation methods would be likely to yield 
congruent barcode clusters. We here pursue a different approach. We demonstrate that one 
can use specific properties of barcode clusters (e.g., maximum intra-cluster p-distance) to 
predict conflict with morphology. The ability to predict conflict is then used to develop an 
explicit specimen subsampling scheme that allows for picking only a moderately small 
number of specimens for which the second type of data must be collected in order to test 
weak primary species hypotheses.  

Here, we propose Large-scale Integrative Taxonomy (LIT), a systematic approach to rapid 
species delimitation based on the reverse workflow and designed to handle dark taxa. The 
core goal of LIT is the use of multiple data sources for delimiting species without slowing 
down the overall species discovery and delimitation processes. This can be achieved by first 
generating preliminary species-level hypotheses based on data that can be acquired quickly 
and in semi-automated ways. Currently, the best choice is NGS barcodes because of the 
development of cost-effective high-throughput individual-specimen sequencing techniques 
(Hebert et al. 2017; Srivathsan et al. 2018, 2019; Wang et al. 2018). However, it appears 
likely that in the future other types of data (e.g., high throughput imaging) could replace or 
complement NGS barcoding. The species-level hypotheses derived from these primary data 
are then used to physically sort specimens and guide the selection of specimens for follow-
up study using a second type of data to validate the preliminary species hypotheses 
(Puillandre et al. 2012). The second type of data can be more expensive and/or require more 
highly skilled manpower because they only need to be acquired for a small subset of 
specimens. Typical examples of such data would be morphology or DNA sequences from 
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nuclear markers. Critically, LIT identifies clusters generated with the primary data source that 
are most likely to be problematic, allowing efforts to be focused where needed.  

Here, we illustrate how LIT can be used for solving a taxonomic problem that was too large 
for the application of traditional techniques. This would have meant that these samples 
would have been ignored or only morphologically unusual species would have been “cherry-
picked” for study. We use LIT to discover the species-level diversity in 18 000 specimens of 
scuttle flies (Diptera: Phoridae) from Sweden by first generating NGS barcodes and then 
creating barcode clusters. We then study for 100 randomly selected clusters whether there 
are cluster-specific traits (e.g., number of haplotypes, maximum pairwise distance) that can 
predict whether a barcode cluster will be incongruent with morphology. We identify two such 
predictors and confirm their effectiveness when applied to the remaining barcode clusters. 
This leads to the development of explicit rules for picking specimens for validating 
preliminary species hypotheses based on barcodes. We then compare the barcode 
clustering results based on different methods, which illustrates once more that integrative 
methods are needed because COI barcodes alone are insufficiently decisive. Finally, we 
formalise our system in an algorithm, demonstrating that it is systematic, objective, and 
effective for our sample. 

Methods 
 
Sampling 
 
Samples were collected with Townes-style Malaise traps (Townes 1972) at thirty-six sites 
across Sweden as part of the Swedish Insect Inventory Project (Fig. 1a; Karlsson et al. 
2020). A single sample from late spring/early summer 2018 (except for site 46, where the 
first available sample was from July) was selected from each site (Supplementary Table S1) 
and specimens from the dipteran family Phoridae were extracted for sequencing. Due to the 
high number of phorids present (numbering in the hundreds of thousands), only a randomly 
selected subsample of the specimens was sequenced. The specimens were kept in ethanol 
at -20-25°C until processing.  
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Figure 1. (a) Sites of the Swedish Insect Inventory Project, colour-coded by climatic zones identified 
by the Swedish Horticultural Society, (b) Climatic zones (odlingszoner) of the Swedish Horticultural 
Society (Riksförbundet Svensk Trädgård), used with permission. 

 
DNA Extraction, PCR, and Sequencing 
 
DNA extractions were carried out non-destructively on whole flies using 10 μl of “HotSHOT” 
solution (Truett et al. 2000, Srivathsan et al. 2019. Incubation was in a thermocycler at 65 °C 
for 15 min followed by 98 °C for 2 min. A total of 206 96-well plates (19 570 specimens) 
were extracted. The DNA extracts were used to set up plates of polymerase chain reactions 
(PCR) to amplify a 313-bp minibarcode fragment of the COI barcoding region using 
m1COlintF: 5′-GGWACWGGWTGAACWGTWTAYCCYCC−3′ (Leray et al. 2013) and 
modified jgHCO2198: 50-TANACYTCNGGRTGNCCRAARAAYCA-3 (Geller et al. 2013). 
Amplifications were conducted with tagged primers and sequenced with Illumina HiSeq 2500 
or Oxford Nanopore Technologies (ONT) MinION following the protocols first established in 
Meier et al. (2016) and then modified for Wang et al. (2018) for Illumina and Srivathsan et al. 
(2019) for MinION. Note that the most updated lab and bioinformatic methods for MinION 
barcoding are described in Srivathsan et al. (2021). 
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PCR reactions contained 4 μl Mastermix from CWBio, 1 μl of 1 mg/ml BSA, 1 μl of 10 μM of 
each primer, and 1 μl of DNA. PCR conditions were a 5 min initial denaturation at 94 °C 
followed by 35 cycles of denaturation/annealing/extension (94 °C (1 min)/47 °C (2 min)/72 
°C (1 min)), and a final extension at 72 °C (5 min). PCR products were pooled, cleaned, and 
sequenced in either a lane of HiSeq 2500 (250 bp paired-end sequencing) or a MinION R9.4 
flowcell. For MinION, the SQK-LSK109 ligation sequencing kit (Oxford Nanopore 
Technologies) was used for preparing a library from 200-ng of the pooled and purified PCR 
products for sequencing. The manufacturer’s instructions were followed except for the use of 
1× instead of 0.4× Ampure beads (Beckmann Coulter) because the amplicons in our 
experiments were short (~391 bp with primers and tags). Illumina libraries were prepared 
using TruSeq DNA PCR-free kits to obtain 250bp PE sequences using Illumina HiSeq 2500. 
Illumina sequencing was outsourced. Nanopore sequencing using a MinION sequencer was 
conducted in house following the description in Srivathsan et al. (2019) and base calling was 
conducted using Guppy 2.3.5+53a111f (fast basecalling, capacity for high accuracy 
basecalling was not available at this time).  
 
Bioinformatics 
 
Demultiplexing and read filtering followed the established protocols in Wang et al. (2018) for 
Illumina and Srivathsan et al. (2019) for MinION data. Illumina data processing involved 
merging of paired end reads using PEAR (v 0.9.6) (Zhang et al. 2014). Subsequently, reads 
were demultiplexed based on unique combinations of tags by an inhouse pipeline that looks 
for perfect tags while allowing for 2-bp mismatches in primer sequence. For each sample, 
we retained reads that were longer than 300-bp after primers were removed and the 
identical reads (reads that only vary in length with terminal bases missing or with extra 
terminal bases) were merged and counted to identify the dominant sequence, i.e., the 
sequence with highest count in the dataset. Barcodes were called when (1) the sample 
contained >=50 reads, and (2) the dominant read had a coverage of over 10×. Lastly, (3) 
these reads were accepted as the barcode for the specimen if the dominant sequence was 
at least 5× more common than the sequence with the next-highest abundance.  For MinION 
data, miniBarcoder (Srivathsan et al. 2018, 2019) was used to demultiplex the data. Primers 
were found using glsearch36, and tags extracted allowing for 2 bp errors. Reads with a given 
tag combination were added into “specimen bins” and those bins having more than 5 reads 
were processed using multiple sequence alignment via MAFFT. Afterwards, a majority rule 
consensus barcode was obtained, but only accepted as barcode if it had <1% N (or 4 Ns in 
case of 313 bp barcodes). A second set of barcodes was obtained from the same bins using 
the consensus polishing tool RACON, where reads are mapped back onto the original 
MAFFT consensus barcode using GraphMap and RACON is used to call the consensus 
sequences (Sović et al. 2016; Vaser et al. 2017). The two sets of barcodes for the same 
reads were then corrected using amino acid translations that allow for resolving indel errors. 
Lastly, the AA-corrected sets of barcodes were consolidated as described in Srivathsan et 
al. (2019). This pipeline has been shown to provide >99.99% accurate DNA barcodes 
(Srivathsan et al. 2019) and is available at https://github.com/asrivathsan/miniBarcoder.  
 
Clustering and mOTU estimation 
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The DNA barcodes were aligned using MAFFT v 7.310 (Katoh and Standley 2013). Many 
different clustering algorithms for DNA barcodes exist and we here initially used objective 
clustering (OC, Meier et al. 2006) but later compared the results with other methods. 
Objective Clustering uses an a priori distance threshold to group sequences; cluster 
members are separated by at least this distance from members of all other clusters, but the 
maximum distance within a cluster can exceed the clustering threshold (Meier et al. 2006). 
Initial distance-based mOTU delimitation via objective clustering used a 3% minimum 
pairwise interspecific threshold done with a new implementation of the clustering algorithm 
implemented in SpeciesIdentifier that is part of "TaxonDNA" (see Meier et al. 2006: available 
at github.com/Gaurav/taxondna). Cluster numbers referenced throughout the manuscript 
refer to these original 3% OC clusters. The clustering results were used to physically sort 
specimens into putative species in preparation for integrative taxonomy utilising morphology 
as a second source of data. To visualise the barcode data for each cluster, we prepared 
median-joining haplotype networks with PopART (Leigh and Bryant 2015). These networks 
provided a good overview of the number, abundance, and distribution of haplotypes in 
Sweden. The colour coding reflects the planting regions (“odlingszoner”) recognised by the 
Swedish Horticultural Society (Fig. 1b, “Zonkarta för odlingzoner”, used with permission) 
(Riksförbundet Svensk Trädgård 2018). These provide a breakdown of Sweden into eight 
climatic zones and the alpine zone (“fjällregion”) that coincide with important shifts in the 
composition of the natural flora of the country. The zones were originally intended to 
describe the expected success of growing various apple cultivars, but the interpretation has 
since expanded to cover all cultivated woody plants (trees and bushes grown as ornamental 
plants or for their fruits or berries) (Riksförbundet Svensk Trädgård 2018).  
 
Acquisition of morphological data for barcode clusters 
 
Morphological examination of specimens was first conducted in ethanol before some 
specimens were dissected and slide-mounted in Canada balsam following standard 
procedures for Phoridae (Disney 2009). Morphological examination relied upon a standard 
suite of characters and character states described for Megaselia (Hartop and Brown 2014; 
Hartop et al. 2016) and slightly modified for other genera. These traits include a set of 
characters covering everything from overall gestalt, to setation of the thorax, legs, and frons, 
to characteristics of the wings and male genitalia. As this method is designed to be efficient, 
morphological validation did not include more time-consuming morphological methods such 
as wing measurements or dissection of the genitalia.   
 
Integration of barcodes and morphology I: Identifying predictors of conflict  
 
One-hundred clusters were randomly selected for in-depth study of congruence between 
barcode and morphological data. The following rules were applied when selecting 
specimens for morphological study: (I) Study at least one male for all main haplotypes (= 
those containing 20% or more of the specimens), (II) study additional specimens within the 
3% cluster until no haplotypes remain that are >1 bp away from any checked haplotype, and 
(III) pick at least one specimen from each horticultural zone represented in the cluster. In 
most cases, following these procedures was straightforward. For example, Cluster 293 (Fig. 
2) has two main haplotypes that each contain >20% of specimens and a singleton that is 2 
bp away from the checked haplotypes, meaning at least three specimens must be checked 
across haplotypes. Additionally, seven zones are represented and a specimen from each 
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zone must be checked, meaning the morphology of at least 7 specimens had to be 
examined (across both zones and haplotypes). The selection of specimens can be 
ambiguous because multiple sets of specimens satisfy the stipulated criteria. We then 
arbitrarily chose one of the potential sets. Additional specimens were studied whenever a 
barcode cluster was composed of >1 morphospecies. In such cases, we had to determine 
which haplotypes within the barcode cluster belong to which morphospecies. One barcode 
cluster contained at least 25 morphospecies (Cluster 101: Fig. 3) and had to be re-clustered 
at successively lower thresholds (2% and 1%) to help with specimen selection. After re-
clustering at lower thresholds, the standard checking rules were applied to the sub-clusters.  
 

 

Figure 2. Haplotype network for Cluster 293, colour-coded according to the climatic zones of the 
Swedish Horticultural Society. Nodes represent each unique haplotype, pie slices of nodes indicate 
the proportion of specimens from a particular site, node diameters are proportional to the number of 
specimens the haplotype contains, and the lines connecting the nodes have hash marks 
corresponding to base pair differences. 
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Figure 3. Haplotype network for cluster 101 indicating all morphological species found with male 
genitalia illustrated (border colours of genitalia figures match morphospecies boundary colours). 
Morphospecies are equivalent to 1% clusters (indicated by numbers), except in cases where a 1% 
sub-cluster contained multiple morphospecies, in these cases the 1% cluster is a red dashed line 
around the morphospecies. For two sub-clusters (216 and 249), the network is too complex to 
accurately circumscribe morphospecies in this figure. Morphospecies designations for all specimens 
are in the cluster table available on the project GitHub page.  

Note that for all clusters, only males were considered fully informative because much of 
phorid taxonomy relies on male morphology. Females were treated as congruent if they did 
not disagree with the males for the cluster regarding key diagnostic characters, but they 
were not considered sufficiently informative to evaluate distant haplotypes (>1% away) 
unless they belonged to groups for which female morphology is diagnostic.  
 
To test which cluster-specific properties were most effective at predicting conflict with 
morphology, we fitted a generalised linear model (glm) with quasibinomial errors to the data 
obtained for the 100 randomly selected clusters. The response variable was “validated” 
(whether a cluster was congruent with morphology) and the explanatory variables were six 
cluster properties: “haplo” (number of haplotypes in a cluster), “spec” (number of specimens 
in a cluster), “stability” (see below), “max_p” (maximum pairwise distance within a cluster), 
“zones” (number of geographic zones represented in a cluster), and “sites” (number of sites 
represented within a cluster).  

Cluster stability quantified whether a barcode cluster was sensitive to changes in clustering 
thresholds. This is formalized as class II specimen congruence in Yeo et al. (2020). For a set 
of clusters at 1%, , that combine to form a single 3% cluster, , the 
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stability value is given by  ����|��� |,|��� |,|��� |…,|��� |	

|�� |
 , where � is set of unique haplotypes and 

|� | is the number of elements in � . Simply, this is the ratio between the number of 
haplotypes contained in the largest 1% cluster that is found within a 3% cluster, divided by 
the number of haplotypes in that 3% cluster. 
 
A correlation matrix was used to examine collinearity between explanatory variables 
(corrplot.mixed in R package corrplot) (Supp. Fig. S1) and we then used the Farrar-Glauber 
test (R package mctest) to detect and remove variables systematically according to the 
variable inflation factor (VIF), rerunning the model until collinearity was no longer detected 
and the remaining variable(s) were statistically significant. Due to uncertain species numbers 
in two clusters designated as “species complexes” (see Results), we constructed the model 
twice: once with these counting as validated clusters corresponding to a single 
morphospecies, and again with them counting as incongruent (containing multiple species).  
 
Integration of barcodes and morphology II: Validating predictors of multi-species 
clusters 
 
After developing predictors of incongruence based on the first 100 clusters, the remaining 
215 were used to test the two most important predictors of incongruence; low cluster stability 
(<1.0) and large intra-cluster p-distances (>/=1.5%) . Forty-three of the 215 clusters were 
identified as PI (Potentially Incongruent) while 172 were non-PI. The 43 largest non-PI were 
used as control for the 43 PI clusters. These 86 test clusters went through the following 
validation process: (1) We checked one specimen each for all main (>20% of specimens) 
haplotypes and (2) a pair of specimens representing the maximum p-distance in the cluster. 
For the selection of most distant haplotypes, we ignored small differences (1-2 base pairs) in 
favour of sampling main haplotypes (see Results). Using our previous example of Cluster 
293 (Fig. 2), the two main haplotypes would be checked, but the haplotypes “haloing” the 
main haplotypes by 1-2 base pairs would be ignored. If a cluster was found to contain 
multiple morphospecies during the initial check, additional specimens were studied across 
the cluster to delimit morphospecies boundaries. For the remaining 129 non-PI clusters, we 
only checked a pair of specimens representing the maximum p-distance in the cluster.  
 
Evaluation of the performance of different clustering algorithms and thresholds 
 
We varied the threshold for Objective Clustering and evaluated the performance of three 
alternative procedures for barcode clustering. The first was Automatic Barcode Gap 
Discovery (ABGD) (Puillandre et al. 2012), the second Poisson tree process (PTP) (Zhang et 
al. 2013) and the third Refined Single Linkage (RESL) (Ratnasingham and Hebert 2013). 
ABGD is distance-based like OC and attempts to find a barcode gap (difference between 
inter- and intraspecific distances) for each subgroup of sequences based on an iterative 
application of priors for intraspecific divergence and identification of the first significant gap 
beyond this divergence. PTP is tree-based and uses branch lengths to estimate transition 
points between intraspecific and interspecific branching in an input phylogeny, thereby 
determining which monophyletic clades likely consist of a single species. RESL is used to 
calculate Barcode Index Numbers (BINs) on the Barcode of Life Data System (BOLD). The 
underlying algorithm is not public. Instead, new BINs and old BINs are determined or 
updated monthly by the Canadian Centre for DNA Barcoding.  
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OC was done at 0.0-5.0% uncorrected p-distance thresholds at 0.1% intervals (thresholds 
between 0.5-4.0% were considered for delimitation comparison, see Results). For ABGD 
estimation of mOTUs, we used the default range of priors (P = 0.0010, P = 0.0017, P = 
0.0028, P = 0.0046, P = 0.0077, P = 0.0129, P = 0.0215, P = 0.0359, P = 0.0599); these 
priors represent the maximum intraspecific divergence in the first iteration of the algorithm. 
The slope parameter (-X) was reduced in a stepwise manner (1.5, 1.0, 0.5, 0.1) if the 
algorithm could not find a partition, as done by Yeo et al. (2020). All other parameters were 
kept as default. For PTP, we used RAxML v8.4.2 (Stamatakis 2014) to estimate the topology 
under the GTRGAMMA model. Twenty independent searches were conducted, and the best 
scoring topology across these searches was retained. mOTUs were then obtained based on 
the application of the PTP model on this topology, as implemented in the mPTP software (--
single --ml mode) (Kapli et al. 2017). We used two indirect methods for evaluating RESL 
performance for our data, as the algorithm is not public, and the current implementation of 
the algorithm does not assign new BINs to minibarcodes. We initially identified those 
haplotypes in our dataset that have a 100% match to haplotypes that are already on BOLD. 
We then assigned the corresponding BIN numbers to the barcodes for our specimens with 
these haplotypes. Afterwards, two congruence analyses were carried out. One was based 
on all our data, but only scoring congruence for specimens with BIN numbers. A second was 
based on a reanalysis (re-clustering) of only those haplotypes with BIN numbers. Note that 
both comparisons could be impacted by differences in the underlying data that are used to 
assign barcodes to BINs. 

Congruence between mOTUs and morphospecies was assessed based on match ratio as 
described in Ahrens et al. (2016). The match ratio is computed as 2 * Nmatch / (Nx + Nmorph), 
where Nmatch is the number of completely matching clusters, Nx is the total number of clusters 
(mOTUs) identified by method x, and Nmorph is the total number of morphospecies. We also 
evaluated the performance of clustering methods by determining the number of mOTUs that 
contained several morphospecies (merged clusters, Nmerged), that contained only part of one 
morphospecies (split clusters, Nsplit), or the few cases where a method both split and merged 
members of a single morphospecies Nsplit/merged. Note that Nx = Nmatch + Nmerged + Nsplit + 

Nsplit/merged. Next, we recorded the total number of specimens in each type of cluster. The 
results were visualised with nVenn (Pérez-Silva et al. 2018) for both optimal (best match to 
morphospecies) and conservative (above splitting of morphospecies) settings.  

To formalise our methods, we created a pairwise distance matrix with MEGA X with default 
settings (Kumar et al. 2018). This was used as input in the creation of a specimen picking 
algorithm (Supp. Fig. S2). Using this algorithm, we computed the minimum number of 
specimens that must be examined morphologically to validate barcode clusters for different 
methods and settings if the following simplified sampling scheme was applied: (1) determine 
if the cluster is PI or non-PI (here, based on maximum p-distance only, see discussion), (2) 
check the main haplotypes and two most distant haplotypes for PI clusters, and two most 
distant haplotypes only for non-PI clusters. If checked specimens do not belong to the same 
species, (3) check additional haplotypes until no unchecked haplotypes remain that differ by 
>1 bp from any checked haplotype. Additionally, all checked haplotypes separated by this 
distance must belong to the same morphospecies (i.e. there are no unchecked specimens 
between specimens that belong to two different morphospecies). We also calculated the 
number of morphospecies (if any) that would be overlooked by this minimal sampling 
procedure. 
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Data and code availability 

Data and scripts are available at https://github.com/ronquistlab/taxon-cluster-paper. 

Results 
 
Barcoding and initial clustering 
 
The 19 570 phorids in the sample yielded 17 902 barcodes in 1 714 haplotypes and 340 
clusters at a 3% OC threshold. Of the 340 clusters, 329 were analysed further. Eleven had to 
be removed because they had been incorrectly pre-sorted to phorids and instead contained 
different Diptera families (9 clusters totalling 10 specimens), were contamination (a single 
cluster of 42 specimens that contained a mix of disparate species) or were lost during 
molecular processing (one singleton cluster). Of the 329 clusters, 14 clusters (406 
specimens) could not be rigorously evaluated with morphology because they contained only 
female specimens, or the most-distant haplotypes were only represented by female 
specimens. The final analysis thus focused on 17 443 specimens in 315 clusters obtained at 
a 3% OC threshold. 
 
Of the 315 clusters that were morphologically evaluated, 5.7% (18/315) contained multiple 
morphospecies. The 18 multi-species clusters contained 18.6% of the species (68/365) and 
some were among the most abundant in terms of specimen numbers. For example, 19.6% 
of all specimens were found in the largest incongruent cluster (Cluster 101) while an 
additional 8.8% of specimens belonged to the second largest cluster (Cluster 68). A total of 7 
150 specimens (41% of the total) belonged to clusters that contained more than one 
morphospecies. All multi-species clusters belonged to the genus Megaselia. There were no 
cases of morphospecies splitting across multiple 3% OC clusters. 
 
Integration of barcodes and morphology I: Identifying predictors of conflict  

Of the 100 clusters randomly selected for the exploratory phase, seven contained multiple 
morphospecies and two clusters were found to contain morphological variation that was 
suggestive of species complexes that required more data for resolution. Of the seven 
incongruent clusters, six split into two species each after morphological examination, while 
one cluster (Cluster 101: 3 421 specimens) contained at least 25 species (exact species 
count will require more data to resolve some of the sub-clusters) (Fig. 3). The 7% multi-
species clusters (7/100) contained 28% of the species (37/130) and 58.6% of the specimens 
(3501/5977).  
 
Although the validation procedure involved the examination of many specimens, we noted 
that the multispecies nature of a cluster was always revealed by the morphology of the two 
most distant haplotypes. Note that for determining the most distant haplotypes, we exclude 
“satellite” haplotypes that often “halo” around main haplotypes and differ only by 1-2 bp (see 
Fig. 2). We examined some of the specimens within these satellite haplotypes, but never 
found additional morphospecies among them. In the exploratory phase we ensured that 
specimens from all horticultural zones were examined for all clusters; however, the extra 
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specimens added to satisfy this requirement never resulted in the discovery of additional 
species. 
 
The exploratory study suggested that the number of specimens (“spec”), the number of 
haplotypes (“haplo”), the number of collecting sites (“sites”), the number of horticultural 
zones (“zones”) the maximum p-distance (“max_p”) and the stability to varying clustering 
thresholds (“stability”) might be correlated with the presence of multiple species within 
clusters, and all of these were initially included in our model. Three pairs of variables had 
high collinearity: “max_p” and “stability” (0.77), “haplo” and “spec” (0.99), and “zones” and 
“sites” (0.79). We systematically removed variables from the model based on the VIF until 
collinearity was no longer detected, and were left with “spec”, “stability”, and “zones”, but 
only “stability” was significant (Supplementary Fig. S1). Results of the linear model were the 
same regardless of whether the two species complexes were classified as validated or not 
(Supplementary Fig. S1). 
 
Our analysis therefore indicates that only the variable “stability” is a significant in predictor of 
cluster failure, but the high collinearity (0.77) between “max_p” and “stability” implies that it, 
too, would be predictive (Supplementary Fig. S1). We subsequently noticed that only 6 of the 
7 multispecies clusters were unstable but all of them had high p-distance. This suggested 
that p-distance should also be used to identify potentially incongruent clusters. Using only 
the p-distance or the two variables in combination (either/or) ensured that all 7 clusters were 
identified but it also significantly increased the false positive rate: 22 clusters had high 
maximum p-distance, but just 12 of these were unstable. Although the combination of the 
two variables yields a high false-positive rate, we used both criteria for identifying PI clusters 
among the remaining 215 clusters. More efficient processing could be achieved by dropping 
one criterion. However, this would result in overlooking the conflict between data sources for 
some clusters. 
 
Integration of barcodes and morphology II: Validating remaining clusters and testing 
predictors for multi-species mOTUs 
 
After in depth study of the first 100 clusters, 215 OC clusters remained (3% threshold). We 
identified 43 clusters that had signatures of incongruence because of high maximum 
distances (>1.5%: 14 clusters), instability (stability < 1.0: 2 clusters), or both (27 clusters). Of 
these PI clusters, a large proportion (26%: 11/43) containing 49% of the species (31 /63) 
failed morphological validation, and one additional cluster was classified as a “species 
complex”. All eleven failed clusters had both high maximum p-distances and instability, while 
the species complex was identified by maximum p-distance only. To determine whether 26% 
failure is an unexpectedly large proportion of failing clusters, we used the largest 43 non-PI 
clusters as control. The largest non-PI clusters were used to best match cluster sizes for PI 
(mean=152 specimens) and non-PI clusters (mean=95). All 43 non-PI clusters passed 
morphological validation as did the remaining 129 smaller, non-PI clusters.  
 
The total number of specimens examined for this study was 1 039, or 5.8% of the total. This 
includes the specimens for the more extensively sampled first 100 clusters. It also includes 
some female specimens that represented haplotypes for which a male was also examined. 
Without these additional specimens, the number of specimens needed for validation of 315 
3% OC clusters would have been 915 (5.1% of total). The optimised number of specimens 
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that needs to be studied is 861 (4.8% of the total) when using OC 1.3-1.5% or ABGD 0.0077 
as clustering thresholds. This is an average of 2.3 specimens per species.  

 

Figure 4. Match ratios for PTP, ABGD (all priors) and OC (all thresholds) versus morphology across 
methods and settings.  

Impact of barcode clustering algorithms on results 
 
Our morphological study suggested the presence of 365 morphospecies and a match ratio of 
0.871 for 3% OC clusters (Fig. 4, Table 1).  All incongruence between 3% OC clusters and 
morphology was due to lumping. Lowering the threshold to 1.6-1.7% maximised the match 
ratio for OC at 0.897 (Fig. 4, Table 1). ABGD’s highest congruence was the same (0.897) 
and observed when the prior of intraspecific divergence (p) was set to 0.0077 (Fig. 4, Table 
1). PTP fared less well, with a match ratio of 0.841 (Fig. 4, Table 1). Regarding RESL, 277 of 
the 1714 haplotypes in our dataset had 100% matches to publicly available sequences with 
BIN designations. These 277 haplotypes represented 50% (186) of our morphospecies in 
172 BINs. Of the 186 morphospecies matched to BINs, 162 (86%) were congruent with 
BINs. These 277 haplotypes were also subjected to re-clustering with several algorithms. 
We compared the results for both optimal (highest match ratio) and conservative (above 
cluster splitting) threshold settings for OC and ABGD. BIN designations again matched 86% 
of morphospecies. This was better than OC at the conservative threshold of 3% (76% of 
morphospecies correctly delimited), but worse than OC at the optimal 1.7% setting (89% of 
morphospecies correctly delimited). PTP performed poorer for this reduced subset (74%), 
and ABGD had the lowest level of congruence (correctly delimiting 72% of morphospecies at 
p=0.0077 but only 51% at p=0.0215). 
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Figure 5. The splitting and lumping of morphological clusters with ABGD (left) and OC (right) across 
settings.  

We then examined whether morphospecies were split, lumped, or split+lumped across 
different methods and settings (Fig. 5, Table. 1). This revealed that OC starts lumping 
morphospecies at 0.6% and stops splitting morphospecies at 2.8%, while ABGD lumps 
morphospecies across all priors, and stops splitting at p=0.0215 (Fig. 5, Table. 1). PTP both 
splits and lumps morphospecies (Table 1). There were very few cases where a method both 
split and lumped a single morphospecies, but this was the case for one morphospecies 
using PTP and at OC thresholds 0.7-0.9% (Fig. 5, Table. 1). RESL split two of the clusters 
designated as “species complexes” in our analysis but lumped 22 morphospecies into BINs 
(from OC clusters 68, 79, 91, 101, 103). The BIN composition of the complex Cluster 101 
could be assessed for 16 morphospecies (Fig. 6). Based on this partial representation, 
RESL lumps eight of the morphospecies from Cluster 101 into a single BIN (BOLD-
AAG3235, shown in red) and another three into a second BIN (BOLD-AAL9067).  

Figure 7 illustrates congruence between methods for optimal (OC 1.7, ABGD p=0.0077) and 
conservative settings (OC 3.0%, ABGD p=0.0215). At optimal settings, 313 clusters were the 
same across methods and ABGD and OC results were 100% congruent. PTP was an outlier, 
as it tended to split species compared to the other methods. Morphology had several dozen 
outlier species that were different from what was inferred with all molecular methods. This 
was due to multiple species clustered by ABGD and OC at conservative settings (including 
the 25 species in Cluster 101), while at optimal settings the difference was due to fewer 
lumped species, but additional split species. We clustered across a wide range (0-5.0%) of 
OC thresholds to assess the structure of variation in our dataset. We would not consider 
thresholds lower that 0.5 or above 4.0% to be appropriate for initial delimitations in most 
groups unless there is evidence for large genetic variation within species. Narrowing the 
range of thresholds accordingly, the number of clusters across methods and settings varies 
from 424 (0.6% OC) to 207 (p=0.0359 ABGD) (Fig. 8).    
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Figure 6. BIN designations of the 16 morphospecies of Cluster 101 for which we found a 100% match 
(to at least one specimen) in BOLD. 
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Figure 7. An illustration of the congruence between morphology, PTP, ABGD, and OC methods with 
(a) optimal settings (ABGD P=0.0077, OC 1.7%) and (b) conservative settings (ABGD P=0.0215, OC 
3.0%) and between morphology, PTP, ABGD, OC and RESL methods with (c) optimal settings 
(ABGD P=0.0077, OC 1.7%) and (d) conservative settings (ABGD P=0.0215, OC 3.0%). 
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Figure 8. The number of morphospecies, and clusters across settings with PTP, ABGD, and OC. OC 
is plotted without 0-0.5% thresholds where 1-2 bp differences between haplotypes greatly inflated 
cluster numbers.  

 

Discussion 
 
The goal of Large-scale Integrative Taxonomy (LIT) is to transform the study of dark taxa 
that are currently neglected because traditional methods are unsuitable for samples 
containing thousands of specimens and hundreds of species. LIT has the potential to enable 
biodiversity discovery initiatives to take on the challenge that these taxa pose. In the future, 
new samples of dark taxa could be imaged and/or NGS-barcoded upon arrival. Afterwards, 
they can be physically sorted to putative species based on barcoding or imaging data. Most 
of this initial work can be rapid and inexpensive because barcoding and imaging are suitable 
for automation. Scientists at these institutions will then work only on pre-sorted material, 
focusing on clusters and specimens that have a high probability of being incongruent with 
other data sources. These clusters and specimens are identified by a selection algorithm 
that uses high intra-cluster variation and shallow (below clustering threshold) intra-cluster 
splits to identify specimens critical for validating barcode clusters or resolving conflict. 
Morphological or nuclear data can then be obtained for only those selected specimens. 
Opting to use nuclear data for validation would allow institutions to cover orphaned dark taxa 
for which the world lacks taxonomic expertise. Using LIT, clusters would be covered by at 
least two types of data that can be summarised automatically in preparation for species 
(re)description. Note that LIT is likely to be less costly than many recently funded collection 
digitisation initiatives. Indeed, LIT is a particularly efficient digitisation initiative, as the 
imaging of new samples is easier because they are in a more uniform and accessible state 
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than most collection specimens. Furthermore, all locality information for such samples tends 
to be digitised.  
 
Any large-scale integrative taxonomy initiative must overcome the conundrum of how to 
accelerate biodiversity discovery based on at least two data sources when most traditional 
studies only use one and are still too slow. We agree with Puillandre et. al. (2012) that this 
can be achieved by starting with one type of data that can be acquired rapidly and 
inexpensively. The second type of data can then be more expensive or time consuming as it 
will only be obtained for a small subset of specimens. The cumulative effort of acquiring both 
sets of data can then take a fraction of the time that would be needed using traditional 
methods. However, for LIT to work, there must be a quantitative and systematic way to flag 
the clusters and specimens that are most likely to be incongruent with morphology. 
 
We tested several barcode cluster properties and found that cluster stability is the most 
important predictor for incongruence, but we also used maximum p-distance because some 
incongruent clusters were only identified by this variable. Cluster instability is indicative of 
areas where multiple species are separated by shallow (below clustering thresholds) splits, 
while maximum p-distance identifies clusters with unusually high variation. Observing such 
shallow splits is not surprising because few evolutionary biologists doubt that there are 
cases of recent and rapid divergences, and these are the areas where barcodes are known 
to be most likely to fail (Puillandre et al. 2012; Ratnasingham and Hebert 2013; Zhang et al. 
2013). We here quantify cluster stability by testing whether cluster membership changes 
when the clustering threshold is modified. This is suitable for objective clustering but an 
alternative way to identify unstable clusters would be to inspect the longest branch length on 
a median-joining network for each cluster (as in the haplotype networks) (see Supp. Fig. S2 
for how this might be incorporated to the specimen checking algorithm). High within-cluster 
distances may be indicative of two species or old lineages within one species that have 
acquired large amounts of genetic variation but have failed to speciate. Overall, it is not 
surprising that these cluster properties are associated with conflict, but it was surprising to 
find that they are so effective at predicting it. Over one-quarter of clusters flagged by the 
predictors failed validation with morphology, while none of the control, non-PI clusters 
contained more than one morphospecies. Of course, this result will have to be tested for 
more taxa and larger samples sizes before a more general use of these predictors can be 
advocated. 
 
Identifying clusters that are likely in need of refinement is only the first step. LIT also needs 
rules for selecting those specimens that should be studied using a second type of data (e.g., 
nuclear genes, morphology). In this context, it is important to minimise the number of 
specimens examined while ensuring that clusters containing multiple species are reliably 
discovered. Our final LIT protocol includes specimen-picking recommendations (Fig. 9) that 
are formalised as an algorithm that is available from the project’s Github repository (Supp. 
Fig. S2). The basic recommendation is simple and common sense, but our large-scale study 
shows that it is also effective. All non-singleton clusters are designated as either PI or non-PI 
(although singleton clusters could be designated PI based on stability if examined at an 
increased, rather than decreased, threshold). PI clusters are then validated by sampling the 
main and most distant haplotypes, while the verification of non-PI clusters is based on a pair 
of specimens representing the most distant haplotypes. Based on our data clustered at 3%, 
this protocol will reliably distinguish clusters that are congruent from those that are 
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incongruent. Resolving the incongruent clusters then requires more in-depth examination. 
For our data, we demonstrate that only ca. 5% of all specimens (i.e., 2.5 specimens per 
species; 915 specimens in total) need to be checked to integrate barcode data with 
morphology. This number is required when clustering barcodes at 3% thresholds, but it is 
quite close to the theoretical minimum of 640 specimens (1.7 per species) that could 
achieved by checking just two specimens for each cluster regardless of PI designation, 
excluding singletons for which the only specimen would be checked. 
 

  

Figure 9. Final LIT protocol. LIT has also been formalised with an algorithm (see Supplementary 
Figure S2). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.04.13.439467doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439467
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22

 
 
The LIT protocol proposed here includes checking main haplotypes for PI clusters because 
multiple morphospecies can be intermixed within a closely related network (e.g., “subcluster 
216” in Cluster 101, Fig. 3). Checking specimens from main haplotypes ensures that the 
cluster variation observed in a large proportion of specimens is covered. For example, 
Cluster 293 (Fig. 2) has 163 specimens. Checking only the extreme haplotypes would reveal 
cluster failure, but the two checked specimens would represent the haplotypes of just 1.2% 
of the specimens (two singleton haplotypes). Including specimens from each of the two main 
haplotypes raises the percentage of specimens represented by the haplotype variation that 
has been checked to 88.3%. Therefore, LIT protocol recommends using the main + distant 
haplotype checking procedures for PI clusters, and it may be prudent to also check all main 
haplotypes for large non-PI clusters. Specimen selection can be aided by haplotype 
networks. These networks allow for a quick visual overview of the structure and patterns of 
variation within a cluster. Specialists working with the LIT system will find that the use of 
haplotype networks will facilitate a comprehensive understanding of the molecular variation 
in their taxa.  
 
One major task when conducting a revision based on 18 000 specimens is specimen 
handling. We recommend physically sorting all sequenced specimens into vials by haplotype 
+ sample, and then grouping vials together by cluster. Such physical sorting will facilitate 
morphological work as all specimens will be easily accessible. Fortunately, it should be 
possible to develop automated ways to physically pre-sort specimens based on barcodes 
given that the vouchers will be in grid-like microplates. Similarly, distinguishing sexes via AI-
assisted image processing should be feasible. We here used scuttle flies from a temperate 
zone where communities are dominated by species that require males for morphological 
identification. In the tropics, however, there is a greater abundance of species that are more 
readily identifiable through examination of female specimens (Borgmeier 1962). In these 
species, highly distinctive and species-specific female abdominal structures suggest that 
sexual role reversal likely takes place (Brown and Porras 2015) and therefore it will not 
always be appropriate for studies examining phorids to eliminate female-only clusters from 
morphological validation as we did here. We chose to barcode both males and females to 
make the greatest amount of information available for future uses (associating males and 
females, increasing abundance and distribution data, etc.). 
 
Our study used data from ~18 000 specimens of scuttle flies (Diptera: Phoridae). Phoridae is 
a classic example of a dark taxon; i.e., a specimen- and species-rich group where species 
discovery and identification are wanting. In terms of abundance, the family comprises ca. 
10% of the total catch in Malaise trap samples from Sweden (Karlsson et al. 2020). In terms 
of diversity, it is the genus Megaselia that renders Phoridae a dark taxon – none of the other 
ca. 270 genera come close to the richness of this genus, and most are comparatively well 
explored. At present, Megaselia contains approximately 1 700 described species, but the 
worldwide fauna may be two orders of magnitude larger (Srivathsan et al. 2019). LIT will 
have to be tested and adapted to other taxa to optimise the number of specimens to 
examine. For example, we here used a 3% threshold for initial clustering, but this threshold 
may not be optimal for all taxa, datasets, or workflows. High thresholds result in fewer 
clusters to check, but more clusters will fail the congruence test and require checking of 
main haplotypes in addition to a distant pair. Additionally, high clustering thresholds will 
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result in higher numbers of lumped species, requiring more morphological work to identify 
the boundaries of morphospecies within the clusters. On the other hand, low thresholds 
result in morphospecies splitting (Fig. 5, Table 1). Such splitting necessitates careful 
checking both between and within clusters, which is laborious and time-consuming. An 
optimal strategy may be to set the threshold just high enough to avoid any splitting of 
morphospecies, OC at 3% was such a setting. PTP is probably not a good first clustering 
strategy because it both splits and lumps species. 

Other parameters used in LIT also need adjustment to specific taxa and datasets. For 
example, we here used a 1.5% maximum p-distance or 1 to 3% stability threshold to identify 
potentially incongruent (PI) clusters, but the corresponding values may be different for other 
studies. Fortunately, our study reveals that such optimisation can be made based on a small 
number of randomly chosen clusters and does not increase the workload very significantly. 
We here had to study only 200 additional specimens to optimize the PI parameters and we 
predict that fine tuning of LIT for other taxa will require even fewer additional specimens. 
One way to lower the workload is to redefine “main haplotype” more or less conservatively 
based on specialist preference. Setting the threshold for main to 10%, one may have check 
up to 10 specimens per cluster (if a cluster were perfectly spread across 10 haplotypes), 
while a 20% cut-off would require checking only 5. If too many clusters are revealed to be 
potentially incongruent, one can increase the efficiency of LIT by using more “lenient 
thresholds” which may then result in a moderate number of multi-species clusters being 
overlooked. For example, for our phorid data using the “large p-distance criterion” 
designated 24 clusters as PI, but in the end this criterion only found one additional 
incongruent cluster and one species complex. 

Evaluation of a range of mOTU clustering methods 
 
There are many algorithms for clustering barcodes. Most methods include the disclaimer that 
they should not be used to delimit species without consulting other evidence (Puillandre et 
al. 2012; Ratnasingham and Hebert 2013; Zhang et al. 2013), but it is not uncommon to see 
molecular clades equated to species without, or with unexplained, processes of validation. 
Our study confirms that none of the sequence clustering methods tested (OC, ABGD, PTP, 
RESL) accurately delimit morphospecies across taxa with disparate evolutionary processes. 
Adaptive algorithms, such as ABGD and RESL, should be able to accommodate biological 
variation across subgroups better than methods based on fixed thresholds, but surprisingly 
our results indicate that a simple method using fixed thresholds (OC) does as well or better 
than adaptive methods. The tree-based method (PTP) did worst of the tested methods, 
possibly because the analysis was based on minibarcodes, with limited information about 
phylogenetic relationships and the boundaries between within-species and between-species 
tree structure. Tree-based methods should be tested with longer sequences and multiple 
markers. Such data are also required for other methods that are rooted in the statistical 
analysis of multispecies coalescent and similar models. LIT will also be relevant for these 
methods because it predicts for which specimens/haplotypes multiple markers should be 
collected. After all, for hyperdiverse taxa such data collection will always have to be 
restricted to subsamples. 

Comparisons between methods revealed that there was often better congruence between 
molecular clusters obtained with different methods than between those clusters and the 
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results obtained with morphology. For example, at optimal thresholds, OC and ABGD 
produced the same clusters across the dataset, but morphology has an additional 40 
morphospecies (Fig. 7a). Similarly, in the data subset used to evaluate RESL, morphology 
has 14 morphospecies that were not delimited by any of the molecular methods (Fig. 7c). 
Should we take these examples as evidence that the morphological evidence is misleading? 
This would be perilous given what is known about barcodes. Even the best algorithms will 
not be able to accurately delimit species if speciation has left little to no trace in the COI 
data, as is expected for recently evolved species. For example, PTP was introduced with the 
“fundamental assumption…that the number of substitutions between species is significantly 
higher than the number of substitutions within species” (Zhang et al. 2013).  Similarly, with 
ABGD, “the lower the speciation rate, the better the performance of the method” (Puillandre 
et al. 2012) and RESL carries the warning “closely related species…will be overlooked 
because of their low sequence divergence” (Ratnasingham and Hebert 2013). Dense 
specimen sampling may reveal near-continuous sequence variance across thousands of 
specimens (see Cluster 101) so that any algorithm will struggle to find accurate solutions. 
Our dataset suggests that such clades of closely related species may be concentrated in 
some groups. Fortunately, in this study, many species-level taxa that could not be delimited 
by any of the algorithms applied to barcodes were distinct based on morphological 
differences (e.g., Cluster 101, Fig. 3). 

The Future of LIT 

To evaluate the future utility of LIT, we must first test this system on many other taxa and a 
wide variety of sample densities. We must determine how LIT protocol can be modified with 
increased sampling, as the effectiveness of DNA barcoding for delimiting species is 
dependent on both the depth of sampling and the breadth of geographic scale (Bergsten et 
al. 2012; Huemer et al. 2014; Ahrens et al. 2016). Datasets that are shallowly sampled or of 
limited geographic scope can often appear decisive even in species-rich environments like 
the tropics (Hajibabaei et al. 2006; Smith et al. 2008), but with ever-expanding datasets the 
complex process of species delimitation (Sites and Marshall 2004; De Queiroz 2007; Wiens 
2007) will only be further complicated. As the accumulation of sequence data accelerates, 
the shortcomings of DNA barcodes (Will et al. 2005; Meier et al. 2006, 2008; Cesari et al. 
2011) will only become more evident, and the need for the integration of several types of 
data will become more apparent (Dayrat 2005; Puillandre et al. 2012). 

A true test of LIT thus requires more sampling. Most species in our study were separated by 
3% or more but as sampling increases, genetic distances between species will decrease and 
eventually barcodes may not separate closely related species. In our study using 313 bp 
minibarcodes, species separated by 3% have a 98.5% chance of being separated by at least 
3 bp. However, if species are separated by just 1% genetic distance on average there is a 
4.3% chance they would have identical 313 bp barcodes and an 18% chance of the 
barcodes being separated by just a single bp, ignoring any variation within species. This 
makes it clear that reducing distances between species may become problematic rather 
quickly. Even within our dataset, we had some species (such as in Cluster 101, Fig. 3) 
separated by just 0.6% (2 bp). Such small genetic differences between morphospecies 
suggest relying on delimitation with barcodes alone will lead to widespread taxonomic error, 
and such errors will only increase over time (Meier et al. 2021). This is not a problem unique 
to barcodes, it is a problem with relying on any single data source – morphology is also likely 
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to fail in cases of closely related species. Until we have better datasets with worldwide 
sampling for many groups, we will not be able to confidently address these issues with LIT. 
We expect that the situation will be messy, but we also expect many clusters to remain 
stable. 

One strategy for managing difficult datasets is lowering clustering thresholds incrementally 
as a dataset grows and the distances between clusters shrink. Testing this empirically will 
require much larger datasets than we have now. If future studies indicate an abundance of 
fusions, a potential remedy might be to sample more specimens for the second, or add a 
third data source. COI barcodes could be supplemented not only with morphology, but also 
with nuclear markers, life history, or ecological data (Puillandre et al., 2012). The 
standardisation of nuclear markers (Eberle et al. 2020) will be essential to integrating these 
data and is likely a realistic, long-term approach. Integration of multiple data sources could 
be multi-layered, e.g., initial clustering with COI, followed by a preliminary validation with 
morphology, with independent markers added only to those clusters that need further 
resolution. These data would then also allow for the application of coalescence methods for 
species delimitation based on the specimens singled out for deeper sequencing. 

In this study, we used mini-barcodes (313 bp), as they are easily obtained on short-read 
platforms such as Illumina and have been shown to perform comparably to full-length 
barcodes for the identification and delimitation of species (Yeo et al. 2020). Recent and rapid 
advancements to Oxford Nanopore MinION hardware, software, and bioinformatic pipelines 
are quickly making this technology an affordable alternative for obtaining full-length barcodes 
at large-scale (Srivathsan et al. 2018, 2019, 2021). The sequencing costs for these methods 
are low (<0.10 USD), which is of critical importance to the democratisation of access to 
barcode data (Srivathsan et al. 2021). LIT can easily be implemented on datasets using full-
length, or various mini-barcodes (but see Yeo et al. 2020 for a cautionary note on the use of 
some mini-barcodes).  
 
The natural next step after species delimitation will be species identification or description, 
depending on whether a species is new to science. LIT facilitates the description of all taxa 
by providing species units that have been confirmed by at least two data sources. All data 
acquired for LIT (barcodes, photographs, morphology, etc.) can be directly, and eventually 
automatically, compiled into descriptions and diagnoses. The most time-consuming step for 
the Swedish sample may very well be the process of determining which of the units have 
been described before and which are new to science. This process will be slow and 
laborious for regions and taxa with many described species. However, it will be much less 
time consuming for regions where the fauna is largely undescribed. For example, if our data 
were for Afrotropical phorids new species descriptions could be prepared immediately after 
LIT has been completed.  
 
Conclusion 

LIT is based on a detection system that identifies where barcodes are likely to be species-
specific and where they are not. This is critical not only for the future of integrative taxonomy, 
but also for the interpretation of metabarcoding data. We here develop and formalise an 
approach to validating barcode clusters as species and render the process systematic, 
objective, and transparent. To do so, we have developed a system to (1) identify clusters 
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where barcodes are likely failing and (2) systematically select specimens for validation that 
will assure multiple species are discovered, if present. This approach integrates the power 
and objectivity of large-scale barcoding with targeted specialist work, thus rendering dark 
taxa accessible for taxonomic work. These organisms are likely critical to the functioning of 
our natural (and, ultimately, economic, and societal) systems; we must be committed to 
discovering and accurately identifying them. 
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Table 1. Summary of mOTU delimitations across methods and settings. Optimal match ratios are 
highlighted in green. 
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PTP 394 320 21 25 1 74 47 0.841 880

ABGD 0.001 370 326 26 15 0 44 41 0.885 861
ABGD 0.0017 370 326 26 15 0 44 41 0.885 861
ABGD 0.0028 370 326 26 15 0 44 41 0.885 861
ABGD 0.0046 370 326 26 15 0 44 41 0.885 861
ABGD 0.0077 362 327 29 11 0 35 40 0.897 876
ABGD 0.0129 337 312 50 5 0 25 55 0.886 898
ABGD 0.0215 311 292 75 0 0 19 75 0.861 915
ABGD 0.0359 207 194 173 0 0 13 173 0.676 1061

OC 0.0 - 0.2 1714 126 0 241 0 1588 241 0.121 1714
OC 0.3 552 257 0 110 0 295 110 0.559 902
OC 0.4 - 0.5 542 261 0 106 0 281 106 0.574 895
OC 0.6 424 321 4 41 1 103 46 0.812 863
OC 0.7 423 321 4 41 1 102 46 0.813 863
OC 0.8 418 323 4 39 1 95 44 0.823 860
OC 0.9 396 326 12 29 0 70 41 0.855 865
OC 1.0 - 1.2 390 329 13 25 0 61 38 0.869 863
OC 1.3 390 326 26 15 0 64 41 0.861 861
OC 1.4 - 1.5 370 326 26 15 0 44 41 0.885 861
OC 1.6 370 327 29 11 0 43 40 0.887 876
OC 1.7 - 1.8 362 327 29 11 0 35 40 0.897 876
OC 1.9 - 2.1 347 320 41 6 0 27 47 0.896 898
OC 2.2 -2.4 336 311 51 5 0 25 56 0.885 898
OC 2.5 - 2.6 324 303 61 3 0 21 64 0.877 916
OC 2.7 323 301 63 3 0 22 66 0.872 916
OC 2.8 - 3.0 315 297 70 0 0 18 70 0.871 915
OC 3.1 - 3.3 311 289 78 0 0 22 78 0.853 914
OC 3.4 - 3.6 305 281 86 0 0 24 86 0.836 912
OC 3.7 299 274 93 0 0 25 93 0.823 912
OC 3.8 - 3.9 297 272 95 0 0 25 95 0.819 912
OC 4.0 293 267 100 0 0 26 100 0.809 911
OC 4.1 - 4.2 292 266 101 0 0 26 101 0.807 911
OC 4.3 284 257 110 0 0 27 110 0.790 919
OC 4.4 283 257 110 0 0 26 110 0.791 956
OC 4.5 281 253 114 0 0 28 114 0.781 957
OC 4.6 272 241 126 0 0 31 126 0.754 951
OC 4.7 - 4.8 269 237 130 0 0 32 130 0.745 954
OC 4.9 256 226 141 0 0 30 141 0.726 970
OC 5.0 254 225 142 0 0 29 142 0.725 975
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Supplementary Table S1. The thirty-six samples used for this study.  

 

 

Site ID Coll. ID Zone Start date End date Region MunicipalitLatitude Longitude

1 M01025 I 14 May 2018 28 May 2018 Götaland Malmö 55.525266 12.913263

2 M02006 I 15 May 2018 25 May 2018 Götaland Malmö 55.569393 12.926716

3 M03006 I 15 May 2018 27 May 2018 Götaland Malmö 55.633321 13.009706

4 M04006 I 15 May 2018 25 May 2018 Götaland Malmö 55.578375 12.948558

5 M05006 I 10 May 2018 19 May 2018 Götaland Lunds 55.704267 13.452154

6 M06005 I 12 May 2018 19 May 2018 Götaland Lunds 55.697991 13.496168

7 M07004 I 14 May 2018 23 May 2018 Götaland Kristianstads55.774553 14.121564

8 M08002 I 7 May 2018 21 May 2018 Götaland Laholms 56.730764 13.067036

10 M10001 I 16 May 2018 25 May 2018 Götaland Mörbylånga 56.228285 16.441877

15 M15026 II 14 May 2018 24 May 2018 Götaland Ödeshögs 58.330869 14.817465

16 M16002 II 14 May 2018 24 May 2018 Götaland Ödeshögs 58.333376 14.823160

17 M17005 III 17 May 2018 23 May 2018 Götaland Sotenäs 58.344196 11.334593

18 M18005 III 13 May 2018 22 May 2018 Svealand Värmdö 59.278145 18.761432

19 M19007 II 17 May 2018 24 May 2018 Svealand Stockholms 59.336237 18.067797

20 M20002 IV 16 May 2018 28 May 2018 Norrland Sundsvalls 62.440881 17.423142

21 M21002 VI 15 May 2018 29 May 2018 Norrland Krokoms 63.345011 14.537859

22 M22003 VII 17 May 2018 24 May 2018 Norrland Bräcke 62.645503 15.634410

23 M23001 V 16 May 2018 23 May 2018 Norrland Umeå 63.820100 20.316182

24 M24002 V 20 May 2018 28 May 2018 Norrland Umeå 63.795572 20.897138

25 M25001 VI 1 Jun 2018 24 Jun 2018 Norrland Jokkmokks 66.429977 20.624348

26 M26001 VI 2 Jun 2018 24 Jun 2018 Norrland Jokkmokks 66.375152 20.713693

28 M28001 VIII 5 Jun 2018 28 Jun 2018 Norrland Pajala 68.110620 23.327608

29 M29001 VIII 5 Jun 2018 28 Jun 2018 Norrland Pajala 68.079745 23.243206

31 M31001 Alpine 3 Jun 2018 3 Jul 2018 Norrland Kiruna 68.354782 18.822478

32 M32001 Alpine 3 Jun 2018 3 Jul 2018 Norrland Kiruna 68.355154 18.826526

33 M33001 Alpine 3 Jun 2018 3 Jul 2018 Norrland Kiruna 68.363449 18.763011

34 M34001 Alpine 3 Jun 2018 3 Jul 2018 Norrland Kiruna 68.354409 18.827631

35 M35001 Alpine 3 Jun 2018 3 Jul 2018 Norrland Kiruna 68.361011 18.736851

38 M38001 VIII 1 Jun 2018 15 Jun 2018 Norrland Sorsele 65.957289 16.205235

40 M40014 I 14 May 2018 28 May 2018 Götaland Malmö 55.523460 12.910872

41 M41006 II 14 May 2018 22 May 2018 Götaland Göteborgs 57.689073 11.956801

42 M42025 I 14 May 2018 28 May 2018 Götaland Malmö 55.523821 12.911575

43 M43001 VIII 5 Jun 2018 28 Jun 2018 Norrland Pajala 68.111319 23.331281

44 M44002 VI 15 May 2018 29 May 2018 Norrland Krokoms 63.344673 14.536979

45 M45002 V 20 May 2018 28 May 2018 Norrland Umeå 63.796206 20.900016

46 M46001 I 4 Jul 2018 12 Jul 2018 Götaland Mörbylånga 56.619528 16.498101
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Supplementary Figure S1. (a) Correlation matrix of explanatory variables showing strong collinearity 
between number of haplotypes (“haplo”) and number of specimens (“spec”), number of horticultural 
zones (“zones”) and number of sites (“sites”), and stability (“stability”) and maximum p-distance 
(“max_p”). Correlation is given numerically, and also indicated by the size and colour of the visual 
(see legend). (b) Significance values for our generalised linear model after collinearity was removed, 
showing stability as the single significant predictor of cluster failure. The model was run twice, once 
with species complexes (SC) counted as validated (single species) and once with SC counted as 
failed (multiple species).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 9, 2021. ; https://doi.org/10.1101/2021.04.13.439467doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.13.439467
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Supplementary Figure S2. Flowchart for the specimen-picking algorithm. The algorithm was written to 
be applicable across clustering methods, and therefore only uses maximum p-distance to identify PI 
clusters. The steps in red represent a potential alternative to stability values that could be 
incorporated into a future version of this algorithm. *If one or both most distant haplotypes are within 2 
bp of a main haplotype, the main haplotype will be checked instead 
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