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2 Abstract1

Perception cycles through periods of enhanced and reduced sensitivity to external information.2

Here, we asked whether such infra-slow oscillations arise as a noise-related epiphenomenon of3

limited processing capacity or, alternatively, represent a structured mechanism of perceptual4

inference. Using two large-scale datasets, we found that humans and mice waver between5

alternating intervals of externally- and internally-oriented modes of sensory analysis. During6

external mode, perception was more sensitive to external sensory information, whereas7

internal mode was characterized by enhanced biases toward perceptual history. Computational8

modeling indicated that dynamic changes in mode are governed by two interlinked factors:9

(i), the integration of subsequent stimuli over time and, (ii), infra-slow anti-phase oscillations10

in the perceptual impact of external sensory information versus internal predictions that11

are provided by perceptual history. Between-mode fluctuations may benefit perception by12

enabling the generation of stable representations of the environment despite an ongoing13

stream of noisy sensory inputs.14
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3 Introduction15

The capacity to respond to changes in the environment is a defining feature of life1–3.16

Intriguingly, the ability of living things to process their surroundings fluctuates considerably17

over time4,5. In humans, perception6–11, cognition12 and memory13 cycle through prolonged18

periods of enhanced and reduced sensitivity to external information, suggesting that the19

brain detaches from the world in recurring intervals that last from milliseconds to seconds20

and even minutes4,5. Yet breaking from external information is risky, as swift responses to21

the environment are often crucial to survival.22

Since there is an upper bound on the speed and precision at which neural systems can process23

sensory signals5, periodic fluctuations in the ability to parse external information11,14,1524

may arise simply due to bandwidth limitations and noise. From an economic perspective,25

however, it may even be advantageous to actively reduce the costs of sensory processing by26

seeking external information only in recurring intervals5,16, otherwise relying on random or27

stereotypical responses to the external world.28

Beyond the energy budget, spending time away from the ongoing stream of sensory inputs may29

also reflect a functional strategy that facilitates flexible behavior and learning17: Intermittently30

relying more strongly on information acquired from past experiences may enable agents to31

build up stable internal predictions about the environment despite an ongoing stream of32

external information18.33

In this work, we asked whether periodicities in the sensitivity to external information represent34

an epiphenomenon of unstructured neuro-cognitive noise and limited processing capacity35

or, alternatively, result from a structured and adaptive mechanism of sensory analysis.36

Using two large-scale datasets on humans19 and mice20, we investigated the behavioral37

correlates and computational principles of infra-slow fluctuations11 in perception. When38

less sensitive to external stimulus information, humans and mice relied more strongly on39

serial dependencies21–31, i.e., internal predictions that reflect the auto-correlation of natural40
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environments32 and bias perceptual decisions toward preceding choices28,29,33. Computational41

modeling indicated that ongoing changes in perceptual performance may be driven by42

systematic fluctuations between externally- and internally-oriented modes of sensory analysis.43

4 Results44

4.1 Human perception fluctuates between epochs of enhanced and45

reduced sensitivity to external information46

We began by selecting 71 studies from the Confidence Database19 that investigated how47

human participants (N = 4465) perform binary perceptual decisions (Figure 1A; see Methods48

section for details on inclusion criteria). As a metric for perceptual performance (i.e., the49

sensitivity to external sensory information), we asked whether the participant’s response50

and the presented stimulus matched (stimulus-congruent choices) or differed from each other51

(stimulus-incongruent choices; Figure 1B and C) in a total of 21.88 million trials.52

In a first step, we asked whether the ability to accurately perceive sensory stimuli is constant53

over time or, alternatively, fluctuates in periods of enhanced and reduced sensitivity to54

external information. We found perception to be stimulus-congruent in 73.46% ± 0.15% of55

trials (mean ± standard error of the mean; Figure 2A), which was highly consistent across the56

selected studies (Supplemental Figure S1A). In line with previous work8, we found that the57

probability of stimulus-congruence was not independent across successive trials: At the group58

level, stimulus-congruent perceptual choices were significantly autocorrelated for up to 1559

trials. Autocorrelation coefficients decayed exponentially over time (rate γ = −1.92× 10−3 ±60

4.5×10−4, T(6.88×104) =−4.27, p = 1.98×10−5; Figure 2B). Importantly, the autocorrelation61

of stimulus-congruent perception was not a trivial consequence of the experimental design,62

but remained significant when controlling for the trial-wise autocorrelation of task difficulty63

(Supplemental Figure S2A) or the sequence of presented stimuli (Supplemental Figure S2B).64
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In addition, stimulus-congruence was significantly autocorrelated not only at the group-level,65

but also in individual participants, where the autocorrelation of stimulus-congruent perception66

exceeded the respective autocorrelation of randomly permuted data within an interval of 3.2467

± 2.39× 10−3 trials (Figure 2C). In other words, if a participant’s experience was congruent68

(or incongruent) with the external stimulus information at a given trial, her perception was69

more likely to be stimulus-congruent (or incongruent) for approximately 3 trials into the70

future (see Supplemental Figure S2C for a reproduction of this effect using trial-wise logistic71

regression).72

These results confirm that the ability to process sensory signals is not constant over time, but73

unfolds in multi-trial epochs of enhanced and reduced sensitivity to external information8.74

As a consequence of this autocorrelation, the dynamic probability of stimulus-congruent75

perception (i.e., computed in sliding windows of ± 5 trials; Figure 1C) fluctuated considerably76

within participants (average minimum: 35.47% ± 0.22%, maximum: 98.27% ± 0.07%). In77

line with previous findings9, such oscillations in the sensitivity to external information had a78

power density that was inversily proportional to the frequency in the infra-slow spectrum11
79

(power ~ 1/fβ, β = −1.32 ± 3.14× 10−3, T(1.84× 105) = −419.48, p < 2.2× 10−308; Figure80

2D). This feature, which is also known as 1/f noise34,35, represents a characteristic of ongoing81

fluctuations in complex dynamic systems such as the brain36 and the cognitive processes it82

entertains9,10,12,37,38.83

4.2 Human perception oscillates between external and internal84

modes of sensory processing85

In a second step, we sought to explain why perception cycles through periods of enhanced and86

reduced sensitivity to external information4,5. We reasoned that observers may intermittendly87

rely more strongly on internal information, i.e., on predictions about the environment that88

are constructed from previous experiences18,29.89
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In perception, one of the most basic internal predictions is instantiated by serial dependencies90

that cause perceptual decisions to be systematically biased toward preceding choices21–31.91

Such effects of perceptual history mirror the continuity of the external world, in which the92

recent past often predicts the near future28,29,32,33,39. Therefore, as a metric for the perceptual93

impact of internal information, we computed whether the participant’s response at a given94

trial matched or differed from her response at the preceding trial (history-congruent and95

history-incongruent perception, respectively; Figure 1B and C).96

Firstly, we ensured that perceptual history played a significant role in perception despite97

the ongoing stream of external information. With a global average of 52.89% ± 0.12%98

history-congruent trials, we found a small but highly significant perceptual bias towards99

preceding experiences (β = 16.37 ± 1.07, T(1.09× 103) = 15.24, p = 1.04× 10−47; Figure 2A)100

that was largely consistent across studies (Supplemental Figure 1B) and more pronounced in101

participants who were less sensitive to external sensory information (Supplemental Figure 1C).102

Logistic regression confirmed the internal information provided by perceptual history made a103

significant contribution to perception (β = 0.11 ± 5.8× 10−3, z = 18.51, p = 1.65× 10−76)104

over and above the ongoing stream of external sensory information (β = 2.2 ± 5.87× 10−3,105

z = 374.64, p < 2.2× 10−308; see Supplemental Figure S3A for model comparisons within106

individual participants).107

In addition, we confirmed that history-congruence was not a corollary of the sequence of108

presented stimuli: History-congruent perceptual choices were more frequent when perception109

was stimulus-incongruent (56.04% ± 0.19%) as opposed to stimulus-congruent (51.81%110

± 0.11%, β = −4.22 ± 0.2, T(8.86 × 103) = −20.67, p = 9.1 × 10−93; Figure 2A, lower111

panel). Despite being adaptive in auto-correlated real-world environments18,32,33,40, perceptual112

history thus represented a source of error in the randomized experimental designs studied113

here23,27–29,41.114

Secondly, we asked whether perception cycles through multi-trial epochs during which115
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perception is characterized by stronger or weaker biases toward preceding experiences. Indeed,116

in close analogy to stimulus-congruence, history-congruence was significantly autocorrelated117

for up to 21 trials (Figure 2B). Following a peak at the first trial, the respective autocorrelation118

coefficients decreased exponentially over time (rate γ = −6.11× 10−3 ± 5.69× 10−4, T(6.75×119

104) = −10.74, p = 7.18× 10−27). History-congruence remained significantly autocorrelated120

when controlling for task difficulty (Supplemental Figure S2A) and the sequence of presented121

stimuli (Supplemental Figure S2B). In individual participants, the autocorrelation of history-122

congruence was elevated above randomly permuted data for a lag of 4.87 ± 3.36 × 10−3
123

trials (Figure 2C), confirming that the autocorrelation of history-congruence was not only a124

group-level phenomenon.125

Thirdly, we asked whether the impact of internal information fluctuates as 1/f noise (i.e.,126

a noise characteristic classically associated with fluctuations in the sensitivity to external127

information9,10,12,37,38). The dynamic probability of history-congruent perception (i.e., com-128

puted in sliding windows of ± 5 trials; Figure 1C) varied considerably over time, ranging129

between a minimum of 12.89% ± 0.13% and a maximum 92% ± 0.13%. In analogy to130

stimulus-congruence, we found that history-congruence fluctuated as 1/f noise, with power131

densities that were inversily proportional to the frequency in the infra-slow spectrum11 (power132

~ 1/fβ, β = −1.34 ± 3.16× 10−3, T(1.84× 105) = −423.91, p < 2.2× 10−308; Figure 2D).133

Finally, we ensured that fluctuations in stimulus- and history-congruence are linked to each134

other. When perceptual choices were less biased toward external information, participants135

relied more strongly on internal information acquired from perceptual history (and vice136

versa, β = −0.1 ± 8.59 × 10−4, T(2.1 × 106) = −110.96, p < 2.2 × 10−308). Thus, while137

sharing the characteristic of 1/f noise, fluctuations in stimulus- and history-congruence were138

shifted against each other by approximately half a cycle (Figure 2E) and showed an average139

coherence of 6.49 ± 2.07× 10−3% (Figure S2F).140

In sum, our analyses indicate that perceptual decisions may result from a competition between141
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external sensory signals with internal predictions provided by perceptual history. Crucially,142

we show that the impact of these external and internal sources of information is not stable143

over time, but fluctuates systematically, emitting overlapping autocorrelation curves and144

antiphase 1/f noise profiles.145

These links between stimulus- and history-congruence suggest that the fluctuations in the146

impact of external and internal information may be generated by a unifying mechanism that147

causes perception to alternate between two opposing modes17 (Figure 1D): During external148

mode, perception is more strongly driven by the available external stimulus information.149

Conversely, during internal mode, participants rely more heavily on internal predictions that150

are implicitly provided by preceding perceptual experiences. Fluctuations in mode (i.e.,151

the degree of bias toward external versus internal information) may thus provide a novel152

explanation for ongoing fluctuations in the sensitivity to external information4,5,17.153

4.3 Internal and external modes of processing facilitate re-154

sponse behavior and enhance confidence in human perceptual155

decision-making156

Alternatively, however, fluctuating biases toward externally- and internally-oriented modes157

may not represent a perceptual phenomenon, but result from cognitive processes that are158

situated up- or downstream of perception. For instance, it may be argued that participants159

may be prone to stereotypically repeat the preceding choice when not attending to the160

experimental task. Thus, fluctuations in mode may arise due to systematic changes in the161

level of tonic arousal42 or on-task attention43,44. Since arousal and attention typically link162

closely with response times43,45 (RTs), this alternative explanation entails that RTs increase163

monotonically as one moves away from externally-biased and toward internally-biases modes164

of sensory processing.165

As expected, stimulus-congruent (as opposed to stimulus-incongruent) choices were associated166
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with faster responses (β = −0.14 ± 1.61× 10−3, T(1.99× 106) = −85.93, p < 2.2× 10−308;167

Figure 2G). Intriguingly, whilst controlling for the effect of stimulus-congruence, we found168

that history-congruent (as opposed to history-incongruent) choices were also characterized169

by shorter RTs (β = −9.68× 10−3 ± 1.38× 10−3, T(1.99× 106) = −7.02, p = 2.16× 10−12;170

Figure 2G).171

When analyzing the speed of response against the mode of sensory processing (Figure 2H),172

we found that RTs were shorter during externally-oriented perception (β1 = −11.07 ± 0.55,173

T(1.98×106) = −20.14, p = 3.17×10−90). Crucially, as indicated by a quadratic relationsship174

between the mode of sensory processing and RTs (β2 = −19.86 ± 0.52, T(1.98 × 106) =175

−38.43, p = 5× 10−323), participants became faster at indicating their perceptual decision176

when biases toward both internal and external mode grew stronger. This argued against177

the view that the dynamics of pre-perceptual variables such as arousal or attention provide178

a plausible alternative explanation for the fluctuating perceptual impact of internal and179

external information.180

Secondly, it may be assumed that participants tend to repeat preceding choices when they181

are not yet familiar with the experimental task, leading to history-congruent choices that are182

caused by insufficient training. In the Confidence database19, training effects were visible from183

RTs that were shortened by increasing exposure to the task (β = −7.57× 10−5 ± 6.37× 10−7,184

T(1.8× 106) = −118.7, p < 2.2× 10−308). Intruigingly, however, history-congruent choices185

became more frequent with increased exposure to the task (β = 3.6× 10−5 ± 2.54× 10−6,186

z = 14.19, p = 10−45), speaking against the proposition that insufficient training induces187

seriality in response behavior.188

As a third caveat, it could be argued that biases toward internal information reflect a post-189

perceptual strategy that repeats preceding choices when the subjective confidence in the190

perceptual decision is low. According to this view, subjective confidence should increase191

monotonically as biases toward external mode become stronger.192
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Stimulus-congruent (as opposed to stimulus-incongruent) choices were associated with en-193

hanced confidence (β = 0.04 ± 1.18×10−3, T(2.06×106) = 36.71, p = 7.5×10−295; Figure 2I).194

Yet whilst controlling for the effect of stimulus-congruence, we found that history-congruence195

also increased confidence (β = 0.49 ± 1.38× 10−3, T(2.06× 106) = 352.16, p < 2.2× 10−308;196

Figure 2I).197

When depicted against the mode of sensory processing (Figure 2J), subjective confidence was198

indeed enhanced when perception was more externally-oriented (β1 = 92.63 ± 1, T(2.06×106)199

= 92.89, p < 2.2× 10−308). Importantly, however, participants were more confident in their200

perceptual decision for stronger biases toward both internal and external mode (β2 = 39.3 ±201

0.94, T(2.06× 106) = 41.95, p < 2.2× 10−308). In analogy to RTs, subjective confidence thus202

showed a quadratic relationsship to the mode of sensory processing (Figure 2J), contradicting203

the notion that biases toward internal mode may reflect a post-perceptual strategy employed204

in situations of low subjective confidence.205

The above results indicate that pre- and post-perceptual phenomena such as arousal and206

metacognition do not map linearly onto the mode of sensory processing, suggesting that slow207

fluctuations in the respective impact of external and internal information are most likely208

to affect perception at an early level of sensory analysis46,47. Such low-level processing may209

integrate perceptual history with external inputs into a decision variable48 that influences210

not only perceptual choices, but also downstream functions such as speed of response and211

subjective confidence.212

Consequently, our findings predict that human participants lack full metacognitive insight213

into how strongly external signals and internal predictions contribute to perceptual decision-214

making. Stronger biases toward perceptual history thus lead to two seemingly contradictory215

effects: increased error rates (Supplemental Figure 1C) and enhanced subjective confidence216

(Figure 2I-J). As a corollary, participants with weaker biases toward perceptual history should217

be better at judging whether their decisions accurately depict the content of external sensory218
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information.219

To test this prediction, we assessed metacognitive performance independently of inter-220

individual differences in perceptual performance in terms of the M-ratio49 (meta-d’/d’ =221

0.85 ± 0.02). Indeed, we found that biases toward internal information (i.e., as defined by222

the average probability of history-congruence) were indeed stronger in participants with223

reduced metacognitive efficiency (β = −2.95× 10−3 ± 9.81× 10−4, T(4.14× 103) = −3, p =224

2.7× 10−3).225

4.4 Mice oscillate between external and internal modes of percep-226

tual decision-making227

In a prominent functional explanation for serial dependencies21–27,30,31,46, perceptual history is228

cast as an internal prediction that leverages the temporal autocorrelation of natural environ-229

ments for efficient decision-making28,29,32,33,39. We reasoned that, since this autocorrelation230

is one of the most basic features of our sensory world, fluctuating biases toward preceding231

perceptual choices should not be a uniquely human phenomenon.232

To test whether externally and internally oriented modes of processing exist beyond the233

human mind, we analyzed data on perceptual decision-making in mice that were extracted234

from the International Brain Laboratory (IBL) dataset20. Here, we restricted our analyses235

to the basic task20, in which mice responded to gratings of varying contrast that appeared236

either in the left or right hemifield of with equal probability. We excluded sessions in which237

mice did not respond correctly to stimuli presented at a contrast above 50% in more than238

80% of trials (see Methods), which yielded a final sample of N = 165 adequately trained mice239

that went through 1.46 million trials.240

In line with humans, mice were biased toward perceptual history in 54.03% ± 0.17% of trials241

(T(164) = 23.65, p = 9.98× 10−55; Figure 3A and Supplemental Figure S1D). Perceptual242

history effects remained significant (β = 0.51 ± 4.49 × 10−3, z = 112.84, p = 0) when243
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controlling for external sensory information in logistic regression (β = 2.96 ± 4.58× 10−3,244

z = 646.1, p < 2.2× 10−308; see Supplemental Figure S3C-D for model comparisons and β245

values computed within individual mice).246

In the basic task of the IBL dataset20, stimuli were presented at random in either the left or247

right hemifield. Stronger biases toward perceptual history should therefore decrease perceptual248

performance. Indeed, history-congruent choices were more frequent when perception was249

stimulus-incongruent (61.59% ± 0.07%) as opposed to stimulus-congruent (51.81% ± 0.02%,250

T(164) = 31.37, p = 3.36× 10−71; T(164) = 31.37, p = 3.36× 10−71; Figure 3A, lower panel),251

confirming that perceptual history was a source of error23,27–29,41 as opposed to a feature of252

the experimental paradigm. Overall, perception was stimulus-congruent in 81.37% ± 0.3% of253

trials (Figure 3A).254

At the group level, we found significant autocorrelations in both stimulus-congruence (86255

consecutive trials) and history-congruence (8 consecutive trials), which remained significant256

when taking into account the respective autocorrelation of task difficulty and external257

stimulation (Supplemental Figure 2C-D). In contrast to humans, mice showed a negative258

autocorrelation coefficient of stimulus-congruence at trial 2. This was due to a feature of the259

experimental design: Errors at a contrast above 50% were followed by a high-contrast stimulus260

at the same location. Thus, stimulus-incongruent choices on easy trials were more likely to261

be followed by stimulus-congruent perceptual choices that were facilitated by high-contrast262

visual stimuli20.263

The autocorrelation of history-congruence closely overlapped with the human data and264

decayed exponentially after a peak at the first trial (rate γ = −6.7 × 10−3 ± 5.94 × 10−4,265

T(3.69 × 104) = −11.27, p = 2.07 × 10−29; Figure 3B). On the level of individual mice,266

autocorrelation coefficients were elevated above randomly permuted data within a lag of 4.59267

± 0.06 trials for stimulus-congruence and 2.58 ± 0.01 trials for history-congruence (Figure268

3C).269
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In analogy to humans, mice showed anti-phase 1/f fluctuations in the sensitivity to internal270

and external information (Figure 3D-F) and relied more strongly on perceptual history when271

they were less sensitive to sensory information (and vice versa, β = −0.21 ± 9.92 × 10−4,272

T(1.33 × 106) = −212.14, p < 2.2 × 10−308). This confirmed that both humans and mice273

show systematic fluctuations between externally- and internally-oriented modes of sensory274

processing.275

Next, we asked how external and internal modes relate to the trial duration (TD, a coarse276

measure of RT in mice that spans the interval from stimulus onset to feedback20). Stimulus-277

congruent (as opposed to stimulus-incongruent) choices were associated with shorter TDs (δ278

= −262.48 ± 17.1, T(164) = -15.35, p = 1.55× 10−33), while history-congruent choices were279

characterized by longer TDs (δ = 30.47 ± 5.57, T(164) = 5.47, p = 1.66× 10−7; Figure 3G).280

Across the full spectrum of the available data, TDs showed a linear relationship with the281

mode of sensory processing, with shorter TDs during external mode (β1 = −4.36× 104 ±282

1.27× 103, T(1.24× 106) = −34.31, p = 8.43× 10−258, Figure 3H). However, an explorative283

post-hoc analysis limited to TDs that differed from the median TD by no more than 1.5 x284

MAD (median absolute distance50) indicated that, when mice enganged with the task more285

swiftly, TDs did indeed show a quadratic relationship with the mode of sensory processing286

(β2 = −2.02× 103 ± 835.64, T(1.1× 106) = −2.42, p = 0.02, Figure 3I).287

As in humans, it is an important caveat to consider whether the observed serial dependencies288

in murine perception reflect a phenomenon of perceptual inference, or, alternatively, an289

unspecific strategy that occurs at the level of reporting behavior. We reasoned that, if mice290

indeed tended to repeat previous choices as a general response pattern, history effects should291

decrease during training of the perceptual task. We therefore analyzed how stimulus- and292

history-congruent perceptual choices evolved across sessions in mice that, by the end of293

training, achieved proficiency (i.e., stimulus-congruence ≥ 80%) in the basic task of the IBL294

dataset20.295
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As expected, we found that stimulus-congruent perceptual choices became more frequent296

(β = 0.34 ± 7.13 × 10−3, T(8.51 × 103) = 47.66, p < 2.2 × 10−308; Supplemental Figure297

S4) and TDs were progressively shortened (β = −22.14 ± 17.06, T(1.14× 103) = −1.3, p298

< 2.2 × 10−308) across sessions. Crucially, the frequency of history-congruent perceptual299

choices also increased during training (β = 0.13 ± 4.67× 10−3, T(8.4× 103) = 27.04, p =300

1.96× 10−154; Supplemental Figure S4).301

As in humans, longer within-session task exposure was associated with an increase in history-302

congruence (β = 3.6× 10−5 ± 2.54× 10−6, z = 14.19, p = 10−45) and a decrease in TDs (β303

= −0.1 ± 3.96× 10−3, T(1.34× 106) = −24.99, p = 9.45× 10−138). In sum, these findings304

strongly argue against the proposition that mice show biases toward perceptual history due305

to an unspecific response strategy.306

4.5 Fluctuations in mode result from coordinated changes in the307

impact of external and internal information on perception.308

The empirical data presented above indicate that, for both humans and mice, perception309

fluctuates between internal an external modes, i.e., multi-trial epochs that are character-310

ized by enhanced sensitivity toward either internal or external information. Since natural311

environments typically show high temporal redundancy32, previous experiences are often312

good predictors of new stimuli28,29,33,39. Serial dependencies may therefore induce autocorre-313

lations in perception by serving as an internal prediction (or memory processes9,12) about314

the environment that actively integrates noisy sensory information over time51.315

To build up these internal predictions, the brain may dynamically update the estimated proba-316

bility of being in a particular perceptual state from the sequence of preceding experiences33,46,52.317

Accumulating effects of perceptual history may progressively override incoming sensory infor-318

mation, facilitating internal mode processing18. However, since such a process would lead319

to internal biases that may eventually become impossible to overcome53, we assumed that320

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.20.457079doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.20.457079


changes in mode may additionally be driven by ongoing wave-like fluctuations9,12 in the321

perceptual impact of external and internal information that occur irrespective of the sequence322

of previous experiences and temporarily de-couple the decision variable from implicit internal323

representations of the environment18.324

Here, we used computational modeling to investigate whether these two factors - (i), the325

dynamic accumulation of sensory evidence across successive trials and, (ii), ongoing anti-phase326

oscillations in the impact of external and internal information - may generate the observed327

fluctuations between internally- and externally-biased modes of processing.328

We reasoned that binary perceptual decisions depend on the posterior odds of the two alter-329

native states of the environment that participants learn about via noisy sensory information52.330

Following Bayes Rule, we computed the posterior by combining the sensory evidence available331

at time-point t (i.e., the log likelihood ratio LLR) with the prior probability ψ:332

Lt = LLRt ∗ ωLLR + ψt(Lt−1, H) ∗ ωψ (1)

We derived the prior probability ψ at timepoint t from the posterior probability of perceptual333

outcomes at timepoint Lt−1. Since a switch between the two sources of sensory information334

can occur at any time, the effect of perceptual history therefore varies according to both the335

sequence of preceding experiences and the estimated stability of the external environment336

(i.e., the hazard rate H52):337

ψt(Lt−1, H) = Lt−1 + log(1−H
H

+ exp(−Lt−1))− log(
1−H
H

+ exp(Lt−1)) (2)

The LLR was computed by applying a sigmoid sensitivity function defined by parameter338

α to inputs I (see Methods for detailed equations on humans and mice). To allow for339

alternating periods of internally- and externally-biased modes of perceptual processing340

that occur irrespective of the sequence of preceding experiences, we assumed that the341
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relative influences of likelihood and prior show coherent anti-phase fluctuations according to342

ωLLR = ampLLR ∗ sin(f ∗ t) + 1 and ωψ = ampψ ∗ sin(f ∗ t+ π) + 1.343

Our above analyses have shown that humans and mice showed significant effects of perceptual344

history that impaired perfomance in randomized psychophysical experiments23,27–29,41 (Figure345

2A and 3A). We therefore expected that humans and mice underestimated the true hazard rate346

Ĥ of the experimental environments (Confidence database19: ĤHumans = 0.5 ± 1.52× 10−5);347

IBL database20: ĤMice = 0.49 ± 6.47×10−5). Indeed, when fitting our model to the trial-wise348

perceptual choices (see Mthods), we found that the estimated (i.e., subjective) hazard rate349

H was lower than Ĥ for both humans (H = 0.45 ± 4.8× 10−5, β = −6.87 ± 0.94, T(61.87)350

= −7.33, p = 5.76× 10−10) and mice (H = 0.46 ± 2.97× 10−4, β = −2.91 ± 0.34, T(112.57)351

= −8.51, p = 8.65× 10−14).352

Across individuals, the estimated hazard rate was negatively correlated to the frequency of353

history-congruent perceptual choices (humans: β = −11.88 ± 0.5, T(4.29×103) = −23.57, p =354

1.26× 10−115; mice: β = −5.86 ± 0.65, T(2.08× 103) = −8.95, p = 7.67× 10−19). Conversely,355

the estimated sensitivity toward stimulus information α was positvely correlated to the356

frequency of stimulus-congruent perceptual choices (humans: β = 8.4 ± 0.26, T(4.31× 103)357

= 32.87, p = 1.3× 10−211; mice: β = 1.93 ± 0.12, T(2.07× 103) = 16.21, p = 9.37× 10−56).358

Simulations from the model (based on the posterior model parameters obtained in humans;359

see Methods for details) closely matched the empirical results outlined above: Simulated360

perceptual decisions resulted from a competition of perceptual history with incoming sensory361

signals (Figure 4A). Stimulus- and history-congruence were significantly auto-correlated362

(Figure 4B-C), fluctuating in anti-phase as 1/f noise (Figure 4D-F). Simulated posterior363

certainty27,28,48 (i.e., the absolute of the posterior log ratio |Lt|) showed a quadratic rela-364

tionsship to the mode of sensory processing (Figure 4H), mirroring the relation of RTs and365

confidence reports to external and internal biases in perception (Figure 2G-H and Figure366

3G-H).367
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Crucially, the overlap between empirical and simulated data broke down when we removed the368

dynamic belief updating component (i.e., by setting H to 0.5) or the anti-phase oscillations (by369

setting ampLLR, ampψ or both to zero) from the model (Supplemental Figure S5). Likewise,370

our data could not be reproduced by a reset-rebound-model54 in which the impact of biases371

toward internal predictions are removed in the interval between an error trial and the next372

correct response54 (Supplemental Figure S6). Computational modeling therefore confirmed373

that between-mode fluctuations are best explained by two interlinked processes (Figure374

1E): (i), the dynamic accumulation of information across successive trials (i.e., following the375

estimated hazard rate H) and, (ii), ongoing anti-phase oscillations in the impact of external376

and internal information (i.e., determined by ωψ and ωLLR).377

To further probe the validity of our modeling approach, we tested whether posterior model378

quantities could explain aspects of the behavioral data that the model was not fitted to.379

Firstly, we predicted that the posterior decision variable Lt should not only encode perceptual380

choices (i.e., the variable used for model estimation), but also predict the speed of response381

and subjective confidence28,48. Indeed, the estimated trial-wise posterior decision certainty382

|Lt| correlated negatively with RTs in humans (β = −4.36×10−3 ± 4.64×10−4, T(1.98×106)383

= −9.41, p = 5.19× 10−21) and TDs mice (β = −30.18 ± 0.78, T(1.24× 106) = −38.51, p <384

2.2× 10−308). Likewise, subjective confidence was positively correlated with the estimated385

posterior decision certainty in humans (β = 7.63× 10−3 ± 8.32× 10−4, T(2.06× 106) = 9.18,386

p = 4.48× 10−20).387

Secondly, the dynamic accumulation of information inherent to our model entails that biases388

toward perceptual history are stronger when the posterior decision certainty at the preceding389

trial is high28,29,52. Due to the link between posterior decision certainty and confidence, we390

reasoned that confident perceptual choices should be more likely to induce history-congruent391

perception at the subsequent trial28,29. In humans, logistic regression indicated that history-392

congruence was predicted by the posterior decision certainty |Lt−1| (β = 8.22 × 10−3 ±393
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1.94× 10−3, z = 4.25, p = 2.17× 10−5) and subjective confidence (β = 0.04 ± 1.62× 10−3, z394

= 27.21, p = 4.56× 10−163) at the preceding trial.395
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5 Discussion396

In this work, we have investigated the behavioral and computational characteristics of ongoing397

fluctuations in perceptual decision-making using two large-scale datasets in humans19 and398

mice20. Humans and mice cycled through recurring intervals of reduced sensitivity to external399

sensory information, during which they relied more strongly on perceptual history, i.e., an400

internal prediction that is provided by the sequence of preceding choices. Computational401

modeling indicated that these infra-slow periodicities are governed by two interlinked factors:402

(i), the dynamic integration of sensory inputs over time and, (ii), anti-phase oscillations in403

the strength at which perception is driven by internal versus external sources of information.404

These cross-species results therefore suggest that ongoing fluctuations in perceptual decision-405

making arise not merely as a noise-related epiphenomenon of limited processing capacity, but406

result from a structured mechanism that oscillates between internally- and externally-oriented407

modes of sensory analysis.408

5.1 Serial dependencies represent a pervasive aspect of perceptual409

decision-making in humans and mice.410

A growing body of literature has highlighted that perception is modulated by preceding411

choices21–28,30,31. Our work provides converging cross-species evidence that such serial depen-412

dencies are a pervasive and general phenomenon of perceptual decision-making that occurs in413

humans and mice (Figures 2-3, Supplemental Figures 1 and 3). While introducing errors in414

randomized psychophysical designs23,27–29,41 (Figures 2-3A), we found that perceptual history415

facilitates post-perceptual processes such as speed of response40 (Figure 2G) and subjective416

confidence in humans (Figure 2I).417

At the level of individual traits, increased biases toward preceding choices were associated418

with lower sensitivity to external information (Supplemental Figure 1C-D) and reduced419

metacognitive efficiency. When investigating how serial dependencies evolve over time, we420
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observed dynamic changes in strength of perceptual history (Figures 2-3B) that created421

wavering biases toward internally- and externally-biased modes of sensory processing. Between-422

mode fluctuations may thus provide a new explanation for ongoing changes in perceptual423

performance6–11.424

5.2 Fluctations in mode enable the generation of robust internal425

representations by temporarily disconnecting perception from426

the ongoing stream of external information.427

In computational terms, serial dependencies may leverage the temporal autocorrelation of428

natural environments29,46 to increase the efficiency of decision-making33,41. Such temporal429

smoothing46 of sensory inputs may be achieved by updating dynamic predictions about the430

world based on the sequence of noisy perceptual experiences21,29, using algorithms such as431

Kalman filtering33, Hierarchical Gaussian filtering55 or sequential Bayes24,40,52. At the level of432

neural mechanisms, the integration of internal with external information may be realized by433

combining feedback from higher levels in the cortical hierarchy with incoming sensory signals434

that are fed forward from lower levels56.435

Is there a computational benefit to be gained from temporarily upregularing biases toward436

preceding choices (Figure 2-3 B and C), instead of combining them with external sensory437

information at a constant weight (Supplemental Figure S5)? In their adaptive function for438

perceptual decision-making, internal predictions critically depend on error-driven learning439

to remain aligned with the current state of the external environment57. Yet when the same440

network processes external and internal information in parallel, the source of error becomes441

ambiguous: Ongoing activity may be shaped by either incoming sensory signals that are442

fed forward from the periphery or, alternatively, by internally-stored predictions about the443

environment that are fed back form higher cortical levels17,58.444

The perceptual system thus faces the challenge of determining whether errors result from445
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external input or from internally-stored predictions. Akin to the wake-sleep-algorithm in446

machine learning59, this credit assignment problem may be solved by cycling through periods447

of externally- and internally-biased modes of sensory processing17. During internal mode,448

sensory processing is more strongly constrained by predictive processes that auto-encode the449

agent’s environment. Conversely, during external mode, the network is driven predominantly450

by sensory inputs17. Comparing patterns of activity between the two modes may thus generate451

an unambiguous error signal that aligns internal predictions with the current state of the452

environment in iterative test-update-cycles59.453

Beyond the content of internal predictions, fluctuations in mode may also help to calibrate454

metacognitive beliefs about ongoing changes in the reliability of decision-relevant information:455

In the case of parallel processing, suboptimal performance may be caused by misjudging456

the reliability of external information or, alternatively, by over- and underestimating the457

reliability of internal predictions. This ambiguity is particularly relevant when agents do458

not have full insight into the strength at which external and internal sources of information459

contribute to perceptual inference (i.e., when both internal and external modes increase460

confidence; Figure 2I-J; Figure 4G-H).461

Between-mode fluctuations provide a potential solution to this question: In external mode,462

perceptual errors can provide an estimate of how reliably external sensory information is463

transmitted by feedforward processes. During internal mode, in turn, perceptual errors464

are more reflective of deviations in the strength of feedback that regulates how strongly465

perception is affected by internal predictions18. In the context of serial dependencies, this466

may help to decide whether an error was caused by overestimating the precision of incoming467

sensory information or, alternatively, by reyling too heavily on internal predictions provided468

by perceptual history. On a broader scale, between-mode fluctuations may thus regulate the469

balance between feedforward versus feedback contributions to perception and thereby play a470

adaptive role in metacognition and reality monitoring60.471
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5.3 Arousal, attentional lapses, insufficient training and metacog-472

nitive strategies as alternative explanations for between-mode473

fluctuations474

These functional explanations for external and internal modes share the idea that, in order475

to form stable internal predictions about the statistical properties of the world (e.g., tracking476

the hazard rate of the environment) or metacognitive beliefs about processes occuring within477

the agent (e.g., monitoring ongoing changes in the reliability of feedback and feedforward478

processing), perception needs to temporarily disengage from the continuous stream of external479

information. By the same token, they presuppose that fluctuations in mode occur at the level480

of perception25,28,46,47, and are not a passive phenomenon that is primarily driven by factors481

situated up- or downstream of sensory analysis.482

First, it may be argued that agents stereotypically repeat preceding choices when less alert.483

Our analyses address this alternative driver of serial dependecies by building on the association484

between RTs and arousal43,45. We found that RTs do not map linearly onto the mode of485

sensory processing, but become shorter for stronger biases toward both externally- and486

internall-oriented mode (Figure 2G-H; Figure 3I). In addition, when humans and mice were487

exposed to the experimental task, history-congruent choices in humans and mice became more488

frequent over time. These observations argue against the view that biases toward internal489

mode can be explained solely on the ground of ongoing changes in tonic arousal or fatigue42.490

However, internal modes of sensory processing may also be attributed to attentional lapses61,491

which are caused by mind-wandering or mind-blanking and show a more complex relation to492

RTs61: While episodes of mind-blanking are characterized by an absence of subjective mental493

activity, more frequent misses, a relative increase in slow waves over posterior EEG electrodes494

and increased RTs, episodes of mind-wandering come along which rich inner experiences,495

more frequent false alarms, a relative increase of slow-wave amplitudes over frontal electrodes496

and decreased RTs61.497
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Yet in contrast to gradual between-mode fluctuations, engaging in mind-wandering as opposed498

to on-task attention seems to be an all-or-nothing phenomenon61. In addition, internally-499

biased processing did not increase either false alarms or misses, but induced choice errors500

through an enhanced impact of perceptual history (Figure 2-4A) that unfolded in alternating501

streaks9,12 of elevated stimulus- and history-congruence. However, it remains an intruiging502

question for future research how mind-wandering and -blanking can be differentiated from503

internally-oriented modes of sensory processing in terms of their phenomenology, behavioral504

characteristics, neural signatures and noise profiles10,61.505

Second, it may be proposed that humans and mice apply a metacognitive response strategy506

that repeats preceding choices when less confident about their responses or when insufficiently507

trained on the task. In humans, however, confidence increased for stronger biases toward508

both external and internal mode (Figure 2I-J). For humans and mice, history-effects grew509

stronger with increasing exposure to (and expertise in) the task (Supplemental Figure S4). In510

addition, the existence of external and internal modes in murine perceptual decision-making511

(Figure 3) implies that between-mode fluctuations do not depend exclusively on the rich512

cognitive functions associated with human prefrontal cortex62.513

Finally, our computational modeling results provide further evidence against both of the above514

caveats: Simulations based on estimated model parameters closely matched the empirical data515

(Figure 4), reproduced aspects of behavior it was not fitted to (such as trial-wise confidence516

reports and RTs/TD for human and mice, respectively), and predicted that history-congruent517

choices occur more frequently after high-confidence trials28,29. These findings suggest that518

perceptual choices and post-perceptual processes such as response behavior or metacognition519

are jointly driven by a dynamic decision variable48 that encodes uncertainty27,28,40 and is520

affected by ongoing changes in the integration of external versus internal information.521

Of note, a recent computational study63 has used a Hidden Markov Model (HMM) to522

investigate perceptual decision-making in the IBL database20. In analogy to our findings,523
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the authors observed that mice switch between temporally extended strategies that last for524

more than 100 trials: During engaged states, perception was highly sensitive to external525

sensory information. During disengaged states, in turn, choice behavior was prone to errors526

due to enhanced biases toward one of the two perceptual outcomes63. Despite the conceptual527

differences to our approach (discrete states in a HMM that correspond to switches between528

distinct decision-making strategies63 vs. gradual changes in mode that emerge from sequential529

Bayesian inference and ongoing oscillation in the impact of external relative to internal530

information), it is tempting to speculate that engaged/disengaged states and between-mode531

fluctuations might tap into the same underlying phenomenon.532

5.4 Flucuations in mode as a driver of 1/f dynamics in perception533

In light of the above, our results support the idea that, instead of unspecific effects of arousal,534

attention, training or metacognitive response strategies, perceptual choices are shaped by535

dynamic processes that occur at the level of sensory analysis25,28,47: (i), the integration of536

incoming signals over time and, (ii), ongoing fluctuations in the impact of external versus537

internal sources of decision-related information. It is particularly interesting that these two538

model components reprocude the established 1/f characteristic34,35 of fluctuating performance539

in perception (see Figure 2-4D and previous work9,10,12), since this feature has been attributed540

to both a memory process12 (corresponding to model component (i): internal predictions that541

are dynamically updated in response to new inputs) and wave-like variations in perceptual542

ressources9 (corresponding to model component (ii): ongoing oscillations in the impact of543

internal and external information).544

1/f noise is an ubiquitous attribute of dynamic complex systems that integrate sequences545

of contingent sub-processes34 and exhibit self-organized criticality35. As most real-world546

processes are critical, i.e. not completely uniform (or subcritical) nor completely random547

(or supercritical)35,64, the brain may have evolved to operate at a critical point as well36:548

Subcritical brains would be impervious to new inputs, whereas supercritical brains would be549
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driven by noise. The 1/f observed in this study thus provides an intriguing connection between550

the notion that the brain’s self-organized criticality is crucial for balancing network stability551

with information transmission36 and the adaptive functions of between-mode fluctuations17,552

which we propose to support the build-up of robust internal predictions despite an ongoing553

stream of noisy sensory inputs.554

5.5 Dopamine-dependent changes in E-I-balance as a neural mech-555

anism of between-mode fluctuations556

The link to self-organized criticality suggests that balanced cortical excitation and inhibition65557

(E-I), which may enable efficient coding65 by maintaining neural networks in critical states66,558

could provide a potential neural mechanism of between-mode fluctuations. Previous work has559

proposed that the balance between glutamatergic excitation and GABA-ergic inhibition is560

regulated by activity-dependent feedback through NMDA receptors67. Such NMDA-mediated561

feedback has been related to the integration of external inputs over time65 (model component562

(i), Figure 1E), thereby generating serial dependencies in decision-making68–71. Intriguingly,563

slow neuromodulation by dopamine enhances NMDA-dependent signaling68,72,73 and oscillates564

at infra-slow frequencies74,75 that match the temporal dynamics of between-mode fluctuations565

observed in humans (Figure 2) and mice (Figure 3). Ongoing fluctuations in the impact of566

external versus internal information (model component (ii)) may thus by caused by phasic567

changes in E-I-balance that are induced by dopaminergic neurotransmission.568

5.6 Limitations and open questions569

In this study, we show that perception is attracted toward preceding choices in mice20 (Figure570

3A) and humans (Figure 2A; see Supplemental Figure S1 for analyses within individual studies571

of the Confidence database19). Of note, previous work has shown that perceptual decision-572

making is concurrently affected by both attractive and repulsive serial biases that operate573
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on dinstinct time-scales and serve complementary functions for sensory processing26,76,77:574

Short-term attraction may serve the decoding of noisy sensory inputs and increase the stability575

of perception, whereas long-term repulsion may enable efficient encoding and sensitivity to576

change26.577

Importantly, repulsive biases operate in parellel to attractive biases26 and are therefore578

unlikely to account for the ongoing changes in mode that occur in alternating cycles of579

internally- and externally-oriented processing. To elucidate whether attraction and repulsion580

both fluctuate in their impact on perceptual decision-making will be an important task for581

future research, since this would help to understand whether attractive and repulsive biases582

are linked in terms of their computational function and neural implementation26.583

A second open question concerns the neurobiological underpinnings of ongoing changes in584

mode. Albeit purely behavioral, our results tentatively suggest dopaminergic neuromodulation585

of NMDA-mediated feedback as one potential mechanism of externally- and internally-biased586

modes. Since between-mode fluctuations were found in both humans and mice, future587

studies can apply both non-invasive and invasive neuro-imaging and electrophysiology to588

better understand the neural mechanisms that generate ongoing changes in mode in terms of589

neuro-anatomy, -chemistry and -circuitry.590

Finally, establishing the neural correlates of externally- an internally-biased modes will591

enable exiting opportunities to investigate their role for adaptive perception and decision-592

making. Causal interventions via pharmacological challenges, optogenetic manipulations or593

(non-)invasive brain stimulation will help to understand whether between-mode fluctuations594

are implicated in resolving credit-assignment problems17,78 or in calibrating metacognition595

and reality monitoring60. Addressing these questions may therefore provide new insight596

into the pathophysiology of hallucinations and delusions, which have been characterized by597

an imbalance in the impact of external versus internal information79,80 and are typically598

associated with metacognitive failures and a departure from consensual reality80.599
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6 Methods600

6.1 Ressource availability601

6.1.1 Lead contact602

Further information and requests for resources should be directed to and will be fulfilled by603

the lead contact, Veith Weilnhammer (veith-andreas.weilnhammer@charite.de).604

6.1.2 Materials availability605

This study did not generate new unique reagents.606

6.1.3 Data and code availability607

All custom code and behavioral data are available on https://osf.io/ru78n/. This manuscript608

was created using the R Markdown framework, which integrates all data-related computations609

and the formatted text within one document. With this, we wish to make our approach fully610

transparent and reproducible for reviewers and future readers.611

6.2 Experimental model and subject details612

6.2.1 Confidence database613

We downloaded the human data from the Confidence database19 on 21/10/2020, limiting our614

analyses to the database category perception. Within this category, we selected studies in615

which participants made binary perceptual decision between two alternative outcomes (see616

Supplemental Table 1). We excluded two studies in which the average perceptual accuracy617

fell below 50%. After excluding these studies, our sample consisted of 21.05 million trials618

obtained from 4317 human participants and 66 individual studies.619
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6.2.2 IBL database620

We downloaded the murine data from the IBL database20 on 28/04/2021. We limited our621

analyses to the basic task, during which mice responded to gratings that appeared with622

equal probability in the left or right hemifield. Within each mouse, we excluded sessions in623

which perceptual accuracy was below 80% for stimuli presented at a contrast ≥ 50%. After624

exclusion, our sample consisted of 14.63 million trials trials obtained from 165 mice.625

6.3 Method details626

6.3.1 Variables of interest627

Primary variables of interest: We extracted trial-wise data on the presented stimulus and628

the associated perceptual decision. Stimulus-congruent choices were defined by perceptual629

decisions that matched the presented stimuli. History-congruent choices were defined by630

perceptual choices that matched the perceptual choice at the immediately preceding trial.631

The dynamic probabilities of stimulus- and history-congruence were computed in sliding632

windows of ±5 trials.633

The mode of sensory processing was derived by subtracting the dynamic probability of history-634

congruence from the dynamic probability of stimulus-congruence, such that positive values635

indicate externally-oriented processing, whereas negativ values indicate internally-oriented636

processing. When visualizing the relation of the mode of sensory processing to confidence,637

response times or trial duration (see below), we binned the mode variable in 10% intervals.638

We excluded bins than contained less than 0.5% of the total number of available data-points.639

Secondary variables of interest: From the Confidence Database19, we furthermore ex-640

tracted trial-wise confidence reports and resonse times (RTs; if RTs were available for both641

the perceptual decision and the confidence report, we only extracted the RT associated with642

the perceptual decision). To enable comparability between studies, we normalized RTs and643

confidence reports within individual studies using the scale R function. If not available for a644
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particular study, RTs and confidence reports were treated as missing variables. From the IBL645

database20, we extracted trial durations (TDs) as defined by interval between stimulus onset646

and feedback, which respresents a coarse meausure of RT20.647

Exclusion criteria for individual data-points: For non-normalized data (TDs from the648

IBL database20; d-prime, meta-dprime and M-ratio from the Confidence database19 and649

simulated confidence reports), we excluded data-points that differed from the median by650

more than 3 x MAD (median absolute distance50). For normalized data (RTs and confidence651

reports from the Confidence database19), we excluded data-points that differed from the652

mean by more than 3 x SD (standard deviation).653

6.3.2 Control variables654

Next to the sequence of presented stimuli, we assessed the autocorrelation of task difficulty as655

an alternative explanation for any autocorrelation in stimulus- and history-congruence. For the656

Confidence Database19, task difficulty was indicated by one of the following labels: Difficulty,657

Difference, Signal-to-Noise, Dot-Difference, Congruency, Coherence(-Level), Dot-Proportion,658

Contrast(-Difference), Validity, Setsize, Noise-Level(-Degree) or Temporal Distance. When659

none of the above was available for a given study, task difficulty was treated as a missing660

variable. In analogy to RTs and confidence, difficulty levels were normalized within individual661

studies. For the IBL Database20, task difficulty was defined by the contrast of the presented662

grating.663

6.3.3 Autocorrelations664

For each participant, trial-wise autocorrelation coefficients were estimated using the R-665

function acf with a maximum lag defined by the number of trials available per subject.666

Autocorrelation coefficients are displayed against the lag (in numbers of trials, ranging from667

1 to 20) relative to the index trial (t = 0, see Figure 2B-C, 3B-C and 4B-C). To account668

for spurious autocorrelations that occur due to imbalances in the analyzed variables, we669

29

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.20.457079doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.20.457079


estimated autocorrelations for randomly permuted data (100 iterations). For group-level670

autocorrelations, we computed the differences between the true autocorrelation coefficients671

and the mean autocorrelation observed for randomly permuted data and averaged across672

participants.673

At a given trial, group-level autocorrelation coefficients were considered significant when linear674

mixed effects modeling indicated that the difference between real and permuted autocorelation675

coefficients was above zero at an alpha level of 0.05%. To test whether the autocorrelation of676

stimulus- and history-congruence remained significant when controlling for task difficulty and677

the sequence of presented stimuli, we added the respective autocorrelation as an additional678

factor to the linear mixed effects model that computed the group-level statistics (see also679

Mixed effects modeling).680

To assess autocorrelations at the level of individual participants, we counted the number of681

subsequent trials (starting at the first trial after the index trial) for which less than 50% of682

the permuted autocorrelation coefficients exceeded the true autocorrelation coefficient. For683

example, a count of zero indicates that the true autocorrelation coefficients exceeded less684

than 50% of the autocorrelation coefficients computed for randomly permuted data at the685

first trial following the index trial. A count of five indicates that, for the first five trials686

following the index trial, the true autoccorrelation coefficients exceeded more than 50% of687

the respective autocorrelation coefficients for the randomly permuted data; at the sixt trial688

following the index trial, however, less than 50% of the autocorrelation coefficients exceeded689

the respective permuted autocorrelation coefficients.690

6.3.4 Spectral densities691

We used the R function spectrum to compute the spectral densities for the dynamic proba-692

bilities of stimulus- and history-congruence as well as the phase and coherence between the693

two variables. Periodograms were smoothed using modified Daniell smoothers at a width694

of 50. Since the dynamic probabilities of history- and stimulus-congruence were computed695
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using a sliding windows of ±5 trials (i.e., intervals containing a total of 11 trials), spectral696

analyses were carried out for frequency below 1/11 1/Ntrials. Please note that, throughout697

this manuscript, frequency has the dimensions of cycles per trial 1/Ntrials rather than cycles698

per second (Hz).699

6.4 Quantification and statistical procedures700

All aggregate data are reported and displayed with errorbars as mean ± standard error of701

the mean.702

6.4.1 Mixed effects modeling703

Unless indicated otherwise, we performed group-level inference using the R-packages lmer704

and afex for linear mixed effects modeling and glmer with a binomial link-function for logistic705

regression. We compared models based on Akaike Information Criteria (AIC). To account706

for variability between the studies available from the Confidence Database19, mixed modeling707

was conducted using random intercepts defined for each study. To account for variability708

across experimental session within the IBL database20, mixed modeling was conducted using709

random intercepts defined for each individual session. When multiple within-participant710

datapoints were analyzed, we estimated random intercepts for each participant that were711

nested within the respective study of the Confidence database19. By analogy, for the IBL712

database20, we estimated random intercepts for each session that were nested within the713

respective mouse. We report β values refering to the estimate of mixed effects modeling,714

followed by the respective T statistic (linear models) or z statistic (logistic models).715

The effects of stimulus- and history-congruence on RTs and confidence reports (Figure 2-4,716

subpanel G-I) were assessed in linear mixed effects models that tested for main effects of717

both stimulus- and history-congruence as well as the between-factor interaction. Thus, the718

significance of any effect of history-congruence on RTs and confidence reports was assessed719

while controlling for the respective effect of stimulus-congruence (and vice versa).720
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6.4.2 Computational modeling721

Model definition: Our modeling analysis is an extension of a model proposed by Glaze et722

al.52, who defined a normative account of evidence accumulation for decision-making. In this723

model, trial-wise choices are explained by applying Bayes theorem to infer moment-by-moment724

changes in the state of environment from trial-wise noisy observations across trials.725

Following Glaze et al.52, we applied Bayes rule to compute the posterior evidence for the726

two alternative choices (i.e., the log posterior ratio L) from the sensory evidence available at727

time-point t (i.e., the log likelihood ratio LLR) with the prior probability ψ:728

Lt = LLRt ∗ ωLLR + ψt(Lt−1, H) ∗ ωψ (3)

In the trial-wise design studied here, a transition between the two states of the environment729

(i.e., the sources generating the noisy observations available to the participant) can occur730

at any time. Despite the random nature of the psychophysical paradigms studied here19,20,731

humans and mice showed significant biases toward preceding choices (Figure 2A and 3A).732

We thus assumed that the prior probability of the two possible outcomes depends on the733

posterior choice probability at the preceding trial and the hazard rate H assumed by the734

participant. Following Glaze et al.52, the prior ψ is thus computed as follows:735

ψt(Lt−1, H) = Lt−1 + log(1−H
H

+ exp(−Lt−1))− log(
1−H
H

+ exp(Lt−1)) (4)

In this model, humans, mice and simulated agents make perceptual decision based on noisy736

observations u. The are computed by applying a sensitivity parameter α to the content of737

external sensory information I. For humans, we defined the input I by the two alternative738

states of the environment (outcome A: 0; coutcome B: 1), which generated the the observations739

u through a sigmoid function that applied a sensitivity parameter α:740
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ut = 1
1 + exp(−α ∗ (It − 0.5)) (5)

In mice, the inputs I were defined by the respective stimulus contrast in the two hemifields:741

It = ContrastRight − ContrastLeft (6)

As in humans, we derived the input u by applying a sigmoid function with a sensitivity742

parameter α to input I:743

ut = 1
1 + exp(−α ∗ It)

(7)

For humans, mice and in simulations, the log likelihood ratio LLR was computed from u as744

follows:745

LLRt = log( ut
1− ut

) (8)

To allow for long-range autoccorelation in stimulus- and history-congruence (Figure 2B and746

3B), our modeling approach differed from Glaze et al.52 in that it allows for systematic747

fluctuation in the impact of sensory information (i.e., LLR) and the prior probability748

of choices ψ on the posterior probability L. This was achieved by multiplying the log749

likelihood ratio and the log prior ratio with coherent anti-phase fluctuations according to750

ωLLR = ampLLR ∗ sin(f ∗ t+ phase) + 1 and ωψ = ampψ ∗ sin(f ∗ t+ phase+ π) + 1.751

Model fitting: In model fitting, we predicted the trial-wise choices yt (option A: 0; option B:752

1) from inputs I. To this end, we minimized the log loss between yt and the choice probability753

probt in the unit interval. probt was derived from Lt using a sigmoid function defined by the754

inverse decision temperature ζ:755
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probt = 1
1 + exp(−ζ ∗ Lt)

(9)

This allowed us to infer the free parameters H (lower bound = 0, upper bound = 1; human756

posterior = 0.45 ± 4.8 × 10−5; murine posterior = 0.46 ± 2.97 × 10−4), α (lower bound757

= 0, upper bound = 5; human posterior = 0.5 ± 1.12 × 10−4; murine posterior = 1.06758

± 2.88 × 10−3), ampψ (lower bound = 0, upper bound = 10; human posterior = 1.44 ±759

5.27 × 10−4; murine posterior = 1.71 ± 7.15 × 10−3), ampLLR (lower bound = 0, upper760

bound = 10; human posterior = 0.5 ± 2.02× 10−4; murine posterior = 0.39 ± 1.08× 10−3),761

frequency f (lower bound = 1/40, upper bound = 1/5; human posterior = 0.11 ± 1.68×10−5;762

murine posterior = 0.11 ± 1.63×10−4), phase (lower bound = 0, upper bound = 2*π; human763

posterior = 2.72 ± 4.41× 10−4; murine posterior = 2.83 ± 3.95× 10−3) and inverse decision764

temperature ζ (lower bound = 1, upper bound = 10; human posterior = 4.63 ± 1.95× 10−4;765

murine posterior = 4.82 ± 3.03× 10−3).766

To validate our model, we correlated individual posterior parameter estimates with the767

respective conventional variables. We assumed that, (i), the estimated hazard rate H should768

correlate negatively with the frequency of history-congruent choices and that, (ii), the769

estimated α should correlate positively with the frequency of stimulus-congruent choices. In770

addition, we tested whether the posterior decision certainty (i..e. the absolute of the posterior771

log ratio) correlated negatively with RTs and positively with subjective confidence. This772

allowed us to assess whether our model could explain aspects of the data it was not fitted to773

(i.e., RTs and confidence). Finally, we used simulations (see below) to show that all model774

components, including the anti-phase oscillations governed by ampψ, ampLLR, f and phase,775

were necessary for our model to reproduce the empirical data observed for the Confidence776

database19 and IBL database20.777

Model simulation: We used the posterior model parameters observed for humans (H,778

α, ampψ, ampLLR and f) to define individual parameters for simulation in 4317 simulated779
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participants (i.e., equivalent to the number of human participants). For each participant, the780

number of simulated choices was drawn from a uniform distribution ranging from 300 to 700781

trials. Inputs I were drawn at random for each trial, such that the sequence of inputs to the782

simulation did not contain any systematic seriality. Noisy observations u were generated by783

applying the posterior parameter α to inputs I, thus generating stimulus-congruent choices784

in 71.36 ± 2.6 × 10−3% of trials. Choices were simulated based on the trial-wise choice785

probabilities yprob. Simulated data were analyzed in analogy to the human and murine data.786

As a substitute of subjective confidence, we computed the absolute of the trial-wise posterior787

log ratio |L| (i.e., the posterior decision certainty).788
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7 Figures789

7.1 Figure 1790
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Figure 1. Concept.792

A. In binary perceptual decision-making, a participant is presented with stimuli from two793

categories (A vs. B; dotted line) and reports consecutive perceptual choices via button presses794

(sold line). All panels below refer to this example data.795

B. When the response matched the external stimulus information (i.e., overlap between dotted796

and solid line in panel A), perceptual choices are stimulus-congruent (red line). When the797

response matches the response at the preceding trial, perceptual choices are history-congruent798

(blue line).799

C. The dynamic probabilities of stimulus- and history-congruence (i.e., computed in sliding800

windows of ±5 trials) fluctuate over time.801

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.08.20.457079doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.20.457079


D. The mode of perceptual processing is derived by computing the difference between the802

dynamic probabilities of stimulus- and history-congruence. Values above 0% indicate a803

bias toward external information, whereas values below 0% indicate a bias toward internal804

information.805

E. In computational modeling, internal mode is caused by an enhanced impact of perceptual806

history. This causes the posterior (orange line) to be close to the prior (purple). Conversely,807

during external mode, the posterior is close to the sensory information (log likelihood ratio,808

green line).809
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7.2 Figure 2810
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Figure 2. Internal and external modes in human perceptual decision-making.812

A. In humans, perception was stimulus-congruent in 73.46% ± 0.15% (in red) and history-813

congruent in 52.89% ± 0.12% of trials (in blue; upper panel). History-congruent perceptual814

choices were more frequent when perception was stimulus-incongruent (i.e., on error trials;815

lower panel), indicating that history effects impair performance in randomized psychophysical816

designs.817

B. Relative to randomly permuted data, we found highly significant autocorrelations of818

stimulus-congruence and history-congruence (dots indicate intercepts 6= 0 in trial-wise linear819

mixed effects modeling at p < 0.05). Across trials, the autocorrelation coefficients were820

best fit by an exponential function (adjusted R2 for stimulus-congruence: 0.57; history-821

congruence: 0.72) as compared to a linear function (adjusted R2 for stimulus-congruence:822
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0.56; history-congruence: 0.51).823

C. Here, we depict the number of consecutive trials at which autocorrelation coefficients824

exceeded the respective autocorrelation of randomly permuted data within individual partici-825

pants. For stimulus-congruence (upper panel), the lag of positive autocorrelation amounted826

to 3.24 ± 2.39 × 10−3 on average, showing a peak at trial t+1 after the index trial. For827

history-congruence (lower panel), the lag of positive autocorrelation amounted to 4.87 ±828

3.36× 10−3 on average, peaking at trial t+2 after the index trial.829

D. The smoothed probabilities of stimulus- and history-congruence (sliding windows of ±5830

trials) oscillated as 1/f noise, i.e., at power densities that were inversely proportional to the831

frequency.832

E. The distribution of phase shift between fluctuations in stimulus- and history-congruence833

peaked at half a cycle (π denoted by dotted line).834

F. The average coherence between fluctuations in stimulus- and history-congruence (black835

dottet line) amounted to 6.49 ± 2.07× 10−3%836

G. We observed faster response times (RTs) for both stimulus-congruence (as opposed to837

stimulus-incongruence, β = −0.14 ± 1.61× 10−3, T(1.99× 106) = −85.93, p < 2.2× 10−308)838

and history-congruence (β = −9.68 × 10−3 ± 1.38 × 10−3, T(1.99 × 106) = −7.02, p =839

2.16× 10−12).840

H. The mode of perceptual processing (i.e., the difference between the smoothed probability841

of stimulus- vs. history-congruence) showed a quadratic relationship to RTs, with faster842

response times for stronger biases toward both external sensory information and internal843

predictions provided by perceptual history (β2 = −19.86 ± 0.52, T(1.98× 106) = −38.43,844

p = 5 × 10−323). The horizontal and vertical dotted lines indicate maximum RT and the845

associated mode, respectively.846

I. Confidence was enhanced for both stimulus-congruence (as opposed to stimulus-847
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incongruence, β = 0.49 ± 1.38 × 10−3, T(2.06 × 106) = 352.16, p < 2.2 × 10−308) and848

history-congruence (β = 0.04 ± 1.18× 10−3, T(2.06× 106) = 36.71, p = 7.5× 10−295).849

J. In analogy to RTs, we found a quadratic relationship between the mode of perceptual850

processing and confidence, which increased when both externally- and internally-biased modes851

grew stronger (β2 = 39.3 ± 0.94, T(2.06× 106) = 41.95, p < 2.2× 10−308). The horizontal852

and vertical dotted lines indicate mimimum confidence and the associated mode, respectively.853
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7.3 Figure 3854
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Figure 3. Internal and external modes in murine perceptual decision-making.856

A. In mice, 81.37% ± 0.3% of trials were stimulus-congruent (in red) and 54.03% ± 0.17% of857

trials were history-congruent (in blue; upper panel). History-congruent perceptual choices858

were not a consequence of the experimental design, but a source of error, as they were more859

frequent on stimulus-incongruent trials (lower panel).860

B. Relative to randomly permuted data, we found highly significant autocorrelations of861

stimulus-congruence and history-congruence (dots indicate intercepts 6= 0 in trial-wise linear862

mixed effects modeling at p < 0.05). Please note that the negative autocorrelation of stimulus-863

congruence at trial 2 was a consequence of the experimental desgin (see Supplemental Figure864

2D-F). As in humans, autocorrelation coefficients were best fit by an exponential function865

(adjusted R2 for stimulus-congruence: 0.44; history-congruence: 0.52) as compared to a linear866
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function (adjusted R2 for stimulus-congruence: 3.16× 10−3; history-congruence: 0.26).867

C. For stimulus-congruence (upper panel), the lag of positive autocorrelation was longer in868

comparison to humans (4.59 ± 0.06 on average). For history-congruence (lower panel), the869

lag of positive autocorrelation was sligthly shorter relative to humans (2.58 ± 0.01 on average,870

peaking at trial t+2 after the index trial).871

D. In mice, the dynamic probabilities of stimulus- and history-congruence (sliding windows872

of ±5 trials) fluctuated as 1/f noise.873

E. The distribution of phase shift between fluctuations in stimulus- and history-congruence874

peaked at half a cycle (π denoted by dotted line).875

F. The average coherence between fluctuations in stimulus- and history-congruence (black876

dottet line) amounted to 3.45 ± 0.01%877

G. We observed shorter trial durations (TDs) for stimulus-congruence (as opposed to stimulus-878

incongruence, β = −1.12 ± 8.53 × 10−3, T(1.34× 106) = −131.78, p < 2.2 × 10−308), but879

longer TDs for history-congruence (β = 0.06 ± 6.76 × 10−3, T(1.34 × 106) = 8.52, p =880

1.58× 10−17).881

H. TDs decreased monotonically for stronger biases toward external mode (β1 = −4.36× 104
882

± 1.27× 103, T(1.24× 106) = −34.31, p = 8.43× 10−258). The horizontal and vertical dotted883

lines indicate maximum TD and the associated mode, respectively.884

I. For TDs that differed from the median TD by no more than 1.5 x MAD (median absolute885

distance50), mice exhibited a quadratic component in the relationship between the mode886

of sensory processing and TDs (β2 = −2.02 × 103 ± 835.64, T(1.1 × 106) = −2.42, p =887

0.02, Figure 3I). This explorative post-hoc analysis focuses on trials at which mice engage888

more swiftly with the experimental task. The horizontal and vertical dotted lines indicate889

maximum TD and the associated mode, respectively.890
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7.4 Figure 4891
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Figure 4. Internal and external modes in simulated perceptual decision-making.893

A. Simulated perceptual choices were stimulus-congruent in 71.36% ± 0.17% (in red) and894

history-congruent in 51.99% ± 0.11% of trials (in blue; T(4.32×103) = 17.42, p = 9.89×10−66;895

upper panel). Due to the competition between stimulus- and history-congruence, history-896

congruent perceptual choices were more frequent when perception was stimulus-incongruent897

(i.e., on error trials; T(4.32× 103) = 11.19, p = 1.17× 10−28; lower panel) and thus impaired898

performance in the randomized psychophysical design simulated here.899

B. At the simulated group level, we found significant autocorrelations in both stimulus-900

congruence (13 consecutive trials) and history-congruence (30 consecutive trials).901

C. On the level of individual simulated participants, autocorrelation coefficients exceeded the902

autocorrelation coefficients of randomly permuted data within a lag of 2.46 ± 1.17× 10−3
903
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trials for stimulus-congruence and 4.24 ± 1.85× 10−3 trials for history-congruence.904

D. The smoothed probabilities of stimulus- and history-congruence (sliding windows of ±5905

trials) oscillated as 1/f noise, i.e., at power densities that were inversely proportional to the906

frequency (power ~ 1/fβ; stimulus-congruence: β = −0.81 ± 1.18× 10−3, T(1.92× 105) =907

−687.58, p < 2.2× 10−308; history-congruence: β = −0.83 ± 1.27× 10−3, T(1.92× 105) =908

−652.11, p < 2.2× 10−308).909

E. The distribution of phase shift between fluctuations in simulated stimulus- and history-910

congruence peaked at half a cycle (π denoted by dotted line). The dynamic probabilities of911

simulated stimulus- and history-congruence were therefore were strongly anti-correlated (β =912

−0.03 ± 8.22× 10−4, T(2.12× 106) = −40.52, p < 2.2× 10−308).913

F. The average coherence between fluctuations in simulated stimulus- and history-congruence914

(black dottet line) amounted to 6.49 ± 2.07× 10−3%.915

G. Simulated confidence was enhanced for stimulus-congruence (β = 0.03 ± 1.71 × 10−4,916

T(2.03× 106) = 178.39, p < 2.2× 10−308) and history-congruence (β = 0.01 ± 1.5× 10−4,917

T(2.03× 106) = 74.18, p < 2.2× 10−308).918

H. In analogy to humans, the simulated data showed a quadratic relationship between the919

mode of perceptual processing and posterior certainty, which increased for stronger external920

and internal biases (β2 = 31.03 ± 0.15, T(2.04 × 106) = 205.95, p < 2.2 × 10−308). The921

horizontal and vertical dotted lines indicate mimimum posterior certainty and the associated922

mode, respectively.923
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8 Supplemental Items924

8.1 Supplemental Figure S1925
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Supplemental Figure S1. Stimulus- and history-congruence.927

A. Stimulus-congruent choices in humans amounted to 73.46% ± 0.15% of trials and were928

highly consistent across the experiments selected from the Confidence Database.929

B. History-congruent choices in humans amounted to 52.89% ± 0.12% of trials. In analogy930

to stimulus-congruence, the prevalence of history-congruence was highly consistent across the931

experiments selected from the Confidence Database. 50% of experiments showed significant932

(p < 0.05) attractive biases toward preceding choices, whereas 3.03% of experiments showed933

significant repulsive biases.934

C. In humans, we found an enhanced impact of perceptual history in participants who were935
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less sensitive to external sensory information (T(4.3 × 103) = −14.32, p = 1.72 × 10−45),936

suggesting that perception results from the competition of external with internal information.937

D. In analogy to humans, mice that were less sensitive to external sensory information938

showed stronger biases toward perceptual history (T(163) = -7.52, p = 3.44× 10−12, Pearson939

correlation).940
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8.2 Supplemental Figure S2941
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Supplemental Figure S2. Controlling for task difficulty and external stimulation.943

In this study, we found highly significant autocorrelations of stimulus- and history-congruence944

in humans as well as in mice. Here, we show that these autocorrelations are not a trivial945

consequence of task difficulty or the sequence external stimulation. In addition, we com-946

puted trial-wise logistic regression coefficients as an alternative approach to assessing serial947

dependencies in stimulus- and history-congruence.948

A. In humans, task difficulty (in green) showed a significant autocorrelated starting at the949

5th trial (upper panel, dots at the bottom indicate intercepts 6= 0 in trial-wise linear mixed950

effects modeling at p < 0.05). When controlling for task difficulty, linear mixed effects951

modeling indicated a significant auto-correlation of stimulus-congruence (in red) for the first952

3 consecutive trials (middle panel). 20% of trials within the displayed time window remained953

significantly autocorrelated. The autocorrelation of history-congruence (in blue) remained954
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significant for the first 11 consecutive trials (64% significantly autocorrelated trials within955

the displayed time window). At the level of individual participants, the autocorrelation of956

task difficulty exceeded the respective autocorrelation of randomly permuted within a lag of957

21.66 ± 8.37× 10−3 trials (lower panel).958

B. The sequence of external stimulation (i.e., which of the two binary outcomes was supported959

by the presented stimuli; depicted in green) was negatively autocorrelated for 1 trial. When960

controlling for the autocorrelation of external stimulation, stimulus-congruence remained961

significantly autocorrelated for 22 consecutive trials (88% of trials within the displayed962

time window; lower panel) and history-congruence remained significantly autocorrelated963

for 20 consecutive trials (84% of trials within the displayed time window). At the level of964

individual participants, the autocorrelation of external stimulation exceeded the respective965

autocorrelation of randomly permuted within a lag of 2.94 ± 4.4× 10−3 consecutive trials966

(lower panel).967

C. As an alternative to group-level autocorrelation coefficients, we used trial-wise logistic968

regression to quantify serial dependencies in stimulus- and history-congruence. This analysis969

predicted stimulus- and history-congruence at the index trial (trial t = 0, vertical line) based970

on stimulus- and history-congruence at the 10 preceding trials. Mirroring the shape of the971

group-level autocorrelations, trial-wise regression coefficients increased exponentially toward972

the index trial.973

D. In mice, task difficulty showed an significant autocorrelated for the first 25 consecutive trials974

(upper panel). When controlling for task difficulty, linear mixed effects modeling indicated a975

significant auto-correlation of stimulus-congruence for the first 36 consecutive trials (middle976

panel). In total, 100% of trials within the displayed time window remained significantly977

autocorrelated. The autocorrelation of history-congruence remained significant for the first978

8 consecutive trials, with 84% significantly autocorrelated trials within the displayed time979

window. At the level of individual mice, autocorrelation coefficients for difficulty were elevated980
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above randomly permuted data within a lag of 15.13 ± 0.19 consecutive trials (lower panel).981

E. In mice, the sequence of external stimulation (i.e., which of the two binary outcomes was982

supported by the presented stimuli) was negatively autocorrelated for 11 consecutive trials983

(upper panel). When controlling for the autocorrelation of external stimulation, stimulus-984

congruence remained significantly autocorrelated for 86 consecutive trials (100% of trials985

within the displayed time window; middle) and history-congruence remained significantly986

autocorrelated for 8 consecutive trials (84% of trials within the displayed time window). At987

the level of individual mice, autocorrelation coefficients for external stimulation were elevated988

above randomly permuted data within a lag of 2.53 ± 9.8× 10−3 consecutive trials (lower989

panel).990

F. Following our results in human data, regression coefficients that predicted history-991

congruence at the index trial (trial t = 0, vertical line) increased exponentially for trials992

closer to the index trial. In contrast to history-congruence, stimulus-congruence showed a993

negative regression weight (or autocorrelation coefficient, see Figure 3B) at trial -2. This994

was due to the experimental design (see also the autocorrelations of difficulty and external995

stimulation in Supplemental Figure S2C and D): When mice made aerrors on easy trials996

(contrast ≥ 50%), the upcoming stimulus was shown at the same spatial location and at997

high contrast. This increased the probability of stimulus-congruent perceptual choices after998

stimulus-incongruent perceptual choices at easy trials, thereby creating a negative regression999

weight (or autocorrelation coefficient) of stimulus-congruence at trial -2.1000
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8.3 Supplemental Figure S31001
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Supplemental Figure S3. Logistic regression A. To ensure that perceptual history1003

played a significant role in perception despite the ongoing stream of external information, we1004

tested whether human perceptual decision-making was better explained by the combination of1005

external and internal information or, alternatively, by external information alone. To this end,1006

we compared Aikake information criteria between logistic regression models that predicted1007

trial-wise perceptual responses either by both current external sensory information and the1008

preceding percept, or by external sensory information alone (values above zero indicate a1009

superiority of the full model). With high consistency across the experiments selected from the1010

Confidence Database, this model-comparison confirmed that perceptual history contributed1011

significantly to perception (difference in AIC = 8.07 ± 0.53, T(57.22) = 4.1, p = 1.31× 10−4).1012

B. Participant-wise regression coefficients amount to 0.18 ± 0.02 for the effect of perceptual1013

history and 2.51 ± 0.03 for external sensory stimulation.1014
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C. In mice, an AIC-based model comparison indicated that perception was better explained1015

by logistic regression models that predicted trial-wise perceptual responses based on both1016

current external sensory information and the preceding percept (difference in AIC = 88.62 ±1017

8.57, T(164) = 10.34, p = 1.29× 10−19).1018

D. In mice, individual regression coefficients amounted to 0.42 ± 0.02 for the effect of1019

perceptual history and 6.91 ± 0.21 for external sensory stimulation.1020
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8.4 Supplemental Figure S41021
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Supplemental Figure S4. History-/stimulus-congruence and TDs during training1023

of the basic task.1024

Here, we depict the progression of history- and stimulus-congruence (depicted in blue and1025

red, respectively; left panel) as well as TDs (in green; right panel) across training sessions in1026

mice that achieved proficiency (i.e., stimulus-congruence ≥ 80%) in the basic task of the IBL1027

dataset. We found that both history-congruent perceptual choices (β = 0.13 ± 4.67× 10−3,1028

T(8.4 × 103) = 27.04, p = 1.96 × 10−154) and stimulus-congruent perceptual choices (β =1029

0.34 ± 7.13 × 10−3, T(8.51 × 103) = 47.66, p < 2.2 × 10−308) became more frequent with1030

training. As in humans, mice showed shorter TDs with increas exposure to the task (β =1031

−22.14 ± 17.06, T(1.14× 103) = −1.3, p < 2.2× 10−308).1032
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8.5 Supplemental Figure S51033
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Supplemental Figure S5. Control Simulation: Reduced models. Here, we show1035

group-level autocorrelations for reduced models. The dots at the bottom indicate a significant1036

difference to randomly permuted data (intercept 6= 0 at p < 0.05).1037

A. When removing the accumulation of information across trials from the model (i.e., by1038

settings the Hazard rate H to 0.5), we did not observe a significant autocorrelation of1039

history-congruence beyond the first trial, whereas the autocorrelation of stimulus-congruence1040

was preserved.1041

B. When removing all slow oscillations from the model (i.e., by setting both ampLLR and ampψ1042

to zero), we did not find significant autocorrelations for stimulus-congruence. Likewise, we1043

did not observe any autocorrelation of history-congruence beyond the first three consecutive1044

trials.1045
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C. When removing the slow oscillation only from the likelihood term (i.e., by setting ampLLR1046

= 0), we did not observe any significant autocorrelation of stimulus-congruence beyond the1047

first time, whereas the autocorrelation of history-congruence was preserved.1048

D. When removing the slow oscillation only from the prior term (i.e., by setting amppsi =1049

0), we obeserved that the autocorrelation coefficients for history-congruence were reduced1050

below the autocorrelation coefficients of stimulus-congruence. This is an approximately1051

five-fold reduction relative to the empirical results observed in humans (Figure 2B), where the1052

autocorrelation of history-congruence was above the autocorrelation of stimulus-congruence.1053

Moreover, in the reduced model shown here, the number of consecutive trials that showed1054

significant autocorrelation of history-congruence was reduced to 11 (empirical data in humans:1055

significant autocorrelation for 21 consecutive trials).1056
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8.6 Supplemental Figure S61057
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Supplemental Figure S6. Reset-Rebounce. Here, we show group-level autocorrelations1059

for a reset-rebound-model54 which assumes that errors cause perception to switch between1060

two regimes: After an error, internal predictions became irrelavent for perceptual decision-1061

making (reset: H = 0.5) until the agent makes a correct decision. After that, the agent1062

restarts to accumulate sensory information across sucessive trials (rebounce: H 6= 0.5), until1063

the next errors occurs. Simulation based on this model did not reproduce any significant1064

autocorrelation of stimulus- or history-congruence beyond the second or first trial, respectively.1065
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8.7 Supplemental Table T11066

Authors Journal Year

Bang, Shekhar, Rahnev JEP:General 2019

Bang, Shekhar, Rahnev JEP:General 2019

Calder-Travis, Charles, Bogacz, Yeung Unpublished NA

Clark & Merfeld Journal of Neurophysiology 2018

Clark Unpublished NA

Faivre, Filevich, Solovey, Kuhn, Blanke Journal of Neuroscience 2018

Faivre, Vuillaume, Blanke, Cleeremans bioRxiv 2018

Filevich & Fandakova Unplublished NA

Gajdos, Fleming, Saez Garcia, Weindel, Davranche Neuroscience of Consciousness 2019

Gherman & Philiastides eLife 2018

Haddara & Rahnev PsyArXiv 2020

Haddara & Rahnev PsyArXiv 2020

Hainguerlot, Vergnaud, & de Gardelle Scientific Reports 2018

Hainguerlot, Gajdos, Vergnaud, & de Gardelle Unpublished NA

Jachs, Blanco, Grantham-Hill, Soto JEP:HPP 2015

Jachs, Blanco, Grantham-Hill, Soto JEP:HPP 2015

Jachs, Blanco, Grantham-Hill, Soto JEP:HPP 2015

Jaquiery, Yeung Unpublished NA

Kvam, Pleskac, Yu, Busemeyer PNAS 2015

Kvam, Pleskac, Yu, Busemeyer PNAS 2015

Kvam and Pleskac Cognition 2016

Law, Lee Unpublished NA

Lebreton, et al. Sci. Advances 2018

Lempert, Chen, & Fleming PlosOne 2015

Locke*, Gaffin-Cahn*, Hosseinizaveh, Mamassian, & Landy Attention, Perception, & Psychophysics 2020

Maniscalco, McCurdy,Odegaard, & Lau J Neurosci 2017

Maniscalco, McCurdy,Odegaard, & Lau J Neurosci 2017

Maniscalco, McCurdy,Odegaard, & Lau J Neurosci 2017

Maniscalco, McCurdy,Odegaard, & Lau J Neurosci 2017

Martin, Hsu Unpublished NA

Massoni & Roux Journal of Mathematical Psychology 2017

Massoni Unpublished NA

Mazor, Friston & Fleming eLife 2020

Mei, Rankine,Olafsson, Soto bioRxiv 2019

Mei, Rankine,Olafsson, Soto bioRxiv 2019

O’Hora, Zgonnikov, Kenny, Wong-Lin Fechner Day proceedings 2017

O’Hora, Zgonnikov, CiChocki Unpublished NA
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(continued)

Authors Journal Year

O’Hora, Zgonnikov, Neverauskaite Unpublished NA

Palser et al Consciousness & Cognition 2018

Pereira, Faivre, Iturrate et al. bioRxiv 2018

Prieto et al. Submitted NA

Rahnev et al J Neurophysiol 2013

Rausch & Zehetleitner Front Psychol 2016

Rausch et al Attention, Perception, & Psychophysics 2018

Rausch et al Attention, Perception, & Psychophysics 2018

Rausch, Zehetleitner, Steinhauser, & Maier NeuroImage 2020

Recht, de Gardelle & Mamassian Unpublished NA

Reyes et al. PlosOne 2015

Reyes et al. Submitted NA

Rouault, Seow, Gillan, Fleming Biol. Psychiatry 2018

Rouault, Seow, Gillan, Fleming Biol. Psychiatry 2018

Rouault, Dayan, Fleming Nat Commun 2019

Sadeghi et al Scientific Reports 2017

Schmidt et al. Consc Cog 2019

Shekhar & Rahnev J Neuroscience 2018

Shekhar & Rahnev PsyArXiv 2020

Sherman et al Journal of Neuroscience 2016

Sherman et al Journal of Cognitive Neuroscience 2016

Sherman et al Unpublished NA

Sherman et al Unpublished NA

Siedlecka, Wereszczywski, Paulewicz, Wierzchon bioRxiv 2019

Song et al Consciousness & Cognition 2011

van Boxtel, Orchard, Tsuchiya bioRxiv 2019

van Boxtel, Orchard, Tsuchiya bioRxiv 2019

Wierzchon, Paulewicz, Asanowicz, Timmermans & Cleeremans Consciousness and Cognition 2014

Wierzchon, Anzulewicz, Hobot, Paulewicz & Sackur Consciousness and Cognition 2019
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