
ColabFold - Making protein folding accessible to all
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ColabFold offers accelerated protein structure and complex predictions by combining the fast homology search of MMseqs2 with AlphaFold2
or RoseTTAFold. ColabFold’s 20−30x faster search and optimized model use allows predicting thousands of proteins per day on a server
with one GPU. Coupled with Google Colaboratory, ColabFold becomes a free and accessible platform for protein folding. ColabFold is open-
source software available at github.com/sokrypton/ColabFold. Its novel environmental databases are available at colabfold.mmseqs.com
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Predicting the three-dimensional structure of a protein from
its sequence alone remains an unsolved problem. However,
by exploiting the information in multiple sequence alignments
(MSAs) of related proteins as raw input features for end-to-
end training, AlphaFold2 [1] was able to predict the 3D atomic
coordinates of folded protein structures at an median GDT-TS
of 92.4% in the latest CASP14 [2] competition. The accuracy
of many of the predicted structures was within the error mar-
gin of experimental structure determination methods. Many
ideas of AlphaFold2 were independently reproduced and im-
plemented in RoseTTAFold [3]. Additionally to single chain
predictions, RoseTTAFold was shown to model protein com-
plexes. Evans et al. [3] also announced a refined version of
AlphaFold2 for complex prediction. Thus, two highly accurate
open-source prediction methods are now publicly available.

In order to leverage the power of these methods researchers
require powerful compute-capabilities. First, to build diverse
MSAs, large collections of protein sequences from public refer-
ence [4] and environmental [1, 5] databases are searched using
the most sensitive homology detection methods HMMer [6]
and HHblits [7]. Due to the large database sizes these searches
can take up to hours for a single protein, while requiring over
two terabyte of storage space alone. Second, to execute the
deep neural networks GPUs with a large amount of GPU RAM
are required even for relatively common protein sizes of ∼1000
residues. Though, for these the MSA generation dominates
the overall run-time (Supplementary Fig. 1).

To enable researchers without these resources to use Al-
phaFold2 independent solutions based on Google Colabora-
tory were developed. Colaboratory is a proprietary version
of Jupyter Notebook hosted by Google. It is accessible for
free to logged-in users and includes access to powerful GPUs.
Tunyasuvunakool et al. [8] developed an AlphaFold2 Jupyter
Notebook for Google Colaboratory (referred to as AlphaFold-
Colab), where the input MSA is built by searching with HM-
Mer against a clustered UniProt and an eight-fold reduced en-
vironmental databases. Resulting in less accurate predictions,
while still requiring long search times.
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FIG. 1. (a) ColabFold sends a FASTA input sequence to a MM-
seqs2 server searching two databases UniRef100 and a database of
environmental sequences with three profile-search iterations each.
The second database is searched using a sequence-profile gener-
ated from the UniRef100 search as input. The server generates two
MSAs in A3M format containing all detected sequences. (b1) For
single structure predictions we filter both A3Ms using a diversity
aware filter and return this to be provided as the MSA input feature
to the AlphaFold2 models. (b2) For complex prediction we pair the
top hits within the same species to resolve the inter-complex con-
tacts and additionally add two unpaired MSAs (same to b1) to
guide the structure prediction. (c) To help researchers judge the
prediction quality we visualize MSA depth and diversity and show
the AlphaFold2 confidence measures (pLDDT and PAE).

Here, we present ColabFold, a fast and easy to use soft-
ware for protein structure and homo- and heteromer complex
prediction, for use as a Jupyter Notebook inside Google Co-
laboratory, on researchers’ local computers as a notebook or
through a command line interface. ColabFold speed-ups the
prediction by replacing the AlphaFold2’s input feature gener-
ation stage with a fast MMseqs2 [9, 10] search. It addition-
ally implements speed-ups for predictions of multiple struc-
tures by avoiding recompilation and adding early stop crite-
ria. We show that ColabFold outperforms AlphaFold-Colab
and matches AlphaFold2 on CASP14 targets while being 20-
30 times faster. ColabFold can compute a proteome (excluding
proteins >1000 residues) in 41 hours on a consumer GPU.
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FIG. 2. (a) Structure prediction comparison of AlphaFold2 (yellow), AlphFold-Colab (green) and ColabFold with BFD/MGnify (blue) and
with the ColabFoldDB (magenta) using predictions of 96 domains of 69 CASP14 targets. The 28 domains from the 20 free-modeling (FM)
targets are shown first. FM targets were used to optimize MMseqs2 search parameters. Each target was evaluated for each individual
domain (in total 96 domains). (b) MSA generation time for each CASP14 FM target sorted by protein length (same colors as before).
FM target T1064 shown separately to improve readability. (c) Comparison of ColabFold complex predictions with unpaired (red) and
unpaired+paired (blue) MSA-pairing modes, the databases BFD/MGnify (left of line) and ColabFoldDB (right). See Supplementary
Fig. 2 for comparison to paired-only mode.

ColabFold (Fig. 1) consists of three parts: (1) An MMseqs2
based homology search server to build diverse MSAs and to
find templates. The server efficiently aligns input sequence(s)
against the UniRef100, the PDB70 and an environmental se-
quence set. (2) A Python library that communicates with the
MMseqs2 search server, prepares the input features for (single
or complex) structure inference, and visualizes of results. This
library also implements a command line interface. (3) Jupyter
notebooks for basic, advanced and batch use (Methods “Co-
labFold notebooks”) using the Python library.

In ColabFold we replace the sensitive search methods HM-
Mer and HHblits by MMseqs2. We optimized the MSA gener-
ation by MMseqs2 to have the following three properties: (1)
MSA generation should be fast. (2) The MSA has to capture
diversity well and (3) it has to be small enough to run on GPUs
with limited RAM. Reducing the memory requirement is es-
pecially helpful in Google Colaboratory where the provided
GPU is selected from a pool with widely differing capabilities.
While (1) is achieved through the fast MMseqs2 prefilter for
(2 and 3) we developed a search workflow to maximize sen-
sitivity (Methods “MSA generation”) and a new filter that

samples the sequence space evenly (Methods “New diversity
aware filter” and Supplementary Fig. 3). Prediction qual-
ity highly depends on the input MSA. However, often only a
few (∼30) sufficiently diverse sequences are enough to produce
high quality predictions [1].

Additionally, we combined the BFD and MGnify databases
that are used in AlphaFold2 by HHblits and HMMer respec-
tively into a combined redundancy reduced version we refer to
as BFD/MGnify (Methods “Reducing size of BFD/MGnify”).
The environmental search database presented an opportunity
to improve structure predictions of non-bacterial sequences,
as e.g., eukaryotic protein diversity is not well represented in
the BFD and MGnify databases. Limitations in assembly and
gene calling due to complex intron/exon structures result in
under representation in reference databases. We therefore ex-
tended the BFD/MGnify with additional metagenomic protein
catalogues containing eukaryotic proteins [11, 12, 13], phage
catalogues [14, 15] and an updated version of MetaClust [16].
We refer to this database as ColabFoldDB (Methods “Colab-
FoldDB”). In Supplementary Fig. 4 we show that the Co-
labFoldDB in comparison to the BFD/MGnify produces more
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diverse MSAs for PFAM [17] domains with < 30 members.
To compare the accuracy of predicted structures we

compared AlphaFold2 (default settings with templates),
AlphaFold-Colab (no templates), and ColabFold (no tem-
plates) with the BFD/MGnify and ColabFoldDB on TM-
scores for all targets from the CASP14 competition (Fig. 2a),
split by free modeling (FM) targets on the left and the re-
maining ones on the right. We show this split as we used the
FM-targets for optimization of search workflow parameters.

The mean TM-scores for the FM targets are 0.826, 0.818,
0.79 and 0.744 for ColabFold (BFD/MGnify), ColabFold (Co-
labFoldDB), AlphaFold2 and the AlphaFold-Colab, respec-
tively. Over all CASP14 targets the TM-scores are 0.88, 0.877
and 0.88 for the former three respectively. For AlphaFold-
Colab we measured TM-scores only for FM targets as it cannot
be used stand-alone.

ColabFold could not predict T1084 well as MMseqs2 sup-
presses all databases hits as false positives due to its amino
acid composition filter and masking procedure. If these filters
are deactivated T1084 can be predicted with an TM-score of
0.872 (Supplementary Fig. 5).

ColabFold is on average 5x faster for single predictions than
AlphaFold2 and AlphaFold-Colab, when taking both MSA
generation (Fig. 2b) and model inference into account.

AlphaFold2 itself has no capabilities to model complexes.
However, we found that by combining two sequences with
a glycine linker [18] it could often successfully model com-
plexes. Shortly afterwards, Baek [19] found that incrementing
the model-internal residue index - the method that was used
in RoseTTAFold - could also be used in AlphaFold2.

For high quality predictions it was shown that sequences
should be provided in paired-form to AlphaFold2 [20]. We im-
plemented a similar pairing procedure (Methods “MSA pair-
ing for complex prediction”) and show the complex prediction
capabilities of ColabFold in Fig. 2c. We achieve high accu-
racy in complex prediction in two datasets from Ovchinnikov
et al. [21] and the CASP14 protein complex targets with two
unique sequences (Methods “Complex Benchmark” for bench-
mark details). We note though that the structures from [21]
were already public and were likely used as individual chains
during the training of AlphaFold2.

Fig. 3 shows two examples of ColabFold’s complex predic-
tion capabilities: (a) shows a homo-six-mer and (b) shows
a D-methionine transport system composed of three different
proteins. For single structure prediction AlphaFold2 provides
a pLDDT measure to indicate the prediction quality. A high
pLDDT does not necessarily indicate a correct complex pre-
diction, though the inter-complex predicted alignment error
(PAE) helps to rank complexes. We visualize plots of PAE
and complex conformation to help users judge the prediction
quality of a complex. An example for heteromer complex pre-
diction is shown in Supplementary Fig. 6 with its PAE plot.
Furthermore, ColabFold complexes were successfully used to
aid the cryo-EM structure determination of the 120 MDa hu-
man nucleopore complex [22].

In ColabFold we expose many internal parameters of Al-
phaFold2 to aid users to model difficult targets, such as the
recycle count (default 3). It controls the number of times the
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FIG. 3. Anecdotal examples showcasing the capabilities of ad-
vanced ColabFold features. (a) Setting the homo-oligomer set-
ting to 6, allows modeling of the homo-6-mer structure of 4-
Oxalocrotonate Tautomerase. Colored by chain (top), pLDDT
(predicted Local Distance Difference Test, bottom). The inter PAE
(Predicted Aligned Error) between chains is very low indicating a
confident prediction. (b) Providing three different proteins with
2:1:2 homo-oligomer setting allows modeling a hetero-complex with
mismatching symmetries of the D-methionine transport system.

prediction is repeatedly feed through the model. For diffi-
cult targets as well as for designed proteins without known
homologs additional recycling iterations can result in a high
quality prediction (Supplementary Fig. 7).

To meet the demand for high throughput structure predic-
tion we introduced several features in ColabFold. (1) MSA
generation can be executed in batch-mode independently from
model batch-inference. (2) We compile only two of the five Al-
phaFold2 models and reuse weights. (3) We provide a batch
execution mode, that avoids recompilation for sequences of
similar length. (4) We implement early stop criteria, to avoid
running additional recycles or models if a sufficiently accurate
structure was already found. All together, we show that the
proteome of 1762 proteins shorter than 1000 aa of the archaeon
Methanocaldococcus jannaschii can be predicted in 40h on one
Nvidia RTX 3090 (Methods “Proteome Benchmark”).

ColabFold builds beyond the initial offerings of Alphafold2
by improving its sequence search, providing tools for modeling
homo- and heteromer complexes, exposing advanced function-
ality, expanding the environmental databases and performing
structure prediction in batch within a minute.

In summary, ColabFold makes high quality protein struc-
ture prediction accessible and additionally provides novel
features to explore the full potential of AlphaFold2 and
RoseTTAFold.
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MATERIALS AND METHODS

ColabFold notebooks ColabFold has four main Jupyter
notebooks [23]: AlphaFold2_mmseqs2 for basic use that sup-
ports protein structure prediction using (1) MSAs gener-
ated by MMseqs2, (2) custom MSA upload, (3) using tem-
plate information, (4) relaxing the predicted structures us-
ing amber force fields [24], and (5) monomer complex pre-
diction. AlphaFold2_advanced for advanced users addition-
ally supports (6) MSA generation using HMMer (same as
AlphaFold-Colab), (7) the sampling of diverse structures by
iterating through a series of random seeds (num_samples),
and (8) control of AlphaFold2 model internals, such as chang-
ing the number of recycles (max_recycle), number of ensem-
bles (num_ensemble), and enabling the stochastic part of the
models via the (is_training) option. AlphaFold2_batch
for batch prediction of multiple sequences or MSAs. The
batch notebook saves time by avoiding recompilation of the
AlphaFold2 models (“Avoid recompiling during batch compu-
tation”) for each individual input sequence. RoseTTAFold for
basic use of RoseTTAFold that supports protein structure pre-
diction using (1) MSAs generated by MMseqs2, (2) custom
MSAs and (4) sidechain prediction using SCWRL4 [25].
ColabFold command line interface We initially focused
on making ColabFold as widely available as possible through
our Notebooks running in Google Colaboratory. To meet the
demand for a version that runs on local users’ machines, we
released “LocalColabFold”. LocalColabFold can take com-
mand line arguments to specify an input FASTA file, an out-
put directory, and various options to tweak structure predic-
tions. LocalColabFold runs on wide range of operating sys-
tems, such as Windows 10 or later (using Windows Subsys-
tem for Linux 2), macOS, and Linux. The structure inference
and energy minimization are accelerated if a CUDA 11.1 or
later compatible GPU is present. LocalColabFold is available
as free open-source software at github.com/YoshitakaMo/
localcolabfold.

Specifically for running large numbers of protein complexes
or structure predictions e.g., for an entire proteome (Methods
“Proteome benchmark”), we provide the colabfold_batch
command line tool through the colabfold python package.
It can be installed with pip install colabfold, followed
by pip install -U "jax[cuda]" -f https://storage.
googleapis.com/jax-releases/jax_releases.html. It
can be used as colabfold_batch input_file_or_directory
output_directory, supporting FASTA, A3M and CSV files
as input.
MSA generation by MMseqs2 ColabFold sends the query
sequence to a MMseqs2 server [12]. It searches the sequence(s)
with three iterations against the consensus sequences of the
UniRef30, a clustered version of the UniRef100 [26]. We ac-
cept hits with an E-value of lower than 0.1. For each hit, we
realign its respective UniRef100 cluster member using the pro-
file generated by the last iterative search, filter them (Methods
“New diversity aware filter”) and add these to the MSA. This
expanding search results in a speed up of ∼10x as only 29.3
million cluster consensus sequence are searched instead of all
277.5 million UniRef100 sequences. Additionally, it has the

advantages to be more sensitive since the cluster consensus
sequences are used. We use the UniRef30 sequence-profile to
perform an iterative search against the BFD/MGnify or Co-
labFoldDB using the same parameters, filters and expansion
strategy.
New diversity aware filter To limit the number of hits
in the final MSA we use the HHblits diversity filtering
algorithm [8] implemented in MMseqs2 in multiple stages:
(1) During UniRef cluster expansion, we filter each individual
UniRef30 cluster before adding the cluster members to the
MSA, such that no cluster-pair has a higher maximum
sequence identity than 95% (--max-seq-id 0.95. (2) After
realignment enable only the --qsc 0.8 threshold and disable
all other thresholds (--qid 0 --diff 0 --max-seq-id
1.0). Additionally, the qsc filtering is only used if least 100
hits were found (--filter-min-enable 100). (3) During
MSA construction we filter again with the following pa-
rameters: --filter-min-enable 1000 --diff 3000 --qid
0.0,0.2,0.4,0.6,0.8,1.0 --qsc 0 --max-seq-id 0.95.
Here, we extended the HHblits filtering algorithm to filter
within a given sequence identity bucket, such that it cannot
eliminate redundancy across filter buckets. Our filter keeps
the 3000 most diverse sequences in the identity buckets
]0.0-0.2], ]0.2-0.4], ]0.4-0.6], ]0.6-0.8] and ]0.8-1.0]. In buckets
containing less than 1000 hits we disable the filtering.
New MMseqs2 pre-computed index to support ex-
panding cluster members MMseqs2 was initially built to
perform fast many-against-many sequence searches. Mirdita
et al. [11] improved it to also support fast single-against-
many searches. This type of search requires the database
to be index and stored in memory. mmseqs createindex in-
dexes the sequences and stores all time-consuming-to-compute
data structures used for MMseqs2 searches to disk. We load
the index into the operating systems cache using vmtouch
(github.com/hoytech/vmtouch) to allow calls to the different
MMseqs2 modules become near-overhead free. We extended
the index to store, in addition to the already present cluster
consensus sequences, all member sequences and the pairwise
alignments of the cluster representatives to the cluster mem-
bers. With these resident in cache, we eliminate the overhead
of the remaining module calls.
Reducing size of BFD/MGnify To keep all required se-
quences and data structures in memory we needed to reduce
the size of the environmental databases BFD and MGnify, as
both databases together would have required ∼517 GB RAM
for headers and sequences alone.

BFD is a clustered protein database consisting of ∼2.2
billion proteins organized in 64 million clusters. MGnify
(2019_05) contains ∼300 million environmental proteins. We
merged both databases by searching the MGnify sequences
against the BFD cluster representative sequences using MM-
seqs2. Each MGnify sequence with a sequence identity of
>30% and a local alignment that covers at least 90% of its
length is assigned to the respective BFD cluster. All unas-
signed sequences are clustered at 30% sequence identity and
90% coverage (--min-seq-id 0.3 -c 0.3 --cov-mode 1 -s
3) and merged with the BFD clusters, resulting in 182 million
clusters. In order to reduce the size of the database we fil-
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tered each cluster keeping only the 10 most diverse sequences
using (mmseqs filterresult --diff 10). This reduced the
total number of sequences from 2.5 billion to 513 million, thus
requiring only 84 GB RAM for headers and sequences.
ColabFoldDB We built ColabFoldDB by expanding the
BFD/MGnify with metagenomic sequences from various en-
vironments. To update the database, we searched the pro-
teins from the SMAG (eukaryotes) [14], MetaEuk (eukary-
otes) [13], TOPAZ (eukaryotes) [15], MGV (DNA viruses) [16],
GPD (bacteriophages) [17] and updated version of MetaClust
[17] against the BFD/MGnify centriods using MMseqs2 and
assigned each sequence to the respective cluster if they have
a 30% sequence identity at a 90% sequence overlap (-c 0.9
–cov-mode 1 –min-seq-id 0.3). All remaining sequences
were clustered using MMseqs2 cluster -c 0.9 –cov-mode
1 –min-seq-id 0.3 and appended to the database. We re-
move redundancy per cluster by keeping the most 10 diverse
sequences using (mmseqs filterresult --diff 10). The fi-
nal database consists of 209,335,865 million representative se-
quences and 738,695,580 members. See “Data availability” for
input files. We extracted the MMseqs2 search workflow used
in the server (“MSA generation by MMseqs2”) into a stan-
dalone script colabfold_search.sh and provide it together
with the databases.
Template information AlphaFold2 searches with HHsearch
through a clustered version of the PDB (PDB70 [8]) to find
the 20 top ranked templates. In order to save time, we use
MMseqs2 [10] to search against the PDB70 cluster represen-
tatives as a prefiltering step to find candidate templates. This
search is also done as part of the MMseqs2 API call on our
server. Only the top 20 target templates according to E-value
are then aligned by HHsearch. The accepted templates are
given to AlphaFold2 as input features. This alignment step is
done in the ColabFold client and therefore requires the subset
of the PDB70 containing the respective HMMs. The PDB70
subset and the PDB mmCIF files are fetched from our server.
For benchmarking, no templates are given to ColabFold.
Custom MSAs ColabFold allows researchers to upload their
own MSAs. Any kind of alignment tool can be used to gener-
ate the MSA. The uploaded MSA can be provided in aligned
FASTA, A3M, STOCKHOLM or Clustal format. We con-
vert the respective MSA format into A3M format using the
reformat.pl script from the HH-suite [8].
Modeling of protein-protein complexes Baek et al. [3]
show that RoseTTAFold is able to model complexes, despite
being trained only on single chains. This is done by provid-
ing a paired alignment and modifying the residue index. The
residue index is used as an input to the models to compute
positional embeddings. In AlphaFold2, we find the same to be
true, although surprisingly the paired alignment is often not
needed (Fig. 2c). AlphaFold2 uses relative positional encod-
ing with a cap at |i−j| ≥ 32. Meaning, any pair of residues
separated by 32 or more are given the same relative positional
encoding. By offsetting the residue index between two proteins
to be > 32, AlphaFold2 treats them as separate poly-peptide
chains. ColabFold integrates this for modeling complexes.

For homo-oligomeric complexes (Fig. 3a), the MSA is
copied multiple times for each component. Interestingly, it

was found that providing a separate MSA copy (padding by
gap characters to extend to other copies) to work significantly
better than concatenating left-to-right.

For hetero-oligomeric complexes (Fig. 3b), a separate MSA
is generated for each component. The MSA is paired according
to the chosen pair_mode (“MSA pairing for complex predic-
tion”). Since pLDDT is only useful for assessing local struc-
ture confidence, we use the fine-tuned model parameters to
return the PAE for each prediction. As illustrated in Sup-
plementary Fig. 6, the inter-PAE (predicted aligned error)
or the predicted TM-score (derived from PAE) can be used to
rank and assess the confidence of the predicted protein-protein
interaction.
MSA pairing for complex prediction A paired MSA helps
AlphaFold2 to predict complexes more accurately only if or-
thologous genes are paired with each other. We followed a
similar strategy as Bryant et al. [21] to pair sequences accord-
ing to their taxonomic identifier. For the pairing we search
each distinct sequence of a complex against the UniRef100
using the same procedure as described in “MSA generation”.
We return only hits that cover all complex proteins within one
species and pair only the best hit (smallest e-value) with an
alignment that covers the query to at least 50%. The pairing
is implemented in the new MMseqs2 module pairaln.

For prokaryotic protein prediction, we additionally imple-
mented the protocol described in [3] to pair sequences based
on their distances in the genome as predicted from the UniProt
accession numbers.
Taxonomic labels for MSA pairing To pair MSAs for com-
plex prediction, we retrieve for each found UniRef100 member
sequence the taxonomic identifier from the NCBI taxonomy
[27]. The taxonomic labels are extracted from the lowest com-
mon ancestor field (“common taxon ID”) of each UniRef100
sequence from the uniref100.xml (2021_03) file.
Complex benchmark We compare predictions of five
CASP14 complex targets (H1045, H1046, H1047, H1065,
H1072) and 32 targets from Ovchinnikov et al. [22] to their
native structures using MM-align [28] and extract TM-scores.
We used colabfold_batch with BFD/MGnify and Colab-
FoldDB to predict structures in three different modes: (1)
without MSA pairing, (2) with MSA pairing as described in
“MSA pairing for complex prediction” and (3) with MSA pair-
ing and also adding unpaired sequences. Models are ranked
by pTMscore predicted by AlphaFold2.
Avoid recompiling AlphaFold2 models The AlphaFold2
models are compiled using JAX [29] to optimize the model
for specific MSA or template input sizes. When no templates
are provided, we compile once and, during inference, replace
the weights from the other models, using the configuration
of model 5. This saves 7 minutes of compile time. When
templates are enabled, model 1 is compiled and weights from
model 2 are used, model 3 is compiled and weights from models
4 and 5 are used. This saves 5 minutes of compile time. If
the user changes the sequence or settings, without changing
the length or number of sequences in the MSA, the compiled
models are reused without triggering recompilation.
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Avoid recompiling during batch computation In order
to avoid AlphaFold2 model recompilation for every protein
AlphaFold2 provides a function to add padding to the input
MSA and templates called make_fixed_size. However, this is
not exposed in AlphaFold2. We used the function in our batch
notebook as well as in our command line tool colabfold_batch,
in order to maximize GPU utilization and minimize the need
of model recompilation. We sort the input queries by sequence
length and process them in ascending order. We pad the input
features by 10% (by default). All sequences that lie within the
query length and an additional 10% margin do not require to
be recompiled, resulting in a large speed up for short proteins.
Speed-up of predictions through early stop AlphaFold2
computes five models. We noted that for prediction of high
certainty (> 85 pLDDT), all five models would often produce
structures of very similar confidence. In order to speed up
the computation we added a parameter to colabfold_batch
to define an early stop criterion that halts additional model
inferences if a given pLDDT or pTMscore threshold is reached.
Recycle count AlphaFold2 improves the predicted protein
structure by recycling (by default) 3 times, meaning the pre-
diction is fed multiple times through the model. We exposed
the recycle count as a customizable parameter as additional
recycles can often improve a model at the cost of a longer run-
time. We also implemented an option to specify a tolerance
threshold to stop early. For some designed proteins without
known homologous sequences, this helped to fold the final pro-
tein (Supplementary Fig. 7).
Sampling of diverse structures To reduce memory require-
ments, only a subset of the MSA is used as input to the model.
Alphafold2, depending on model configuration, subsamples
the MSA to a maximum of 512 cluster centers and 1024 “extra”
sequences. Changing the random seed can result in different
cluster centers and thus different structure predictions. Colab-
Fold provides an option to iterate through a series of random
seeds, resulting in structure diversity. Further structure di-
versity can be generated by using the original or fine-tuned
(use_ptm) model parameters and/or enabling (is_training)
to activate the stochastic (dropout) part of model. Enabling
the latter, can be used to sample an ensemble of models for
the uncertain parts of the structure prediction.
Proteome benchmark We predict the proteome of the ar-
chaeon Methanocaldococcus jannaschii. Of the 1787 proteins
we exclude the 25 proteins longer than 1000 residues, leaving
1762 proteins of 268 aa average length. We search in 58 min us-
ing 100 threads on a system with 2x64-core AMD EPYC 7742
CPUs and 2TB RAM using colabfold_search.sh against the
ColabFoldDB (“ColabFoldDB”), though we reduce the sensi-
tivity to the considerably faster -s 6 setting. We then predict
the structures on a single Nvidia RTX 3090 with 28 GB RAM
in 39.6 h using only MSAs (no templates). For each query
we stop early if any model reaches a pLDDT of at least 85.
We extrapolate the runtime for no-early-stopping by multi-
plying the runtime of model 3 for each protein to five models,
yielding an overall speedup of factor 2.8. We observe a high
structural agreement with an median TM-Score of 0.986 and
mean TM-score of 0.953 when comparing the best predictions
of ColabFold and AlphaFold2 with TMalign [30].

Benchmark with CASP14 targets We compare the
AlphaFold-Colab and the AlphaFold2 (commit b88f8da)
against ColabFold (commit 2b49880, Fig. 2) using all
CASP14 [2] targets. ColabFold uses UniRef30 (2021_03) [31]
and the BFD/Mgnify or ColabFoldDB. AlphaFold-Colab uses
the UniRef90 (2021_03), MGnify (2019_05) and the small
BFD. AlphaFold2 uses the full_dbs preset with and de-
fault databases downloaded with the download_all_data.sh
script. The 69 targets contain 96 domains, among these are
20 FM-targets with 28 domains. We compared the predictions
against the experimental structures using TMalign [30].
Measuring time for CASP14 and complex targets All
ColabFold and AlphaFold2 benchmarks were executed on sys-
tems with 2x16 core Intel Gold 6242 CPUs with 192 GB RAM
and 4x Nvidia Quadro RTX5000 GPUs. Only one GPU was
used in each individual run.

ColabFold was executed using colabfold_batch. The MM-
seqs2 server which computes MSAs for ColabFold has 2x14
core Intel E5-2680v4 CPUs and 768 GB RAM. Each gener-
ated MSA was processed by a single CPU-core. Runtimes
were computed from server logs.

Runtimes for AlphaFold2 were extracted from the features
entry of generated timings.json file. Where indicated with
multicore, AlphaFold2 was used with the default 8 CPU cores
for HMMer and 4 CPU cores for HHblits to process one query.
For a fair comparison, AlphaFold2 was modified to allow HM-
Mer and HHblits to access one CPU core.

AlphaFold-Colab was executed in the browser using a
Google Colab Pro account. Times for homology search were
taken from the log output of the “Search against genetic
databases” cell in the notebook. The JackHMMer search uses
8 threads.

DATA AVAILABILITY

ColabFold databases are available at
colabfold.mmseqs.com.
Input databases used for building ColabFold databases:
UniRef30: uniclust.mmseqs.com
BFD: bfd.mmseqs.com
MGnify: ftp.ebi.ac.uk/pub/databases/metagenomics/
peptide_database/2019_05
PDB70: wwwuser.gwdg.de/~compbiol/data/hhsuite/
databases/hhsuite_dbs
MetaEuk: wwwuser.gwdg.de/~compbiol/metaeuk/2019_11/
MetaEuk_preds_Tara_vs_euk_profiles_uniqs.fas.gz
SMAG: www.genoscope.cns.fr/tara/localdata/data/
SMAGs-v1/SMAGs_v1_concat.faa.tar.gz
TOPAZ: osf.io/gm564
MGV: portal.nersc.gov/MGV/MGV_v1.0_2021_07_08/mgv_
proteins.faa
GPD: ftp.ebi.ac.uk/pub/databases/metagenomics/
genome_sets/gut_phage_database/GPD_proteome.faa
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