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Doppler Slicing for Ultrasound Super-Resolution 
Without Contrast Agents

Avinoam Bar-Zion, Oren Solomon, Claire Rabut, David Maresca, Yonina C. Eldar, Mikhail G. Shapiro 

Abstract— Much of the information needed for diagnosis 
and treatment monitoring of diseases like cancer and 
cardiovascular disease is found at scales below the 
resolution limit of classic ultrasound imaging. Recently 
introduced vascular super-localization methods provide 
more than a ten-fold improvement in spatial resolution by 
precisely estimating the positions of microbubble contrast 
agents. However, most vascular ultrasound scans are 
currently performed without contrast agents due to the 
associated cost, training, and post-scan monitoring. Here 
we show that super-resolution ultrasound imaging of dense 
vascular structures can be achieved using the natural 
contrast of flowing blood cells. Instead of relying on 
separable targets, we used Fourier-based decomposition to 
separate signals arising from the different scales of 
vascular structures while removing speckle noise using 
multi-ensemble processing. This approach enabled the use 
of compressed sensing for super-resolution imaging of the 
underlying vascular structures, improving resolution by a 
factor of four. Reconstruction of ultrafast mouse brain 
scans revealed details that could not be resolved in regular 
Doppler images, agreeing closely with bubble-based super-
localization microscopy of the same fields of view. By 
combining multi-ensemble Doppler acquisitions with 
narrowband Fourier decomposition and computational 
super-resolution imaging, this approach opens new 
opportunities for affordable and scalable super-resolution 
ultrasound imaging. 

Index Terms— Compressed sensing, contrast-enhanced 
ultrasound, sparse representation, super-localization 
microscopy, super-resolution.  

I. INTRODUCTION

ltrasound is one of the most widely used imaging 
modalities due to its portability, cost-efficiency, and high 

temporal resolution. However, only the recent introduction of 
ultrasound super-localization microscopy (ULM) enabled 
ultrasound to resolve microvascular structures deep within the 
tissue [1]–[4]. The order of magnitude improvement in spatial 
resolution and high-contrast images produced by super-
localization microscopy quickly found applications in 
neuroimaging and cancer research [5]–[7]. However, despite 
the continuous spread of contrast-enhanced ultrasound 
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imaging, most vascular ultrasound scans are still performed 
without injecting contrast agents. Instead, these vascular scans 
rely on the natural acoustic contrast of our blood – the scattering 
from flowing blood cells [8]. The reliance on Doppler scans is 
especially widespread in point-of-care scans, remote 
radiological readouts, and clinics in developing countries. 
Therefore, this work explores the feasibility of performing 
super-resolution ultrasound imaging of dense vascular 
structures without ultrasound contrast agent injections.   

Ultrasound super-localization methods surpass the acoustic 
diffraction limit by precisely estimating and aggregating the 
locations of separable microbubbles over many consecutive 
frames [1], [2]. Several approaches for ultrasound super-
resolution imaging have relaxed the requirement for target 
separability, enabling higher contrast agent concentrations and 
shorter acquisition times. Instead of relying on separable 
targets, different properties of contrast-enhanced ultrasound 
signals were used, including the temporal fluctuations of blood 
flow signals [9], the sparsity of the underlying vasculature [10], 
[11], and the flow trajectories of the bubbles [12]. Initially, 
these frameworks relied on iterative algorithms for sparse 
representation and compressed sensing [10]. The subsequent 
adaptation of deep learning further improved the resolution by 
capturing additional underlying structures in these signals [11], 
[13], [14]. These advancements contributed to the development 
of fast microbubble super-resolution imaging methods [15], 
[16].  

Direct super-resolution imaging of the microvasculature 
without contrast agents is more challenging because contrast-
free ultrasound scans have a lower signal-to-noise ratio (SNR) 
and less inherent sparsity compared to contrast-enhanced scans. 
Typically, in contrast-enhanced scans, only a subset of the 
vessels contains microbubbles at any given time [17]. However, 
even dense vascular structures include vessels with different 
flow directions and velocities that could facilitate the 
decomposition of non-contrast vascular signals to a series of 
sparser components. While directional Doppler display is 
commonly used [18], a much finer separation of vascular 
signals is needed for increasing the sparsity of non-contrast 
vascular scans. 
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A similar challenge of increasing sparsity in narrowband 
radar imaging was tackled using a method called Doppler 
focusing [19]. Doppler focusing decomposes the data to single 
Fourier bands according to the different velocities of the imaged 
targets. Such narrowband processing in which the Doppler 
spectrum is broken down to hundreds of bands is distinct from 
previous wideband ultrasound imaging approaches that cover 
the entire spectrum with two or four filters [10]. However, 
unlike radar, in contrast-free ultrasound imaging, there are 
many scatterers per resolution cell. The resulting constructive 
and destructive interference gives rise to the dominant 
multiplicative speckle patterns that obscure the vascular 
information in single Fourier bands (Fig. 1). To remove this 
time-dependent speckle pattern, we integrated the vascular 
information in each band over tens to hundreds of Doppler 
acquisitions. As presented in this paper, this approach for multi-
acquisition narrowband processing, termed Doppler slicing, 
reveals high SNR vascular details, crucial for the successful 
application of sparse representation algorithms [20], [21]. Thus, 
Doppler slicing could open new opportunities for super-
resolution ultrasound imaging enabling sub-diffraction 
ultrasound imaging without contrast agent injections. 

The rest of the paper is organized as follows: A parametric 
model for non-contrast ultrafast ultrasound hemodynamic 
signals, including Doppler information, is discussed in Section 
II. Section III shows how Doppler focusing can be adapted to
ultrasound imaging and discusses the unique challenges in
performing such decomposition. The complete processing
scheme combining Doppler decomposition and sparse
representation is introduced in Section IV. In Sections V and
VI, we show how the proposed approach results in super-
resolution ultrasound imaging of intricate vascular structures
without contrast agents. We demonstrate the feasibility of our
method on neural mouse scans and show up to four-fold

improvement in spatial resolution. Our results are analyzed and 
discussed in Section VII, which concludes the manuscript. 

Throughout the paper, 𝑥𝑥 denotes a scalar, 𝒙𝒙 a vector, and 𝑿𝑿 a 
matrix. The size of a matrix 𝑨𝑨 is denoted by 𝑀𝑀𝑀𝑀𝑀𝑀, with 𝑨𝑨 
having 𝑀𝑀 rows and 𝑁𝑁 columns. Square brackets [∙] represent 
discrete-time signals, and round brackets (∙) indicate 
continuous-time signals. The 𝑘𝑘th discrete Fourier transform 
coefficient of 𝑥𝑥[𝑝𝑝], 𝑝𝑝 = 1, … ,𝑃𝑃 is denoted using capital letters 
and the index 𝑘𝑘, 𝑋𝑋[𝑘𝑘], 𝑘𝑘 = 1, … ,𝑃𝑃. The notation || ∙ ||𝑝𝑝 
indicates the standard 𝑝𝑝-norm.   

II. MODEL FOR NON-CONTRAST ULTRAFAST ULTRASOUND
HEMODYNAMIC IMAGING 

In the past decade, ultrasound plane wave imaging has gained 
increasing popularity, providing an order of magnitude higher 
frame rate and dramatically better vascular detection than 
classic focused beam imaging [22]. Following each plane wave 
pulse, the echoes from the imaged tissue are received by all the 
transducer elements. Then, received data is focused 
computationally via beamforming, producing a spatial map of 
ultrasound reflections [23]. For example, classic delay and sum 
beamforming is performed by applying the proper time delays 
to each data channel before summing them [23]. The 
beamforming process defines a spatial grid on which the signal 
is sampled with spacing [∆𝑥𝑥𝑥𝑥 ,∆𝑧𝑧𝑧𝑧] in the lateral and axial 
directions, respectively.  

In pulse-echo Doppler measurements, 𝑃𝑃 equally spaced 
ultrasound scans are acquired for each blood flow 
measurement. This packet of pulse-echo measurements is 
known as a Doppler ensemble, and the entire span of the 
Doppler ensemble is called the coherent processing interval 
(CPI) [24]. The blood-related signal is contaminated by the 
tissue clutter 𝑐𝑐 and an additive thermal noise component 𝑤𝑤. 
Extending on the model for contrast-enhanced ultrasound 

Figure 1: Ultrasound Doppler slicing results in sparser and clean vascular decompositions. Ultrasound Doppler ensembles are decomposed into several Doppler 
bands, each containing a sub-set of the imaged vascular structure. Subsequently, the vascular information is integrated over many consecutive ensembles removing 
the strong speckle-noise patterns from the vascular maps. Doppler slicing facilitates super-resolution vascular imaging by producing a series of sparser vascular 
images with a high signal-to-noise ratio and dynamic range. Images are 1.6 mm wide. The figure was created with BioRender.com. 
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signals in [10], after beamforming and demodulation, the 𝐼𝐼𝐼𝐼 
signal 𝑓𝑓 of hemodynamic ultrasound scans can be written as: 
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where, 𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅  is the signal coming from the blood cells and 𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈 
is the signal originating from contrast agents flowing in the 
bloodstream. Here, 𝑚𝑚 is the index of the grid in the lateral 
direction, 𝑙𝑙 is the index of the grid in the axial direction, 𝑚𝑚, 𝑙𝑙 ∈
{1, . . . ,𝑀𝑀}, 𝑝𝑝 is the pulse number within the Doppler ensemble 
and 𝜏𝜏 is the pulse-repetition interval. In contrast to previous 
studies [9], [10], in this work, ultrasound contrast agents are not 
injected and therefore 𝑏𝑏𝑈𝑈𝑈𝑈𝑈𝑈 = 0. The only blood-related signal  
𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅  is composed of the echoes scattered from numerous blood 
cells. This source of signal was neglected in previous related 
works since it is significantly weaker than echoes coming from 
microbubbles. The blood signal is frequently estimated from 
ultrafast ultrasound scans via singular value decomposition 
(SVD) filtering, removing the highly coherent tissue-related 
signal from the low coherence blood flow signal [25]. For ease 
of notation, from here on, 𝑏𝑏 represents the blood flow signal 
𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅  estimated from 𝑓𝑓.   

Hemodynamic ultrasound measurements use many repeated 
Doppler acquisitions to quantify blood flow changes over the 
cardiac cycle or in response to external stimulation. In 
functional ultrasound (fUS) scans, Doppler-based 
measurements of the deviation from the baseline flow level are 
used to infer brain activity [18]. While each ensemble is 
acquired using an equally spaced synchronous stream of pulses, 
the different ensembles are frequently asynchronous due to 
hardware implementation considerations [18]. In each of many 
repeated Doppler measurements, the flow level in each pixel is 
estimated by calculating the Doppler signal's power over the 
CPI. This method of measuring and presenting Doppler signals, 
called power Doppler display, is one of the common ways of 
depicting flow in vascular ultrasound scans.  In fUS, each 
Doppler ensemble is processed separately, and power Doppler 
changes in each pixel are tracked over time [26]. In contrast, 
this work investigated the use of up to 1000 ensembles and 
processed them together to gain more precise information about 
the underlying vascular structures, extending the discussion 
beyond classic ultrasound Doppler imaging. Notably, the 
pulsing parameters of typical plane wave acquisitions allow 
these 1000 ensembles to be acquired in under three and a half 
minutes. 

The signal coming from each blood cell can be presented as 
a convolution between its reflectivity function and the system's 
point speared function (PSF). The PSF of the ultrasound system 
ℎ[𝑚𝑚, 𝑙𝑙], varies with the location in both the axial and lateral 
direction. However, it can be assumed to be piece-wise constant 
when processing small image regions (or patches), similar to 
the approach taken in [27] for focused-beam imaging. It is 
important to note that blood cell scattering can be assumed to 
be linear in relation to the pressure of the incident wave. In 
comparison, the echoes emitted from each microbubble in 
contrast-enhanced ultrasound imaging depend on the pressure 

wave in a non-linear way, determined by the bubble size and 
other shell properties that change from bubble to bubble [28]. 
Therefore, when looking at each image patch, blood cells' 
scattering is adequately represented by the same PSF. For each 
Doppler ensemble 𝑘𝑘, the blood-related signal  𝑏𝑏𝑘𝑘 can be 
expressed as a superposition of the scattering from all the cells: 
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where 𝑁𝑁𝑞𝑞 is the number of scatterers, and 𝑥𝑥𝑞𝑞 , 𝑧𝑧𝑞𝑞 are the position 
of each scatterer in the lateral and axial directions, respectively. 
The scattering of blood cell 𝑞𝑞, 𝜎𝜎𝑞𝑞,𝑘𝑘 is equal to 0 in ensembles 
for which the blood cell is outside the imaging plane. Here, 𝜈𝜈𝑞𝑞 
is the Doppler angular frequency, and 𝛽𝛽q,k is a random constant 
phase determined by the initial location of the scatterer relative 
to the transducer. Each Doppler frequency is related to a 
specific axial velocity 𝑣𝑣𝑧𝑧,𝑞𝑞, by the following relation,   

( )0 ,2 2 / .q z qf v cν π≡  (3) 

Here, 𝑐𝑐 is the velocity of sound in the medium and 𝑓𝑓0 is the 
central frequency of the ultrasound pulse. The flow level and 
the velocity of blood flow are the main parameters estimated by 
hemodynamic ultrasound imaging. 

Several assumptions can be made regarding the measured 
microvascular Doppler signals, simplifying the model and 
subsequent analysis. These assumptions are similar to those 
used in radar imaging [19]: 
1) "Far targets": the distance between the transducer and the

scatterer is large compared to the distance traveled by the
scatterer during the CPI (0.2 s in our case). This assumption 
allows us to treat 𝜎𝜎𝑞𝑞,𝑘𝑘 as a constant for each ensemble.

2) "Slow targets": the target velocity is small enough to
assume that 𝑥𝑥𝑞𝑞  and 𝑧𝑧𝑞𝑞 are constant throughout the CPI.

3) "Small acceleration": the target velocity remains
approximately constant throughout the ensemble, allowing
for constant 𝜈𝜈𝑞𝑞.

4) "No time ambiguity": The time delay between consecutive
imaging pulses is such that the image target is within the
desired imaging depth: �𝑧𝑧𝑞𝑞 ∈ [0, 𝜏𝜏𝜏𝜏)�

𝑞𝑞=0
𝑁𝑁𝑞𝑞−1

5) "No Doppler ambiguity": the measured Doppler
frequencies are within the unambiguous frequency region:
�𝜈𝜈𝑞𝑞 ∈ [−𝜋𝜋/𝜏𝜏,𝜋𝜋/𝜏𝜏)�

𝑞𝑞=0
𝑁𝑁𝑞𝑞−1

The described signal model and related assumptions will guide 
us in defining the Doppler slicing operation and sparse 
representation processing described in the following sections. 

III. ULTRASOUND MULTI-ACQUISITION DOPPLER SLICING

Non-contrast enhanced Doppler scans contain a much higher 
density of scatterers than contrast-enhanced ultrasound 
acquisitions [17]. Unless scanning poorly perfused tissues like 
the cores of certain tumors, a single volume cell frequently 
contains blood cells flowing in several vessels with different 
Doppler angular frequencies 𝜈𝜈𝑞𝑞. As we will see in the following 
sections, the lower SNR and higher density of non-contrast 
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ultrasound Doppler measurements limit the use of sparsity-
exploiting methods when processing these scans. Therefore, to 
highlight the underlying spatial structure, we decompose the 
received blood signals based on angular frequency, a process 
that results in a sparser vascular network in each sub-dataset.  

Inspired by the concept of radar Doppler focusing [19], we 
define the following Doppler slicing function that decomposes 
the received blood signal into P frequency bands (Fig. 1): 
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using (2) and representing the complex amplitude of each 
scatterer as  𝛼𝛼𝑞𝑞,𝑘𝑘  =  𝜎𝜎𝑞𝑞,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝛽𝛽𝑞𝑞,𝑘𝑘 . Denoting 𝑔𝑔�𝜈𝜈|𝜈𝜈𝑞𝑞� =
∑ 𝑒𝑒𝑒𝑒𝑒𝑒𝑗𝑗�𝜈𝜈−𝜈𝜈𝑞𝑞�𝑝𝑝𝑝𝑝𝑃𝑃−1
𝑝𝑝=0  we get: 
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For any Doppler band 𝜈𝜈, echoes originating from blood cells 
flowing in a band of width 2𝜋𝜋/(𝑃𝑃𝑃𝑃) around it will be integrated 
coherently as the phase between 𝜈𝜈 and 𝜈𝜈𝑞𝑞 is close to zero [19]. 
This range around 𝜈𝜈 will be considered as the 𝜈𝜈 "Focus zone". 
Therefore, for a single blood cell within the focus zone, we can 
write: 
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Vascular details within the 𝜈𝜈 "Focus zone" will be preserved 
while targets outside the focus zone will approximately cancel 
out. As a result, complying with the Fourier transform 
definition, larger vessels with higher blood flow velocities will 
be included in the middle bands while microvascular details 
will be concentrated in the first and last few Doppler bands.  

To study the finer details of the vasculature, we will define a 
high-resolution spatial grid. We introduce a high-resolution 
grid with spacing [∆𝑥𝑥𝑥𝑥 ,∆𝑧𝑧𝑧𝑧], such that the location of the 
scatterers can be attributed to one of these pixels and  [𝑥𝑥𝑞𝑞 , 𝑧𝑧𝑞𝑞] ≅
[𝑖𝑖𝑥𝑥[𝑞𝑞]∆𝑥𝑥𝑥𝑥 , 𝑖𝑖𝑧𝑧[𝑞𝑞]∆𝑧𝑧𝑧𝑧] for some 𝑖𝑖𝑥𝑥 , 𝑖𝑖𝑧𝑧 ∈ {0, … ,𝑁𝑁 − 1}, similar to 
[10]. Thus, the Doppler slicing function can now be 
approximated by: 
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where Λ(𝜈𝜈) = �𝑙𝑙: �𝜈𝜈 − 𝜈𝜈𝑞𝑞� < 𝜋𝜋/𝑃𝑃𝑃𝑃�. From here on, we will 
refer to [∆𝑥𝑥𝑥𝑥 ,∆𝑧𝑧𝑧𝑧] as the low-resolution grid. Assuming that 
∆𝑥𝑥𝑥𝑥= 𝐷𝐷 ∆𝑥𝑥𝑥𝑥 and ∆𝑧𝑧𝑧𝑧= 𝐷𝐷 ∆𝑧𝑧𝑧𝑧 for some 𝐷𝐷 ≥ 1, it holds that 𝑁𝑁 =
𝐷𝐷𝐷𝐷. Substituting ∆𝑥𝑥𝑥𝑥= 𝐷𝐷 ∆𝑥𝑥𝑥𝑥, ∆𝑧𝑧𝑧𝑧= 𝐷𝐷 ∆𝑧𝑧𝑧𝑧 into (7) we have 
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where ∆𝑥𝑥𝑥𝑥, ∆𝑧𝑧𝑧𝑧, ∆𝑥𝑥𝑥𝑥 and ∆𝑧𝑧𝑧𝑧 are omitted for convenience. 
Studying the blood cells' echoes in each Doppler band on this 

high-resolution grid will help infer the underlying vasculature 
structure. 

In contrast to super-localization microscopy, where single 
bubbles can be isolated, the scattering of a single blood cell is 
too low to detect, and their density and enormous number make 
them inconceivable to resolve. Therefore, we focus on 
separating blood vessels and not the blood cells they contain. 
Consequently, we sum all the complex amplitudes of the 
scatterers that are included in each high-resolution pixel [𝑖𝑖𝑥𝑥 , 𝑖𝑖𝑧𝑧] 
and define the complex amplitude of the blood signal in that 
pixel as  𝑠𝑠𝑖𝑖𝑥𝑥,𝑖𝑖𝑧𝑧,𝑘𝑘[𝜈𝜈] = ∑ 𝛼𝛼𝑞𝑞,𝑘𝑘𝑞𝑞∈Λ(𝜈𝜈)
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The blood signal in each pixel, 𝑠𝑠𝑖𝑖𝑥𝑥,𝑖𝑖𝑧𝑧,𝑘𝑘[𝜈𝜈], is governed by the 
complex amplitudes of the blood cells' echoes and, therefore, 
by the flow level in each pixel. For example, in pixels that do 
not include any blood vessels at the inquired Doppler band, 
𝑠𝑠𝑖𝑖𝑥𝑥,𝑖𝑖𝑧𝑧,𝑘𝑘[𝜈𝜈] will be equal to zero. However, the magnitude of 
𝑠𝑠𝑖𝑖𝑥𝑥,𝑖𝑖𝑧𝑧,𝑘𝑘[𝜈𝜈] will change between ensembles according to the exact 
number and locations of the blood cells. These randomly 
varying complex amplitudes are the source of the speckle noise 
characteristic of vascular ultrasound data [29].  

To facilitate the analysis of the randomly changing blood 
flow signals, we make the following additional assumptions: 
6) "Statistical independence": It is assumed that the

contributions of the flow in different blood vessels to the
overall measured signal are statistically independent.
Therefore, 𝑠𝑠𝑖𝑖𝑥𝑥,𝑖𝑖𝑧𝑧,𝑘𝑘[𝜈𝜈] in different vessels can be assumed to
be independent over the K repeated Doppler measurements
and 𝐸𝐸�𝑠𝑠𝑖𝑖𝑥𝑥1,𝑖𝑖𝑧𝑧1[𝜈𝜈]𝑠̅𝑠𝑖𝑖𝑥𝑥2,𝑖𝑖𝑧𝑧2[𝜈𝜈]�  = 0 for 𝑖𝑖𝑥𝑥1 ≠ 𝑖𝑖𝑥𝑥2 and 𝑖𝑖𝑧𝑧1 ≠ 𝑖𝑖𝑧𝑧2.

7) "Motionless vasculature": While the blood cells are
constantly moving, the locations of the blood vessels do not 
change during this short acquisition time. The assumption
of motionless vasculature can be relaxed using proper
motion compensation [30], [31].

8) "Steady flow": Without applying external stimulation, we
can assume that the baseline blood flow level doesn't
change between repeated Doppler ensembles. Therefore, as 
a function of k, 𝑠𝑠𝑖𝑖𝑥𝑥,𝑖𝑖𝑧𝑧,𝑘𝑘[𝜈𝜈] are independent and identically
distributed random variables.  This assumption does not
hold in contrast-enhanced ultrasound since bolus injections 
result in quick wash-in and long clearance phases.

These assumptions enable us to extend the processing beyond 
classic power Doppler imaging and integrate the information on 
the vascular structure over several ensembles while removing 
the random speckle-noise patterns. 

The presence of many scatterers in each resolution cell and 
the significant visual artifact of speckle-noise (Fig. 1) are not 
central in radar Doppler focusing. Since this speckle pattern 
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changes between acquisitions, the vascular map in each band 
was estimated by averaging the squared magnitude of the 
Doppler slicing function in each pixel over the K ensembles: 
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The expected value of the squared Doppler slicing function is 
equal to: 
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where, [𝑖𝑖𝑥𝑥1, 𝑖𝑖𝑧𝑧1] and [𝑖𝑖𝑥𝑥2, 𝑖𝑖𝑧𝑧2] are the coordinates of high-
resolution pixels located along the same streamline. Blood cells 
flowing independently in different vessels produce only the first 
squared absolute-valued PSF term in equation (11) without 
cross-terms. Therefore, the cross-term in (11) can be neglected 
in our analysis, as it does not affect the separation of 
neighboring blood vessels, similar to [10]. Neglecting the 
second term in (11), we get: 
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where 𝑠𝑠𝑖𝑖𝑥𝑥,𝑖𝑖𝑧𝑧
2 [𝜈𝜈] = 𝐸𝐸 ��𝑠𝑠𝑖𝑖𝑥𝑥,𝑖𝑖𝑧𝑧[𝜈𝜈]�2� is the expected value of the

blood fluctuations' magnitude in the high-resolution pixel 
[𝑖𝑖𝑥𝑥 , 𝑖𝑖𝑧𝑧]. Being narrower than the original PSF, the squared PSF 
represents an improved separation between the vessels. By 
combining multi-ensemble processing with Doppler slicing 
decomposition, we get a series of clear vascular maps, separated 
according to blood flow hierarchy (Fig. 1).  

In addition to the decomposition of vascular structures, 
Doppler slicing holds two characteristics important for 
estimating the vascular anatomy while exploiting its underlying 
sparsity: improved signal-to-noise ratio (SNR) and dynamic 
range (DR). Radar Doppler slicing spreads the thermal noise 
over all the Doppler bands, resulting in an SNR improvement 
by a factor of 𝑃𝑃 [19]. In ultrasound scans, each blood vessel 
includes a distribution of blood-flow velocities. Small vessels 
are captured by only a few Doppler components and will benefit 
the most from improved SNR following Doppler slicing since 
they are closer to the noise floor. In comparison, the ultrasound 
signals measured from large blood vessels are spread over 
several Doppler bands. However, these large blood vessels are 
clearly depicted in each Doppler band. In addition, since large 
blood vessels have stronger ultrasound signals, separating large 
blood vessels from smaller ones using Doppler slicing also 
improves the dynamic range in the slower blood flow bands. 
Together, the increased sparsity and improved SNR and DR 
result in the ability to detect and resolve smaller vessels from 

scans of dense vascular structures. 

IV. SPARSE REPRESENTATION OF ULTRASOUND DOPPLER
SLICES 

After defining the Doppler slicing operation and the high-
resolution grid, we can now describe the sparse representation 
processing scheme that results in super-resolution vascular 
imaging. Following Doppler slicing, we assume that on the 
high-resolution grid, the underlying vasculature in each band is 
sparser, lending itself to the formulation of a sparse recovery 
problem [20], [21]. Instead of neglecting the information given 
by the Doppler velocities, by applying Doppler slicing, we look 
at the problem of locating only the blood vessels that belong to 
a specific Doppler band, implicitly estimating the range of 
Doppler frequencies in each blood vessel. This problem can be 
solved using iterative algorithms, such as in this work, or 
machine learning approaches that can uncover additional 
structures within the dataset.  

We aim at reconstructing an 𝑁𝑁𝑁𝑁𝑁𝑁 super-resolved image of 
the vasculature, which is 𝐷𝐷2 times larger from the initial 𝑀𝑀𝑀𝑀𝑀𝑀 
IQ matrix. This 𝑁𝑁𝑁𝑁𝑁𝑁 matrix, six,iz

2 [𝜈𝜈] represents the variance of 
the blood-related echoes in pixel [𝑖𝑖𝑥𝑥, 𝑖𝑖𝑧𝑧]. This variance  six,iz

2  
will be equal to zero in every pixel that does not contain blood 
vessels. By estimating the map of six,iz

2 [𝜈𝜈] values, a high-
resolution estimation of the vascular structure can be achieved. 

Following a similar line of computation to that was presented 
in [32] and used in [10], we  consider (12) in the discrete Fourier 
domain, which leads to efficient numerical estimation of the 
high-resolution image. While the Doppler slicing step is based 
on temporal Fourier decomposition, this sparse representation 
algorithm includes spatial Fourier transform.  We denote the 2D 
discrete Fourier transform of six,iz

2 [𝜈𝜈] as 𝑆𝑆2[𝑘𝑘𝑚𝑚, 𝑘𝑘𝑙𝑙 , 𝜈𝜈], where 
𝑘𝑘𝑚𝑚, 𝑘𝑘𝑙𝑙 are 𝑀𝑀𝑀𝑀𝑀𝑀 spatial frequencies. Performing an 𝑀𝑀𝑀𝑀𝑀𝑀 2D 
DFT on (12) yields 
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where 𝐻𝐻𝑚𝑚,𝑙𝑙[𝑘𝑘𝑚𝑚, 𝑘𝑘𝑙𝑙] is the 𝑀𝑀𝑀𝑀𝑀𝑀 2D DFT of the squared, 
absolute value PSF |ℎ𝑚𝑚,𝑙𝑙(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)|2. Next, we rewrite (13) 
using matrix-vector notation. To simplify the equation, we 
perform column-wise stacking of 𝑆𝑆2[𝑘𝑘𝑚𝑚, 𝑘𝑘𝑙𝑙 , 𝜈𝜈] and write the 
result as an 𝑀𝑀2 long vector 𝒚𝒚[𝜈𝜈] = 𝑣𝑣𝑣𝑣𝑣𝑣{𝑆𝑆2[𝑘𝑘𝑚𝑚, 𝑘𝑘𝑙𝑙 , 𝜈𝜈]}. 
Similarly, we vectorize the 𝑁𝑁𝑁𝑁𝑁𝑁 blood-flow statistics six,iz

2 [𝜈𝜈] 
on the high-resolution grid and write the result as an 𝑁𝑁2 long 
vector 𝒙𝒙[𝜈𝜈] = 𝑣𝑣𝑣𝑣𝑣𝑣{six,iz

2 [𝜈𝜈]}, 𝑖𝑖𝑥𝑥 , 𝑖𝑖𝑥𝑥 = 0, …𝑁𝑁 − 1. Thus, 𝒙𝒙[𝜈𝜈] 
represents the underlying vasculature in band 𝜈𝜈  that we wish to 
recover on the high-resolution grid. Rewriting (13) in matrix-
vector form, we get: 

( )
2 2

,       [ ] [ [ .] ] M XN

M M
ν ν ν= ⊗ = ∈y H F F x Ax A  (14) 

Here, 𝑨𝑨 = 𝐇𝐇(𝑭𝑭𝑀𝑀⨂𝑭𝑭𝑀𝑀), 𝑯𝑯 is an 𝑀𝑀2𝑋𝑋𝑀𝑀2 diagonal matrix with 
diagonal elements {𝐻𝐻[0,0], … ,𝐻𝐻[M − 1, M − 1]}, ⨂ denotes 
the Kronecker product and 𝑭𝑭𝑀𝑀 represents a partial 𝑀𝑀𝑀𝑀𝑀𝑀 DFT 
matrix, calculated by taking the rows corresponding to the 
lowest 𝑀𝑀 frequency components of a full 𝑁𝑁𝑁𝑁𝑁𝑁 DFT matrix.  
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Exploiting sparsity enables reconstruction of the underlying 
vascular structure at sub-diffraction resolution. For each image 
patch, we estimate 𝒙𝒙[𝜈𝜈] in (14) by solving the following 
optimization problem, assuming that 𝒙𝒙 is sparse: 

2

1 2

1
min || || || ||

2
.λ + −

x

x y Ax  (15) 

Here, 𝜆𝜆 ≥ 0 is a regularization parameter, and 𝜈𝜈 is omitted for 
the sake of clarity.  𝒙𝒙  represents the variance of the blood flow 
signal fluctuations, which is a non-negative quantity, therefore 
the constraint 𝒙𝒙 ≥ 0 is added. Many existing algorithms aim at 
solving (15). As in [10], we used the FISTA [33] algorithm, 
which is known to achieve the fastest possible (worst-case) 
convergence rate for a first-order method, as described by 
Nesterov [33]. A detailed description of this implementation 
can be found in [10].  

The application of sparse representation to each Doppler 
band's blood flow variance map results in a series of super-
resolved vascular images. A super-resolved map of the full 
vasculature is then reconstructed by integrating over the 𝑃𝑃 
different bands and combining all the image patches: 
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The following sections show that sparsity-based reconstruction 
is significantly improved by applying Doppler slicing to the 
low-resolution measurements. 

V. MATERIALS AND METHODS

The proposed framework was validated using numerical 
simulations and tested on in vivo ultrasound scans of mouse 
brains. The cranial vascular scans were decomposed using 
Doppler slicing to characterize this method's performance when 
applied to dense vascular structures. The decomposed datasets 
were then used to study the ability of Doppler slicing to 
facilitate super-resolution reconstruction when combined with 
sparse representation processing. The blood flow simulations 
helped us interpret these results by evaluating the performance 
of the sparse representation algorithm under different levels 
of SNR and imperfect PSF estimations.  

A. Numerical simulations
The custom-made numerical simulations used in this study 
included two blood flow geometries. In the first one, two 
parallel blood vessels with blood flowing in the same direction 
were positioned next to each other to measure this technique's 
resolution improvement and vessel separation capabilities. 
These experiments were designed to test performance of sparse 
representation algorithms when applied to blood flow data 
without contrast agents. Therefore, unlike previous studies [9], 
[10], these simulations included more than ten scatterers per 
resolution cell, resulting in conditions compatible with 
developed speckles. The flow in the right vessel was twice as 
fast as the flow in the left one, and the simulations were 
repeated with different distances between the blood vessels, 
normalized by the width of the PSF. The second type of 
numerical simulation emulated blood flow through a 
bifurcation displaying the ability of the proposed method to 

reconstruct different vascular geometries. Spatiotemporal 
decompositions were not applied in any of these numerical 
simulation experiments, enabling us to test the super-resolution 
capabilities of sparse representation within each Doppler band. 

Next, we evaluated the expected effects of the Doppler slicing 
and PSF estimation steps on the sparse representation results. 
To do so, we tested the performance of the sparse reconstruction 
algorithm on noisy data and performed reconstructions with 
distorted PSF estimations. Different levels of additive noise 
were used, resulting in SNR values between 0 and 100 dB, 
defined as the ratio between the maximum value of the 
simulated vessel and the standard deviation of the noise. The 
SNR level of the autocorrelation images was measured to be 
10.5 dB higher than the original simulated signal; these values 
are used for reporting the results of the sparse representation 
algorithm. The dynamic range used for the display of Doppler 
slicing images was calculated as 10𝑙𝑙𝑙𝑙𝑙𝑙10 �Φ

�2
𝐷𝐷𝐷𝐷� � as typically

done when presenting power Doppler images. However, in all 
other cases, we use the regular definition of 𝑆𝑆𝑆𝑆𝑆𝑆 =
 20𝑙𝑙𝑙𝑙𝑙𝑙10 �Φ

�2
𝜎𝜎� � , where 𝜎𝜎 is the standard deviation of the

noise, to better fit previous sparse representation papers. To test 
the robustness of the proposed algorithm to PSF estimation 
inaccuracies, the PSF used in solving the inverse problem was 
scaled in the lateral direction to 75-125% of the original PSF. 
Together, these numerical simulations determine the desired 
PSF estimation precision and the SNR needed for reliable blood 
vessel separation following Doppler slicing.  

B. In vivo experiments
To test the proposed method experimentally, we used mouse 
brain scans. The animals underwent a craniotomy creating an 
acoustic window over the region of interest. All the scans were 
acquired using a Ventage 128 ultrasound system (Verasonics, 
Kirkland, WA, USA) and a Domino linear probe (Vermon, 
Tours, France) with a central frequency of 15 MHz (pitch: 0.11 
mm). We acquired scans with 1000 Doppler ensembles. Each 
ensemble contained 200 pulse-echo acquisitions and lasted 0.2 
s (frame rate of 1 kHz). Each pulse-echo acquisition was 
composed of 13 transmission angles (-6° to 6°) compounded 
together. The RF data was beamformed on a 𝜆𝜆/2 spaced grid 
using Verasonics' proprietary beamforming algorithm, and the 
tissue clutter was removed using SVD filtering [25]. The scan 
was then automatically separated into 1.6 x 1.6 mm patches 
with 75% overlap in each direction. All the processed patches 
and bands were summed to produce the final images, except for 
the ten bands with the slowest flow in each direction, due to 
their lower SNR level. 

Following each Doppler scan, we performed a super-
localization scan of the same imaging plane. These additional 
scans served as ground truth for testing the non-contrast super-
resolution reconstructions. Definity (Lantheus Medical 
Imaging Inc., N. Billerica, MA, USA), a clinically approved 
contrast agent, was injected into the tail vein of the mouse at a 
concentration of 40 µL/Kg. Three microbubble injections were 
performed for each imaging plane. To separate single bubbles 
for ULM processing, the first 30 and last 60 SVD components 
were removed [30]. The PSF of the system was estimated by 
averaging over the envelope of single bubble signals, as in [10]. 
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It was estimated once and then used for processing the non-
contrast ultrasound scans. All the protocols were approved by 
Caltech's Research Institutional Review Board.  

VI. RESULTS 

A. Doppler Slicing Produces Clear Decompositions of 
Vascular Ultrasound Scans   
We first studied the ability of Doppler slicing to decompose 
vascular ultrasound scans and investigated how the quality of 
the resulting decomposition varies with the number of 
ensembles. Classic power Doppler without contrast agents and 
directional power Doppler scans (Fig. 2a-c) were used as a 
reference, showing the fidelity and quality of the Doppler 
slicing results. The speckle noise in each of the Doppler bands 
was reduced by combining the information over many 
ensembles (Fig. 2d vs. Fig. 2e and Fig. 2f). Smaller vessels 
appear in the middle of the Doppler spectrum, and larger blood 
vessels inhabit the ends of the spectrum (Fig. 2f and 
Supplementary Movie 1). The reduction in speckle-noise level 
was quantified by calculating the structural similarity (SSIM) 
between Doppler bands composed of different numbers of 
ensembles and the reference Doppler bands calculated with 

1000 ensembles (Fig. 2g). The structural similarity levels 
increase with the number of ensembles and are above 0.99 when 
256 ensembles are used. Overall, Doppler slicing results in a 
clean hierarchical decomposition of the vasculature into a series 
of sparser bands.  

 The cranial vascular scans were used for evaluating two 
additional image quality parameters: the level of additive 
thermal noise and the dynamic range of the bands. A region of 
interest located outside the mouse brain was used for estimating 
the thermal noise level in each Doppler band (Supplementary 
Fig. S1). Doppler slicing spreads the additive thermal noise 
over all the bands, resulting in high SNR levels in the middle of 
the frequency range and a clear depiction of the 
microvasculature (Fig. 2h, and Fig. 2f, right). At the same time, 
the proposed approach virtually removed the stronger signal of 
large vessels (Fig. 2f, left) from the microvasculature bands 
(Fig. 2f, right), resulting in a high dynamic range throughout 
the bands (Fig. 2i). As we will see in the following sections, 
these sparser Doppler slicing bands and their high SNR levels 
and dynamic range lend themselves to better super-resolution 
processing.  

B. Simulations Show Sub-Diffraction Reconstructions 
Under Conditions Compatible with Doppler Slicing 
After studying the ability of Doppler slicing to separate 
different vascular structures and quantifying its characteristic 
SNR and DR levels, we examined how these conditions could 
translate to vascular super-resolution imaging via numerical 
simulations. We tested the separation of close-by vessels under 
ideal SNR conditions and PSF estimations and then evaluated 
the robustness of the sparsity-based reconstruction to different 
noise levels and errors in PSF estimations.  

The simulated Doppler data included a large number of 
scatterers per resolution cell with random amplitudes, resulting 
in developed speckles (Fig. 3a). Sparsity-based reconstruction 
was able to resolve vessels that were fused in the diffraction-
limited and autocorrelation images (Fig. 3b-d). Cross-sections 
through vessels with different separations showed improved 
delineation (Fig. 3e, left) and resolution (Fig. 3e, right). Full-
width-at-half-maximum (FWHM) measurements showed a 
significant improvement in vessel delineation of separable 
vessels. The FWHM of the sparse representation estimation was 
thinner by a factor of 3.87 compared to the autocorrelation 
signal and by a factor of 5.82 compared to the PSF. Looking at 
the full range of vessel spacing, we also observed a significant 
improvement in target separation (Rayleigh Criterion): a 2.28-
fold improvement in vessel separation compared to the 
autocorrelation signal, 2.54-fold improvement compared to the 
temporal mean, and 3.13-fold improvement compared to the 
diffraction limit. These results demonstrated the expected 
contribution of Doppler slicing, as vessels that are separated 
into different Doppler bands will be better resolved in the final 
vascular map. At the same time, a simulated bifurcation was 
successfully estimated, demonstrating the ability of the 
proposed method to reconstruct arbitrary vascular structures 
without any shape priors, even if they reside in the same 
Doppler band (Supplementary Fig S2). 

Contaminating the simulations with different levels of 
additive noise helped determine the desired signal-to-noise 

Figure 2: Doppler slicing produces sparser vascular images with high SNR 
and dynamic range. a. Standard power Doppler image of a mouse brain. b. 
Negative directional Doppler image of the same imaging plane. Decomposition 
to upward and downward flow separates close by vessels with opposite flow 
directions. c. Positive directional Doppler image. d. A few single-ensemble 
Doppler bands showing dominant speckle-noise patterns. e. Doppler bands 
calculated from 16 ensembles demonstrating improved vessel depiction. f. 
Doppler bands computed from 256 ensembles displaying clean maps of the 
different vascular structures. g. The structural similarity between the Doppler 
slicing bands and the reference images calculated from the entire dataset (1000 
ensembles) increases with the number of integrated ensembles (n=5 scans). h. 
Improvement in SNR in low-frequency Doppler bands that contain 
microvascular structures (n=3 scans). i. High dynamic range is maintained 
over the entire range of Doppler slicing bands (n=3 scans). Bar plots show 
mean ± SEM (g-i). Scale bar is 1 mm (c). 
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level for reliable super-resolution reconstruction. We used 
structural similarity and peak SNR measurements to quantify 
the reconstruction quality for each SNR value and vessel 
distance. Both matrices showed good performance above SNR 
= 50dB with SSIM values above 0.97 and peak SNR values 
higher than 25.5 dB. Bellow SNR = 30dB (Fig. 3g, h), we 
observe problematic reconstruction with SSIM values dropping 
below 0.05 and peak SNR values lower than 12 dB. A deeper 
insight into this transition range can be obtained by looking at 
the pixel values in the middle of each cross-section as a function 
of the SNR and vessel distance (Fig. 3i). As the SNR decreases 
below 50dB, so does the vessel separation. At an SNR of 30 dB 
and below, we start seeing reconstruction artifacts even for 
highly separated vessels in the form of high mid-pixel value. 
The artifact level increases with lower SNR values. These 
results, showing robust reconstruction above SNR = 50dB, 
comply with the SNR levels produced by the Doppler slicing 
decomposition (Fig. 2h). 

Finally, we tested the sensitivity of the reconstruction 
algorithm to errors in PSF estimation. Both structural similarity 
and peak SNR dropped for PSF estimations that were 
significantly wider or narrower than the kernel used in the 
simulation (Fig. 3j, k). SSIM values drop below 0.9 for PSF 
width below 95% or above 115%, while peak SNR values drop 
below 17.5 dB outside this range. Looking at the mid-pixel 
value matrix, we can observe that narrow PSF estimations 
resulted in reduced vessel separation, and wide PSF estimations 
showed artifacts even for highly separated vessels (Fig. 3l). 
These results demonstrate how important is accurate PSF 
estimations for successful sparse representation of non-contrast 
Doppler data. 

C. In-vivo Super-resolution Vascular Imaging using 
Doppler Slicing 
Finally, we tested the ability of Doppler slicing to facilitate 
super-resolution imaging of dense vascular scans of mouse 
brains. Looking at a 1.6 x 1.6 mm image patch taken from the 
mouse cortex, we can see the vascular decomposition achieved 
by Doppler slicing, compared to the original power Doppler 
image (Fig. 4a-c, vs. Fig. 4d, respectively). Sparse 
representation improves the delineation of details that are 
blurred in the autocorrelation image of each band (Fig. 4e-g vs. 

Figure 4: Doppler slicing facilitates super-resolution vascular imaging 
without contrast agents. a. An image patch from a negative Doppler band 
showing small vessels in the mouse cortex. b. An image patch from a positive 
Doppler band showing small vessels different from those detected in (a). c. An 
image patch from a different positive Doppler band showing mid-size vessels. 
Doppler slicing separates vessels of different sizes and flow directions. d. 
Standard vascular map of the same image patch. e-g. Sparsity-based super-
resolution images of the Doppler bands in (a-c), respectively. h. Sparse 
representation of the power Doppler patch in (d). The high noise level and 
dense vascular structures in the power Doppler image impede the use of sparse 
representation processing. i. Power Doppler image of the right brain 
hemisphere (right). Negative and positive single patch Doppler images display 
low-resolution vascular details (left, top, and bottom, respectively) j. Summing 
the sparse representation reconstructions of all the Doppler bands. The 
resulting negative (right, top) and positive (right, bottom) frequency patches 
show vascular details that could not be resolved in the original directional 
Doppler images (panel i, left, top, and bottom, respectively). Combining all the 
Doppler bands and patches provides a super-resolved vascular map of the right 
brain hemisphere (left). Image patches are 1.6 x 1.6 mm (a-i). 

Figure 3: Numerical simulations demonstrate flow-line separation under 
conditions compatible with Doppler slicing. a. Single frame from simulation of 
flow inside two parallel vessels. b. Diffraction-limited temporal averaging 
cannot separate between the two close by vessels. c. Autocorrelation (power 
Doppler) image presents a tighter flow profile without resolving the two close 
by vessels. d, Sparse representation produces a clear reconstruction of the two 
neighboring flowlines. e. Cross-section from numerical simulation of far blood 
vessels presents improved FWHM (left, 𝒅𝒅 =  𝟏𝟏.𝟕𝟕𝟕𝟕) while cross-section from a 
simulation of close blood vessels shows improved vessel separation (right, 𝒅𝒅 =
 𝟎𝟎.𝟔𝟔𝟔𝟔). f. The mid-pixel level achieved by the different processing methods is 
displayed over the full range of vessel distances, revealing improved resolution 
using sparse representation reconstruction. g. Structural similarity 
measurements show robust vessel reconstruction in the SNR levels 
characteristic of Doppler slicing. h. PSNR measurements present successful 
vessel reconstruction over the relevant noise levels. i. The mid-pixel value map 
shows stable vessel separation over this SNR range. j, k. Structural similarity 
and PSNR values (respectively) drop as the width of the PSF used for 
reconstruction deviates from the one used in the simulations. l. Blood vessel 
separation decreases when thin PSF estimations are used for reconstruction, 
while wide PSF estimations result in artifacts, even for highly separated 
vessels. Bar plot shows mean ± std (f). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.19.469083doi: bioRxiv preprint 

https://doi.org/10.1101/2021.11.19.469083


9  
 

Fig. 4a-c, respectively). Such improvement was not observed 
when applying sparse recovery to the original power Doppler 
image (Fig. 4h). The dense and noisy power Doppler signal 
(Fig. 4d) resulted in distorted reconstruction (Fig. 4h). 

Combining all the processed bands, we can see how the 
sparsity-based reconstruction of the decomposed data revealed 
vascular information that wasn't observable in the original 
directional Doppler data (arrows, Fig. 4i, left vs. Fig. 4j, right). 
Combining all the patches of different areas of the mouse brain, 
we observe a full image of the left hemisphere of the mouse 
brain. The processing of all the bands and patches was 
performed using the same set of parameters, showing that the 
proposed method does not suffer from overfitting and that it can 
be generalized to full scans.  

Super-localization microscopy was used as ground truth for 
evaluating the result of the proposed algorithm. Scans of the 
same image planes were acquired with and without contrast 
agent injections. The sparse recovery image is highly 
compatible with super-localization microscopy, revealing 
vascular information that was masked in the power Doppler 
images (Fig. 5a-c). Cross-sections through several vessels show 
the improved separation of blood vessels using the proposed 
method in the lateral and axial directions (Fig. 5d, e, 
respectively). Dashed lines in the power Doppler image (Fig. 
5a) mark the locations of these cross-sections. Cross-sections 
through small vessels (Supplementary Fig. S3a, b) were used 
to quantify the improvement in spatial resolution achieved by 
the proposed method. The average FWHM of these vessels was 
42µm (Fig. 5f), a 2.4-fold improvement compared to the 
wavelength and close to 4-fold improvement compared to the 
FSF. These results demonstrate the potential of performing 
super-resolution imaging of vascular ultrasound scans of blood 
flow while showing that additional improvement in resolution 
can be gained when the use of contrast agents is optional. 

VII. DISCUSSION 
This work presents a framework for vascular ultrasound super-
resolution imaging without contrast agents. We show that, in 

some instances, dense and overlapping blood vessels can be 
separated without microbubble injections. To do so, we 
integrated the vascular information provided by Fourier 
transforms over several ensembles, thus extending the 
processing beyond single power Doppler acquisitions. This 
approach resulted in a high SNR hierarchical decomposition of 
the vasculature that facilitates vascular super-resolution 
imaging by exploiting sparsity. The information needed for this 
reconstruction, including the PSF, can be estimated from the 
data. Even though this work looked at an iterative super-
resolution implementation, Doppler slicing could be integrated 
with other computational super-resolution approaches such as 
iterative algorithm unfolding or deep learning methods [13], 
[14].  

 Doppler slicing and subsequent non-contrast super-
resolution imaging could have several potential applications 
beyond pre-clinical research. For example, such capability 
could be used for imaging of changes in the morphology of 
microvasculature following anti-cancer treatments such as anti-
angiogenic drugs. Tumor vessels tend to be tortuous and 
unorganized [34], [35]. It was shown that the success of specific 
anti-cancer treatments could be evaluated according to their 
effects on the morphology of the microvasculature that 
undergoes vascular 'normalization' [34]. Many of these changes 
occur at vascular scales below the resolution of classic 
ultrasound imaging methods. Another scenario in which the 
structure of the microvasculature is known to have clinical 
importance is the imaging of the vasa vasorum inside 
arteriosclerotic plaques [36]. Hyper vascular plaques tend to be 
more fragile, resulting in an increased risk of stroke. By 
improving the spatial resolution of vascular scans without using 
contrast agents, this technique could help to bring next-
generation ultrasound imaging to underserved populations and 
remote communities. 

Despite the capabilities presented in this work, this approach 
has several limitations. Contrast-enhanced ultrasound scans 
produce stronger vascular signals that enable the detection of 
capillary flow [17] and improve the imaging of blood flow 
through intact skulls [3], [5], [37], [38]. In addition, exploiting 
bubble sparsity resulted in more than a ten-fold improvement in 
spatial resolution. Thus, super-localization methods with 
contrast agent injections can detect and resolve smaller vessels. 
Currently, an acquisition time of around three minutes is needed 
to generate a contrast-free super-resolved vascular image using 
Doppler slicing, similar to the duration of plane wave super-
localization scans [1]. Reducing the number of ensembles 
needed for Doppler slicing processing would save expensive 
scan time and reduce the effects of motion artifacts. Therefore, 
use of more advanced denoising methods for the removal of 
speckle noise from the single-ensemble Doppler slicing 
measurements is a subject of continuing work. Another line of 
research is extending the use of Doppler slicing to machine 
learning-based super-resolution methods. These approaches 
enable a more straightforward estimation of the PSF in different 
locations and tissues. In plane-wave ultrasound scans, the PSF 
changes according to the target's location relative to the 
transducer. Assuming that the PSF is piece-wise constant, many 

Figure 5: Sparse representation of Doppler bands shows high agreement with 
ultrasound localization microscopy. a. Standard power Doppler map of a 
mouse brain. b. Sparsity-based super-resolution image with Doppler Slicing 
revealing additional details that could not be resolved using power Doppler. c. 
Matching super-localization microscopy image showing close agreement with 
the sparse representation image in (b). d, e Cross-sections through small 
vessels show improved blood vessels' separation using sparse representation in 
the lateral and axial directions, respectively. Dashed lines in (a) mark the 
locations of these cross-sections. f. FWHM measurements of cross-sections 
through small, isolated vessels show sub-diffraction resolution in sparse 
representation reconstruction. Scale bar is 1 mm (c) 
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estimations can be performed and matched to the processed 
image patches. Together, the improved SNR and precise PSF 
estimation enabled by these approaches have the potential to 
facilitate the detection and separation of smaller vessels.  
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