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Abstract

One of the first steps in the analysis of single cell RNA-Sequencing data (scRNA-Seq) is the

assignment of cell types. While a number of supervised methods have been developed for this,

in most cases such assignment is performed by first clustering cells in low-dimensional space

and then assigning cell types to different clusters. To overcome noise and to improve cell type

assignments we developed UNIFAN, a neural network method that simultaneously clusters and

annotates cells using known gene sets. UNIFAN combines both, low dimension representation

for all genes and cell specific gene set activity scores to determine the clustering. We applied

UNIFAN to human and mouse scRNA-Seq datasets from several different organs. As we show,

by using knowledge on gene sets, UNIFAN greatly outperforms prior methods developed for

clustering scRNA-Seq data. The gene sets assigned by UNIFAN to different clusters provide

strong evidence for the cell type that is represented by this cluster making annotations easier.

Software: https://github.com/doraadong/UNIFAN
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1 Introduction
The large increase in studies profiling RNA-Sequencing data in single cells [1] raises several com-
putational challenges. One of the first, and most important, steps in the analysis of such studies
is cell type assignment [2]. Several methods have been developed for such assignment, including
supervised and unsupervised methods. Supervised methods mainly use previously annotated datasets
to annotate new datasets [3]. This is done either by directly classifying each cell [4] or by learning
an alignment between the datasets to classify groups of cells in a new study [5].

While supervised methods are useful in some cases, they cannot be applied to all cases since
reference datasets are not available for most organs, tissues and conditions. Another challenge
with supervised methods is their inability to identify new cell types that are often one of the
major goals of the study [3]. Thus, the most popular way to annotate single cell data is by using
unsupervised methods. These are often based on clustering cells in a low-dimensional space and
manually annotating each cluster using known marker genes or cluster specific differentially expressed
genes. Several methods for clustering single cell data have been developed and used. These include
SIMLR [6] which clusters cells by using multiple kernel functions to construct a similarity matrix
between cells, Leiden clustering [7] and Seuratv3 [8] which use k-nearest neighbors (k-nn) based
graph partitions to group cells, and methods based on deep neural networks, such as DESC [9],
which uses autoencoders to reduce the dimensions of the data and then clusters cells in the reduced
dimension space.

While several clustering methods have been developed and used for scRNA-Seq data, to
date these methods have only relied on the observed expression data. However, there are several
additional complementary datasets that can be used to improve clustering and reduce noise related
grouping. Specifically, gene sets [10] have been compiled to characterize many processes, pathways
and conditions. While the exact processes or functions that are activated in specific cells or clusters
are unknown, we can use these sets to guide the grouping of cells by placing more emphasis on
co-expression of genes in known sets when clustering single cell data. Since cells of the same type
likely share many of the biological processes, such design can both, improve the identification of good
clusters and help in annotating them based on the function of the sets associated with each cluster.

Here we introduce UNIFAN (Unsupervised Single-cell Functional Annotation) to simultaneously
cluster and annotate cells with known biological processes (including pathways). For each cell, we
first infer its gene set activity scores based on the co-expression of genes in known gene sets. We
also use an autoencoder that outputs a low-dimensional representation learned from the expression
of all genes. We combine both, the low dimension representation and the gene set activity scores
to determine the cluster for each cell. The process is iterative and we define a target function and
show how to learn model parameters to optimize it. In addition to the cell clusters, the method also
outputs the gene sets associated with each cluster and these can be used to annotate and assign cell
types to different clusters.

We applied UNIFAN to several mouse and human datasets spanning multiple organs, cell types
and labs. Our results indicate that by using gene sets as input, UNIFAN can improve on current
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single cell clustering methods. In addition, in most cases, the gene sets selected for each cluster serve
as a very good source for their annotations.

2 Materials and Methods
2.1 Datasets and Data Preprocessing
We used both human and mouse datasets from several tissues to test our method. The human
samples include three scRNA-Seq datasets from The Human BioMolecular Atlas Program (HuBMAP)
consortium [11]. These include “HuBMAP spleen”, “HuBMAP thymus” and “HuBMAP lymph_node”.
We use Scanpy [12] for the data preprocessing leading to 34,515 cells and 26,092 genes for “HuBMAP
spleen”, 22,367 cells and 24,396 genes for “HuBMAP thymus”, and 24,311 cells and 20,946 genes
for “HuBMAP lymph_node”. The “Atlas lung” uses the healthy control samples from [13]. After
filtering, this dataset is composed of 96,282 cells and 17,315 genes. The “pbmc28k” data is from [14]
and has 25,185 cells and 19,404 genes. The “pbmc68k” data is from [15], having 68,551 cells and
17,788 genes. Mouse datasets are from the Tabula Muris paper [16]. Following [17], we end up with
21 datasets each for a single tissue. They all have 22,904 genes and the number of cells ranges from
366 (Aorta) to 4,433 (Heart). See Supplementary Methods for the preprocessing details.

In addition to expression data, UNIFAN uses gene sets to guide clustering. For this we use 7481
gene sets derived from the GO Biological Process ontology (termed c5.go.bp in MSigDB [10]), 2922
gene sets from pathway databases (c2.cp in MSigDB [10]) and 335 sets of targets of transcription
factors from [18]. Names for biological process sets start with “GOBP”. Pathway sets use a prefix
representing the pathway database they are extracted from (e.g., “KEGG”, “WP”, “REACTOME”).
We purposely did not use cell type marker gene sets (c8.all in MSigDB) since we wanted to keep the
method unsupervised and marker lists are often based on DE analysis of labeled cell type data.

2.2 Clustering and Annotating Single Cells Using Gene Sets
To enable the use of prior knowledge on gene function and regulation for clustering single cells, we
developed a deep learning model, UNIFAN (Unsupervised Single-cell Functional Annotation). For
each single cell, UNIFAN first infers gene set activity scores associated with this cell using the input
gene sets. Next, UNIFAN clusters cells by using the learned gene set activity scores and a reduced
dimension representation of the expression of genes in the cell. The gene set activity scores are used
by an “annotator” to guide the clustering such that cells sharing similar biological processes are
more likely to be grouped together. Such design allows the method to focus on the key processes
when clustering cells and so can overcome issues related to noise and dropout while simultaneously
selecting marker gene sets which can be used to annotate clusters.

2.2.1 Learning Gene Set Activity Scores for Cells

For each cell, we first infer its gene set activity scores r 2 RL
�0 (L: number of gene sets), which

represent the activity of known biological processes or pathways in the cell. For this, we design
a special autoencoder whose decoder, instead of being fully-connected, is composed of a binary
matrix D 2 RG⇥L, where G is the total number of genes profiled. Each column in D corresponds to
a known gene set for a biological process or pathway where the values are indicators for whether
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Figure 1: Assigning single-cell gene set activity scores using an autoencoder. The autoencoder is designed such that the decoder
is composed of binary vectors with values indicating if a profiled gene belongs to a known gene set or not. The output of
the encoder, r, serve as coefficients for the gene set vectors, showing how related a cell is to a known pathway/biological
processes. r thus can be seen as the gene set activity scores for this cell. The set cover loss is designed to select uncorrelated
pathways/processes to better annotate cells. FC layers: fully-connected layers.

a gene belongs to this set or not. For a cell with expression y, the encoder, which composes of
fully-connected layers, outputs a low-dimensional representation r. r is then multiplied by the binary
matrix D which leads to a reconstructed expression vector ŷ, as shown in Figure 1. Values in r

serve as weights / coefficients for known gene sets for this cell. Parameters for the fully-connected
encoder are optimized such that the combination of the gene sets, weighted by r, can be used to
reconstruct the observed expression y for all genes in the cell. Thus, r can be seen as the activity
levels of pathways and processes in the cell.

To construct the gene set matrix D which serves as an input to UNIFAN, we collected gene sets
representing biological processes (including canonical pathways and targets of specific regulators)
from MSigDB [10] and [18], which resulted in a total of roughly 10K sets. We expect that only a small
subset of these biological processes are active for each single cell and so we employ regularization
to select active gene sets for each cell. First, we constrain r to be non-negative by using ReLU for
the output layer, which results in most values in r being assigned to 0. Next, we use a regularizer
inspired by the classical set cover algorithm, which aims to find the least number of sets that covers
all elements (in our case, profiled genes of the cell). By employing this regularizer, we aim to find a
small subset of non-overlapping gene sets that can cover as many of genes as possible [19]. For this,
our regularizer optimizes the following function ↵krk1 � �TDr, where ↵ and � are hyperparameters
(see section 2.3 on selecting values for hyperparameters in our model). Using mean-squared error for
the reconstruction loss, our overall loss function for a single cell is

Lactivity(y, ŷ) = ky � ŷk2 + ↵krk1 � �TDr.
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2.2.2 Clustering Cells Using Gene Set Activity Scores
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Figure 2: Jointly clustering and annotating cells. The autoencoder contains two parts: the cluster assignment part (grey in
Figure 2) uses a low-dimensional representation ze to assign a cell to clusters; the “annotator” (green in Figure 2) uses the
learned gene set activity scores and selected genes’ expression to refine clustering and annotate clusters. Gene sets and genes
selected as predictive by the annotator, in turn, provide useful annotations for each cell cluster. We set the number of clusters
M as 6 in this figure for illustration purposes.

To cluster cells using the inferred gene set activity scores, we use an autoencoder-based method.
It is composed of two parts, an expression based cluster assignment part (“grey” parts in Figure 2)
and the “annotator” part (“green” parts in Figure 2) which uses the gene set activity scores discussed
above as input.

The cluster assignment part only uses the expression profile for each cell. It consists of an
encoder and two decoders (Decoder(e) and (q) in Figure 2), modified based on [20, 21]. For a single
cell, we first use an encoder on the expression of genes in the cell y, resulting in a low-dimensional
representation ze, as shown in Figure 2. After initialization, we start with a guess of M clusters and
cluster centroids. Among M cluster centroids S = {s1, s2, ..., sM}, we identify the centroid closest
to ze by first calculating the euclidean distances between ze and all centroids and then transforming
the distances using a t-distribution kernel kt(d) = (1 + d2

v )
� v+1

2 , following [9, 22, 23]. d stands for
the distance and v stands for the degrees of freedom, which is fixed at 10 for all experiments. We
then take the closest centroid as the discrete representation zq of the cell and assign the cell to the
corresponding cluster. We obtain the reconstructed expression ŷq using decoder (q) which only
takes zq as input and so all cells in the same cluster have the same reconstructed expression. We
optimize the reconstruction error ky � ŷqk2 to find the best zq, cluster centroids S, and decoder
(q), in a manner similar to finding the best cluster centroids in k-means clustering.

Since we assign cell clusters using k-means (i.e. discrete assignment), the encoder cannot
be learned using backpropogation. To enable the iterative refinement of model parameters using
gradients, we follow [20] by adding another decoder, decoder (e). Decoder (e) takes ze as input
and outputs another reconstructed expression ŷe. By optimizing ky � ŷek2, we can now update
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ze and the encoder. The overall loss function for a single cell in the cluster assignment part is
thus Lreconstruction(y, ŷe, ŷq) = ky � ŷek2 + ky � ŷqk2. All neural networks mentioned above are
composed of fully-connected layers.

So far we only discussed clustering using expression data. We next use the learned gene set
activity scores for each cell to refine cluster assignments as well as to annotate cell clusters. For
this, we add an “annotator”, a logistic classifier, to the network model. For each cell, the annotator
uses the gene set activity scores r for that cell as input and outputs p(r), the probability of the cell
being assigned to each cluster. We use the annotator’s output to refine the cluster assignment by
adding Lannotator(r,y, S) =

PM
i pi(r)d2i =

PM
i pi(r)kze � sik2 to the existing loss function. Since

it uses both, the low-dimensional representation of the cell ze and the cluster centroids S, such loss
encourages cells being assigned to clusters based on the probability specified by p(r). In other words,
by employing Lannotator and the annotator, we are using prior knowledge about gene membership in
key biological processes to guide the dimension reduction and cluster assignment. Gene sets selected
as predictive by the annotator, in turn, provide useful annotations for each cell cluster.

To allow the selection of marker genes for each cluster, we also tested the use of the UNIFAN
with a subset of the most variable genes selected using Seuratv3 [8]. Using such set the annotator loss
becomes: Lannotator(r,y, S) =

PM
i pi(r,ys)kze � sik2, where ys are the expression of the selected

genes. The overall loss function for the cluster assignment part is thus

Lcluster(y, ŷe, ŷq, r, S) = Lreconstruction(y, ŷe, ŷq) + ⌧Lannotator(r,y, S)

, where ⌧ is a weighting hyperparameter.
The annotator is trained to optimize its own loss function. We use cross-entropy loss to train the

annotator: Laccuracy(r,ys, c) = �
PM

i ci log (pi(r,ys)), where ci = (cell clustered to i). To select
marker gene sets and genes specific to each cluster, we use the exclusive LASSO regularizer [24] for
the annotator. The regularizer takes the form of Lexclusive(B) =

PL
j=1(

PM
k=1 | Bjk |)2, where B are

the parameters of the logistic classifier. Thus the overall loss function for the annotator is

Lclassification(r,ys, c, B) = Laccuracy(r,ys, c) + �Lexclusive(B)

, where � is a weighting hyperparameter.

2.3 Training UNIFAN and Hyperparameter Selection
We first train the autoencoder for the gene set activity scores and obtain the gene set activity scores
for all cells. We then pretrain the encoder and the decoder (e) of the autoencoder for clustering on
the expression data to obtain an initial low-dimensional representations of the cells. We then run
Leiden clustering [7] on these representations to obtain a guess of the number of clusters M , the
initial cluster assignment and the cluster centroids S. Both the number of clusters M and cluster
centroids S are refined as part of the training. Specifically, clusters with no cell assigned to them
are removed. The annotator is then pretrained using the inferred gene set activity scores and the
selected genes, if available. We use the cluster assignment initialized as described above as the true
labels.

Finally, we train the annotator together with the cluster assignment part (the encoder and
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decoder (e) & decoder(q)). In each epoch, the annotator is trained by using the clustering results
as the true label for each cell. The output from the annotator p(r) is in turn used to evaluate the
annotator loss Lannotator for the cluster assignment part. As described previously, the annotator is
optimized using its own loss function, separately from the cluster assignment part. See Supplementary
Methods for details in training.

We use 32 dimensions for the low-dimensional representation ze of a cell. To select the values
for hyperparameters, including the neural network configuration and the weighting hyperparamters
for the loss functions, we conducted a grid search using the Tabula Muris dataset and selected those
hyperparameters values leading to the best performance over tissues. Unless specifically mentioned,
the same set of values were applied to all datasets in all experiments. See Supplementary Methods
for details on how we select the values. As discussed in Supplementary Results, our method is robust
to different choices of hyperparameter values.

2.4 Performance Evaluation and Comparison to Other Methods
To evaluate the performance of UNIFAN and to compare it to prior methods including Leiden
clustering [7], Seuratv3 [8], SIMLR [6], and DESC [9], we run each method on each dataset ten times
with different initializations. For the Tabula Muris data, we run methods on each tissue separately.
We use adjusted Rand index (ARI) and Normalized Mutual Information (NMI) implemented in
scikit-learn [25] to compare clusters with ground truth annotations. Since calculating ARI for large
datasets is time consuming, we use stratified random sampling when computing ARI for large
datasets (>5e4 cells).

See Supplementary Methods for details on how we used prior methods, including hyper-parameter
settings for these methods and for information on the evaluation strategy including how we compute
enrichment p-values of the cell type marker sets in the highly weighted genes learned by the annotator.

3 Results
We developed UNIFAN to simultaneously cluster and annotate cells (and cell clusters) with known
biological processes or pathways. We show that by integrating prior information about gene sets
with observed expression data, we can improve clustering results while simultaneously making the
clusters more interpretable.

3.1 UNIFAN Correctly Clusters Cells and Identifies Relevant Biological Pro-
cesses

We first evaluated if UNIFAN can accurately cluster cells and reveal key pathways and cellular
functions activated in cells assigned to different clusters. For this, we used the “pbmc28k” scRNA-seq
dataset (Methods). UNIFAN clusters successfully captured different cell types when compared to
manual annotations (ARI: 0.81, NMI: 0.77). Figure 3 presents UMAP [26] visualizations of ze output
from UNIFAN for each cell. As can be seen, clusters are mostly composed of cells from the same
type which is a large improvement over other methods including Leiden clustering (shown in Figure
3 C), as we discuss below. By relying on known gene sets, UNIFAN is robust to noise and only
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focuses on relevant co-expressed sets of genes leading to much more coherent clusters. We observed
similar results for the other datasets we tested as can be seen in Figures S4 - S6.

To annotate cell clusters, we examined the coefficients assigned by the “annotator” to different
gene sets for each cluster. Figure 3 D presents some of top ranked sets for the different clusters. We
observe that for cluster 0, the set “GOBP POSITIVE REGULATION OF T CELL RECEPTOR
SIGNALING PATHWAY” is assigned a large weight and this cluster is annotated as CD4+ T cells
in the original paper. For cluster 5 (which mainly includes CD8+ T cells), one of the top scoring
sets is “REACTOME NEF MEDIATED CD8 DOWN REGULATION”. Cluster 1 cells labeled as
CD56 (dim) natural killer (NK) cells in the original paper. UNIFAN correctly assigns “GOBP
REGULATION OF NK CELL MEDIATED IMMUNITY” and “KEGG NK CELL MEDIATED
CYTOTOXICITY” as two of the top gene sets for this cluster. Cluster 3 and 6 correspond to classical
monocyte (cMonocyte) and non-classical monocyte (ncMonocyte) respectively. While UNIFAN
assigns biological processes related to “antigen presentation” and “inflammation” to both clusters,
the biological process related to wound healing “GOBP REGULATION OF INFLAMMATORY
RESPONSE TO WOUNDING” only appears in cluster 6. One of the main differences between
ncMonocyte and cMonocyte is their role in wound healing [27] and so such assignment can make it
much easier to correctly annotate this cluster of cells. In addition to the gene sets, we also evaluated
genes highly weighted by the annotator by comparing them to known cell type marker sets. As
shown in Figure 3 E, the most enriched cell type marker sets for each cluster correspond very well to
the true cell labels, indicating that UNIFAN can indeed identify the marker genes for each cell type
(cluster).

We observed similar performance in terms of cluster annotations for other datasets we tested.
For example, for the “Atlas lung” dataset, UNIFAN successfully separated macrophage (cluster
2) and alveolar macrophage (cluster 5) as shown in Figure S4 A. The annotator selected“GOBP
MACROPHAGE FUSION”, “WP MACROPHAGE MARKERS” and “GOBP NEGATIVE REGU-
LATION OF RESPONSE TO INTERFERON GAMMA” for both clusters. It also selected “GOBP
REGULATION OF COLLAGEN FIBRIL ORGANIZATION” for cluster 8, which agrees well with
the labels of cells in that cluster (fibroblasts). It selected “GOBP CILIUM MOVEMENT” for cluster
10, again in agreement with the types of cells in this cluster (ciliated). Similarly, the most enriched
cell type marker sets for each cluster, learned from the highly weighted genes, corresponded very
well to the true cell type labels (Figure S4 E).

3.2 UNIFAN Improves upon Prior Methods
We compared UNIFAN’s clustering performance on all seven datasets with several prior methods
proposed for clustering scRNA-Seq data. The number of cells in the datasets we used to compare
the methods ranges from 366 (Aorta in Tabula Muris) to 96,282 (“Atlas lung” dataset) and so they
can provide a good representation of the scRNA-Seq datasets being analyzed by researchers. The
methods we compared to included two graph-based methods Leiden clustering [7] and Seuratv3 [8],
a kernel-based method SIMLR [6] and a deep-learning based method DESC [9]. For each dataset,
we ran each method ten times using different initializations. Results are presented in Figure 4 and
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Figure 3: UNIFAN accurately clusters cells and correctly identifies biological processes / pathways. Results presented for the
“pbmc28k” dataset. A, B and C: UMAP visualization of the low-dimensional representation ze of cells output from UNFIAN.
A: Colored by true cell type labels; B: colored by the clusters found by UNIFAN; C: colored by Leiden clustering. D: Coefficients
learned by the annotator for highly ranked gene sets for some of the clusters. E: Enrichment p-values of cell type marker sets in
the highly weighted genes learned by the annotator. Here we show the result from the best run for both UNIFAN and Leiden.
Due to space limit, some gene set names in D and E are truncated (marked with *). See Table S1 and S2 for the full names.

S7. As can be seen, for all datasets, UNIFAN outperforms all other methods regardless of the
evaluation metric being used (e.g., average ARI of UNIFAN and the best performing prior method
on “pbmc28k”: UNIFAN-0.72, Leiden-0.37; on “HuBMAP Spleen”: UNIFAN-0.75, DESC-0.31; on
“Tabula Muris”: UNIFAN-0.70, SIMLR-0.53). The large improvement may result from the ability of
UNIFAN’s to focus on the more relevant sets of co-expressed genes rather than on co-expression
that may results from noise or the large number of genes being profiled.

To further evaluate the different parts of UNIFAN in order to determine which input and
processing is contributing the most to its success, we compared different versions of UNIFAN.
These included “UNIFAN no annotator” which is composed of only the clustering part without the
annotator, “UNIFAN random” which uses randomly generated features for the annotator and several
other variations differing in the biological features used by the annotator including “UNIFAN gene
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sets” which uses only gene set activity scores and “UNIFAN genes & gene sets” (the default version)
which uses both gene set activity scores and the selected genes.

As shown in Figure 4 and S8, the two “UNIFAN” variations using gene sets constantly outper-
formed the other versions which either did not use an annotator or used randomly generated values
as features for the annotator. This results indicate that the use of the annotator to focus on the
relevant co-expressed sets of genes is crucial to the performance of UNIFAN.

Figure 4: UNIFAN significantly outperforms other methods across all datasets. “UNIFAN genes & gene sets” is the default
UNIFAN version using both gene set activity scores and a subset of genes as features for the annotator. “UNIFAN gene sets”
uses only the gene set activity scores. “Initialization” is the initialization clustering results. The others are the prior methods
we used for comparison. For the Tabula Muris data, we take the average over all tissues. See Figure S9 and S10 for tissue
specific results. The “Atlas lung” data provides two levels of cell type annotations and so we show results for both (less detailed
annotation comparison shown on the right). SIMLR was unable to cluster the “pbmc68k” and “Atlas lung” data since it ran out
of memory. See Supplementary Methods for details.

3.3 Models are Transferable across Tissues and Species
Since different tissues from the same species or the same tissue across species may share cell types,
we next explored if an autoencoder for gene set activity scores which is pre-trained on one tissue /
species can also be useful for another tissue/species. The importance of such pre-training is that
training of the autoencoder for gene set activity scores of UNIFAN is time consuming and so if this
can be done offline (i.e. using prior data), then the application of the method to a new dataset can
be much faster.

For this, we pre-train a gene set activity scores model using all available human datasets and
apply the learned model to infer the gene set activity scores for Tabula Muris mouse datasets. We
then run the clustering and annotation using these inferred scores and compare the results with
those inferred from a model that was directly trained on the Tabula Muris data as discussed above.
Given we focus on the usefulness of gene set activity scores, we use only these scores as features for
the annotator (“UNIFAN gene sets”) for this comparison.

Figure S13 presents the results. As expected, we see an overall decline in the average performance
over tissues when comparing the results of pretrained and de novo models. However, for those
mouse tissues that are also profiled in the human datasets we used, we observe similar performance
when using the pre-trained human model. This is most apparent for spleen, lung and a few adipose
tissues including SCAT (subcutaneous adipose tissue) and GAT (gonadal adipose tissue), as shown
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in Figure S13 and Figure S14-S15. These adipose tissues contain many immune cell types which
are also present in many of the human tissues we used for pre-training (spleen, thymus, lymph
nodes and PBMC). We further tested pre-trained models for individual tissues (i.e., training using
spleen in human and testing only on spleen in mouse). As shown in Figure S13, for such analysis
the performance is even better for the most part when compared to using the generally trained
model. The only exception is thymus, where the mouse and human annotations differ significantly
in the datasets we used. The major cell type in the Tabula Muris thymus data (thymocyte) does
not appear in the HuBMAP human thymus data.

4 Discussion
Cell type assignment is one of the most important steps in scRNA-seq analysis. In most cases, such
assignment is performed by first clustering cells and then assigning each cluster with a cell type
based on differentially expressed genes or the expression of known cell markers.

Here we presented UNIFAN which improves both clustering and cluster annotations by using
a large collection of gene sets [10]. UNIFAN infers gene set activity scores and uses them to
regularize the clustering of cells. Such design improves the ability to identify biologically meaningful
co-expressed genes and to use these to group cells. In addition to leading to improved clustering,
UNIFAN also assigns a subset of the gene sets to clusters which can help characterize their cell type.

We compared UNIFAN to several popular methods for clustering scRNA-Seq data using datasets
spanning a large number of organs from both human and mouse. As we show, UNIFAN consistently
outperforms other methods across these datasets. We also analyzed the gene sets selected by UNIFAN
for various clusters and demonstrated that they match well with the known cell types.

Analysis of the various parts of UNIFAN identified the annotator and the gene sets and genes it
uses as the main sources for the improvement. The fact that adding variable genes as input improves
performance is likely the result of the fact that current gene sets, while very useful, are incomplete.
It is likely that we are still missing from current collections sets of genes characterizing some less
known biological processes. In such cases, the selected genes capture groupings that are missed by
the known gene sets.

UNIFAN can be slow on large datasets (Table S3 in Supplementary Results). The main time
consuming part is training the gene set activity scores model for the data being clustered. To speed
up the analysis, we have applied UNIFAN to a new dataset using a gene set activity scores model
pretrained on another dataset. This greatly reduced run time (Supplementary Results) but did lead
to drop in performance for tissues whose cell types were not well-represented in the pre-training
dataset. As we obtain more data from tissues and conditions, we expect that we can further improve
the ability to use pretraining to improve runtime.

UNIFAN is written in Python using PyTorch [28] and is freely avialable from https://github.
com/doraadong/UNIFAN.
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