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ABSTRACT 

Soil matrix properties influence microbial behaviors that underlie nutrient cycling, greenhouse 

gas production, and soil formation. However, the dynamic and heterogeneous nature of soils 

makes it challenging to untangle the effects of different matrix properties on microbial behaviors. 

To address this challenge, we developed a tunable artificial soil recipe and used these materials 

to study the abiotic mechanisms driving soil microbial growth and communication. When we 

used standardized matrices with varying textures to culture gas-reporting biosensors, we found 

that Gram-negative bacteria grew best in synthetic silt soils, remaining active over a wide range 

of soil matric potentials, while Gram-positive bacteria preferred sandy soils, sporulating at a low 

water potentials. Soil texture, mineralogy, and alkalinity all attenuated the bioavailability of an 

acyl-homoserine lactone (AHL) signaling molecule that controls community-level microbial 

behaviors. Texture controlled the timing of AHL sensing, while AHL bioavailability was decreased 

~105-fold by mineralogy and ~103-fold by alkalinity. Finally, we built artificial soils with a range of 

complexities that converge on the properties of one Mollisol. As artificial soil complexity 

increased to more closely resemble the Mollisol, microbial behaviors approached those occurring 

in the natural soil, with the notable exception of organic matter. Properties that behaved 

additively were soil texture, pH, and mineralogy, while organic matter did not, suggesting that its 

soil behavior is an emergent property. 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.01.478713doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478713
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

IMPORTANCE 

Understanding environmental controls on soil microbes is difficult because many abiotic 

parameters vary simultaneously and uncontrollably when different natural soils are compared, 

preventing mechanistic determination of any individual soil parameter’s effect on microbial 

behaviors. We describe how soil texture, mineralogy, pH, and organic matter content can be 

varied individually within artificial soils to study their effects on soil microbes. Using microbial 

biosensors that report by producing a rare indicator gas, we identify soil properties that control 

microbial growth and attenuate the bioavailability of a diffusible chemical used to control 

community-level behaviors. We find that artificial soils differentially affect signal bioavailability 

and the growth of Gram-negative and Gram-positive microbes. We show that some soil 

properties have additive effects on signal bioavailability, while others exhibit emergent 

properties. These artificial soils are useful for studying the mechanisms that underlie soil controls 

on microbial fitness, signaling, and gene transfer.  
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INTRODUCTION 

The soil biome is a critical component of planetary-scale biogeochemical processes (Falkowski 

et al., 2008; Berendsen et al., 2012; Jansson and Hofmockel, 2018; Cavicchioli et al., 2019). A wide 

range of soil properties influences the soil biome's growth, distribution, and metabolism (Vos et 

al., 2013; Tecon and Or, 2017). While it is clear that we need to understand how microbial 

behaviors underlying biogeochemical processes vary dynamically to predict their control of 

planetary-scale processes in response to climate change, we do not yet understand the 

mechanisms by which soils modulate microbial growth, interactions mediated by signaling 

molecules, and perception of nutrients in their environment. 

Soils’ extraordinary heterogeneity and complexity makes it challenging to develop 

mechanistic insight into soil controls on microbial behaviors. Individual soil properties, such as 

redox potential, pH, bioavailable nutrients, and water availability, can vary by orders of 

magnitude within and between soil aggregates (Lehmann et al., 2008; Totsche et al., 2010). 

Because of the large variation in soil properties, it is challenging to design standardized, 

reproducible experiments to understand which specific matrix properties act to control microbial 

behaviors. These circumstances raise the need for matrices more complex than liquid medium, 

which is typically used in synthetic biology studies, but simpler than natural soils. 

Artificial matrices allow studies that examine how specific soil parameters affect microbial 

behaviors while keeping other parameters constant. These synthetic matrices are an extension 

of the CLORPT model (CL = climate, O = organisms, R = relief, P = parent material, and T = time) 

for soil formation and logical addition to our use of soil sequences (Jenny, 1994; Walker et al., 

2010; Wilson et al., 2017). Artificial soils allow experiments where soil properties can be modified 
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systematically, enabling the study of the effects of individual soil properties on the behavior of 

the soil system. Simplified matrices built in the past have yielded valuable results (Guenet et al., 

2011; Downie et al., 2012; Otten et al., 2012; Aleklett et al., 2018). For instance, beads made out 

of transparent polymers demonstrated the importance of a matrix in shaping root growth and 

structure and plant-microbe interactions (Ma et al., 2019; Sharma et al., 2020). However, these 

simple beads did not mimic the effect of soil chemistry and mineralogy on the soil-plant-microbe 

interactions.  

Artificial soils have been built by mixing the primary components of soils, such as sand, clays, 

and humic acids (Guenet et al., 2011; Ditterich et al., 2016). Studies with these synthetic matrices 

have provided insight into how different starting materials affect soil formation (Pronk et al., 

2013, 2015, 2017; Vogel et al., 2014). Additionally, they have revealed how soil properties 

influence microbial community composition (Ding et al., 2013; Babin et al., 2014; Hemkemeyer 

et al., 2014; Whitman et al., 2018) and enzyme activity (Ditterich et al., 2016). However, existing 

protocols for artificial soils do not offer customizable recipes to create simplified soils with full 

control on all properties. They also do not allow individual physical and chemical soil 

characteristics to be varied independently. This limitation makes it difficult to adapt these soil 

recipes for studies that seek to examine the effect of individual soil characteristics (particle size, 

mineralogy, % of organic matter, or aggregation) on microbial behaviors. 

Here, we report a flexible protocol for producing artificial soils capable of acting as a 

standardized matrix, intermediate between the petri dish and natural soils. These artificial soils 

have a range of tunable features that can be independently varied, including particle size 

distribution, mineral composition, pH, and organic matter (OM). Using this protocol, we created 
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seven artificial soils and characterized their physical (water retention curve, surface area) and 

chemical (pH) properties. By combining the artificial soils with a new synthetic biology tool, gas 

biosensors (Cheng et al., 2016, 2018), we establish how microbial growth and inter-organism 

communication vary dynamically with soil physicochemical properties. In particular, we use these 

artificial soils to explore the effect of individual soil properties on the bioavailability of an 

acylhomoserine lactone (AHL) signal that underlies many forms of microbe-microbe 

communication (Masiello et al., 2015; Gao et al., 2016). We find that the effect of some matrix 

properties on signal bioavailability are additive, while others are emergent. 
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RESULTS 

Artificial soil production.  

In our design, we sought to control critical inorganic and organic soil properties that could 

affect the soil system, specifically tailoring development to those properties relevant to biome 

behavior. We mimicked soil physical properties by varying grain size (sand, silt, clay) and 

aggregation, and soil chemical properties by changing minerals, pH, organic carbon, and nitrogen 

content. These properties together act to control gas flow and soil water properties like hydraulic 

conductivity and soil water energy as characterized by a water retention curve (Brady and Weil, 

2008; O’Geen, 2013; Singh and Schulze, 2015). We judged pore connectivity, along with access 

to O2, water, and nutrients, as central parameters for microbial life.  

In the first step of soil construction, a nonreactive matrix of controlled particle size 

distribution is generated (Fig. 1a). This step is critical because grain size regulates soil microbial 

diversity by providing different microenvironments (pore spaces) and the diffusivity of nutrients 

(Hemkemeyer et al., 2018). To control particle size distribution, we mixed three diameters of 

monodisperse quartz (SiO2), including sand (~70 μm), silt (~8.7 μm) and clay (~ 1.7 μm). This 

process allows the construction of soil textures that span the natural soil range (Blake and 

Steinhardt, 2008). The distribution among the three particles can be chosen by the user to mimic 

desired soil textures (Fig. S1a). For this study we chose three textures, including sand (90% sand, 

5% silt, 5% clay) named Quartz-1 (Q1), silt loam (20% sand, 60% silt, 20% clay) named Quartz-2 

(Q2), and clay (20% sand, 20% silt, 60% clay) named Quartz-3 (Q3). When aggregated, the names 

of each were modified, e.g., Q2a. 
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In the second production step reactive minerals are added. Soils contain a variety of minerals 

derived from natural weathering processes, which can carry positive or negative surface charges 

(Brady and Weil, 2008; Singh and Schulze, 2015). These charged surfaces contribute to nutrient 

ion holding capacity (Kleber et al., 2007; Thompson and Goyne, 2012). Minerals can also sorb 

organic compounds, and when dissolved can become a source of micronutrients for microbes, 

e.g., goethite (α-FeOOH) can be an iron source (Kostka et al., 2002). Furthermore, minerals offer 

different surfaces for microbial interaction and colonization, and they can impact microbial 

survival and soil formation (Ding et al., 2013; Hemkemeyer et al., 2014; Whitman et al., 2018). 

Diverse reactive minerals can be added to the quartz matrix depending on the particular biome-

mineral interaction to be explored. For this study, we use three common phyllosilicate clay 

minerals widely found in soils to create artificial silt loam soils, including kaolinite (K2a), illite 

(I2a), and montmorillonite (M2a). These minerals represent the major structural classes of soil 

clay minerals which are ubiquitous across natural soils (Fig. S1b).  

In the third step the artificial soil pH is adjusted. Soil pH values typically vary from 5 to 8 

(Slessarev et al., 2016). Soil pH is one of the primary determinants of total microbial biomass and 

community structure, with fungi tolerating a wider range of pH than bacteria (Aciego Pietri and 

Brookes, 2008; Rousk et al., 2009, 2010). Soil pH also regulates microbial metabolism and 

communication (Nicol et al., 2008; Gao et al., 2016; Ratzke and Gore, 2018), influencing the half 

life of some signals used for cell-cell communication (Gao et al., 2016). The quartz matrices used 

here (Q1, Q2a, and Q3a) are a neutral pH, but more basic soils can be generated through the 

addition of CaCO3. More acid soils can be created by adding aluminum sulfate, or other sources 
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of hydrogen ions. In this work, we explored the addition of CaCO3 to increase the pH of a quartz-

based clay soil (Q3a-pH8) to a value of pH = 8 (Fig. S1c).  

In the last step aggregation is used to create structure, so that artificial matrices more 

accurately mimic the fluid flow and gas diffusion of natural soils. In nature, aggregate formation 

is a complex process controlled by physical (e.g., sequential drying/wetting, freezing/thawing), 

chemical (e.g., electrostatic interactions, cation bridging), and biological (e.g., fungal hyphae, 

bacterial exopolysaccharides, and root exudates gluing particles together) processes (Totsche et 

al., 2018). Aggregation is essential to simulate environmentally-relevant soil water conditions, as 

large pore spaces created by aggregation are crucial to the maintenance of enough O2 to support 

the aerobic soil biome in certain soil types, e.g., clay soils under saturated conditions (Wang and 

Or, 2012; Tecon and Or, 2017). Aggregation also creates specialized niches that allow the 

coexistence of aerobes and anaerobes in unsaturated soils (Borer et al., 2018; Schlüter et al., 

2018), allowing for more complex biogeochemical reactions to occur. Finally, the physical 

disconnection between aggregates influences evolutionary trajectories in isolated communities 

(Rillig et al., 2017).  

We explored two methods to simulate natural soil structure. In the first approach, we used 

wet-dry cycling to aggregate quartz particles through weak adhesion (Guenet et al., 2011). With 

this approach, mineral addition leads to increased aggregate stability. Although these inorganic 

peds are fragile, they can survive autoclaving, providing structure in the absence of organic 

carbon. With artificial soils, it is beneficial to have the option to create aggregates lacking OM so 

that individual soil properties can be varied independently. In the second method, we added 

extracellular polymeric substances (EPS) prior to subjecting the matrix to wet/dry cycles (Fig. 
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S1d). In this study we added xanthan and chitin to soils at 0.5 and 1% OM (w/w). Xanthan, a 

natural EPS produced by Gram-negative bacteria, has been used previously to represent soil EPS 

in model systems (Chenu, 1993; Czarnes et al., 2000; Tolhurst et al., 2002; Dontsova and Bigham, 

2005; Peng et al., 2011; Rosenzweig et al., 2012). Xanthan increases soil water holding capacity, 

aggregate stability, and tensile strength; it can also serve as a carbon source for microbes (Chenu, 

1993; Peng et al., 2011). Chitin, a fungal- and insect-derived polymer containing carbon and 

nitrogen, has also been used as a model OM compound due to its abundance in soil ecosystems 

where it acts as a nutrient source (Gould et al., 1981; Bhattacharjee et al., 2020). Because not all 

microbes are able to use xanthan or chitin as nutrient sources, the addition of these OM sources 

allow for experiments that only test the physical effects of OM. 

 

Artificial soil characterization.  

To determine how artificial soil composition relates to physicochemical properties, we 

characterized the water retention, surface area, and pH of each soil (Fig. 1b). Water properties 

were evaluated because they determine plant and microbe viability. Water content (θ, 

g(H2O)/g(soil)) alone is not a sufficient descriptor, because soils often hold the same amount of 

water at different water potentials. For example, at a single soil water content water may be 

biologically accessible in a sandy soil but not in a clay soil. To understand hydration conditions, it 

is most meaningful to measure water retention curves (WRC), which relate soil water content (θ) 

and soil water potential (ψ). We generated WRC for sets of soils that differed in particle size 

distribution (Fig. 1c), mineralogy (Fig. 1d), and pH (Fig S2a); the data were fit to the van 

Genuchten model to obtain hydraulic parameters (Table S1) (van Genuchten, 1980; Seki, 2007).  
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Plant available water (PAW), defined as the water held by any given soil between the 

potentials defined by field capacity (FC) at ψm = -33 kP and permanent wilting point (PWP) at ψm 

= -1500 kP, was highest in the silt loam [Q2a; PAW = 0.37 g(H2O)/g(soil)] followed by clay [Q3a; 

PAW = 0.36 g(H2O)/g(soil)] and sandy [Q1; PAW = 0.22 g(H2O)/g(soil)] soils. Silty loam soils with 

a 1:1 clay (kaolinite; K2a) and an expanding 2:1 clay (montmorillonite; M2a) had higher PAWs 

with values corresponding to 0.42 g(H2O)/g(soil) and 0.60 g(H2O)/g(soil), respectively. The soil 

with a 2:1 non-expanding clay (illite; I2a) had a PAW = 0.28 g(H2O)/g(soil). We posit that the 

higher PAW in kaolinite compared with illite soil arises because of differences in the cumulative 

pore size distribution. 

We measured the pH of all soils containing an equal ratio of water after allowing 1 hour to 

come to equilibrium (Table S2). All quartz-based soils (Q1, Q2a, Q3a) were a neutral pH. In 

contrast, the pH of the illite (I2a) and montmorillonite (M2a) soils were basic. Because of this 

alkalinity, I2a and M2a studies were conducted using a growth medium (MIDV1) containing 0.25 

M MOPS buffer (pH = 7.0), to separate the effect of mineral addition (e.g., surface area) from pH. 

Artificial soils supplemented with 1% CaCO3 (Q3a-pH8) had a pH of 8.51. 

Soil surface area (m2/g) was measured using N2 adsorption (Fig. 1e). As quartz particle size 

decreased, we observed a small increase in surface area (Fig. S2b). In addition, soils containing 

kaolinite (K2a) and Illite (I2a) presented 10-fold greater surface areas than the most closely 

related quartz soil (Q2a), while the soil containing montmorillonite (M2a) was two orders of 

magnitude larger.  

 

Effect of particle size on microbial survival.  
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We hypothesized that microbial growth would vary across soils having different particle size 

distributions when held at constant water levels since soil matric potential would vary. 

Specifically, we posited that microbes would grow slower as it becomes harder to pull water from 

the matrix. To test this idea, we evaluated how particle size affects the growth of Escherichia coli, 

a Gram-negative microbe that is easy to engineer (Idalia and Bernardo, 2017), and Bacillus 

subtilis, a sporulating Gram-positive microbe that lives in the rhizosphere (Bressuire-Isoard et al., 

2018, Hashem et al., 2019). To monitor microbial growth, we used microbial strains engineered 

to produce a rare indicator gas (CH3X). These strains are programmed to constitutively express a 

plant methyl halide transferase (MHT) that catalyzes the reaction of S-adenosyl-methionine and 

halide ions to produce volatile CH3X and S-adenosyl-cysteine (Figs. 2a-b). MHT reporters have 

been previously used to non-disruptively monitor microbial sensing and gene transfer in soils 

(Cheng et al., 2016, 2018). With this approach, changes in microbial growth and metabolism are 

monitored by measuring CH3X in the soil headspace using gas chromatography mass 

spectrometry (GC-MS).  

Growing microbes in our artificial soil matrices required the addition of growth media, but 

even minimal media formulations contain high nutrient levels that drive the soil osmotic pressure 

far outside the natural range. For example, M63 minimal medium has an osmotic pressure (~-

1443 kPa) far greater than the normal levels (~-100-200 kPa) in saturated soils (Nobel, 2020). To 

address this, we diluted M63 medium 16-fold and limited the amount of supplemented NaBr to 

20 mM, the minimum required for a strong indicator gas signal (Cheng et al., 2016). This growth 

medium, designated MIDV1, has an osmotic pressure (~-319 kPa) close to the normal range found 

in natural unsaturated soils (Sparks, 2002). We characterized the growth of MHT-expressing E. 
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coli (Ec-MHT) and B. subtilis (Bs-MHT) in MIDV1 by measuring optical density (OD600). Ec-MHT 

grew to a slightly higher OD600 than Bs-MHT (Figs S3a-b), albeit a lower density than observed in 

the M63 medium. We also evaluated how the indicator gas signal from Ec-MHT and Bs-MHT 

relates to colony forming units (CFU). A linear correlation was observed between the CH3Br signal 

in the culture headspace and CFU in MIDV1 media (Fig. S4). We also determined CH3Br 

partitioning into gas, liquid, and solid phase by measuring standard curves using a chemical 

standard added to the different artificial soils (Fig. S5). 

To evaluate how particle size distribution affects cell growth, we added our gas-reporting 

microbes (106 cells) to three soils (Q1, Q2a, Q3a - 800 mg each) held at a constant water content 

(θ) of 0.25 g(H2O)/g(soil). At this θ, the soil matric potential (ψm) varies across soils. Q1 is above 

FC (ψm>-33 kPa), Q2a has a ψm=-151 kPa, and Q3a has a ψm= -365 kPa. In the sandy artificial soil, 

Ec-MHT and Bs-MHT reached a maximum cell density at 20 and 4 hours, respectively (Fig. 2c). 

This duration was slightly faster than that observed in liquid culture (Fig. 2d). In silty loam soils, 

Ec-MHT. coli and Bs-MHT reached maximum cell density after a similar period of time as the 

sandy soil (Fig. 2e) However, in clay soils, Ec-MHT required 32 hours to reach maximum density, 

and Bs-MHT showed little gas production suggesting cell death or sporulation (Fig. 2f).  

Cell growth slows as nutrients are consumed, so we expected indicator gas production to 

decrease with time, potentially creating an additional signal in our particle size experiments. To 

test this, we monitored the rate of CH3Br production in soils having different particle sizes (Fig 

S6a). As expected, gas production from Ec-MHT grown in liquid medium decayed exponentially 

(R2=0.71); however, the gas production rate was slower and constant for a longer period of time 

in silt loam Q2a and clay Q3a soils. This observation suggests that in soils, matrix particle size 
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plays an additional role in controlling nutrient accessibility and diffusion. Similar experiments 

were performed with Bs-MHT (Fig S6b). In all conditions, the indicator gas production rate rapidly 

declined within the first 12 hours, suggesting that nutrient deficiency caused cell death or 

sporulation in this Gram-positive microbe.  

 

OM-driven changes in soil properties affect microbial growth.  

OM can change the physical properties of soil, such as water retention and aggregate 

stability, but under some conditions OM also is a food source for soil microbes, making it 

challenging to separate the physical effects of OM on soil microbial growth. To address this, we 

grew E. coli in soils amended with xanthan and chitin, forms of OM that cannot be metabolized 

by this microbe. We first measured how the water retention of soils changes with OM addition. 

Both xanthan and chitin increased the quantity of water retained across the wide range of water 

potential we measured. The enhancement of water retention increased with OM concentration.  

Artificial soils with xanthan retained more water [0.5% PAW = 0.42 g(H2O) g(soil)-1, 1% PAW = 0.77 

g(H2O) g(soil)-1] than with chitin [0.5% PAW = 0.50 g(H2O) g(soil)-1, 1% PAW=0.59 g(H2O) g(soil)-1] 

(Fig. S7a). To evaluate if soil water retention properties altered by OM influence microbial 

growth, we fixed the water content (θ) at 0.4 g(H2O)/g(soil). We added Ec-MHT (106 cells) to 

quartz-based silt loam soils (Q2a) containing 0.5% or 1% (w/w) of either xanthan or chitin and 

measured indicator gas production as a function of time. As controls, we performed experiments 

in Q2a lacking OM and in liquid medium. In all experiments we measured CH3Br accumulation as 

an indicator of cell growth. Because gas partitioning can be affected by the soil matrix, we 

generated CH3Br standard curves in soils containing OM and used them to normalize the data 
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(Fig. S7b). We found that a silt loam soil containing only quartz particles (Q2a) decreased 

indicator gas accumulation at each time point compared with cells grown in liquid culture (Fig. 

3). Addition of xanthan (0.5 or 1% w/w) suppressed indicator gas production to a small extent 

compared with Q2a alone. In contrast, addition of chitin had dramatic effects on indicator gas 

production. The low level of chitin tested (0.5%) largely suppressed indicator gas production, 

while the high level led to highest gas production. To better understand growth dynamics, we 

also calculated the effect of OM on the rate of gas production across the same soils (Fig. S8). In 

the soils lacking OM and containing xanthan, peak production occurred after 10 to 15 hours, with 

little production after 20 hours. In the soils containing high chitin levels (1%), the peak production 

occurred at a similar time point. However, gas production continued beyond 20 hours, albeit at 

decreased levels.  

 

Soil particle size distribution affects signal bioavailability.  

In soil, cell-cell communication is mediated by diverse signaling molecules with varied 

chemistries (DeAngelis, 2016; Schmidt et al., 2019). Signal chemistry and soil properties are 

thought to modulate signal bioavailability over space and time (Del Valle et al., 2020). Biosensors 

are ideal for studying how signal bioavailability varies in soils as biosensors report on microbial 

perception at the micron scale (van der Meer, 2010; Del Valle et al., 2020). To demonstrate the 

utility of synthetic soils for establishing the mechanisms responsible for modulating signal 

bioavailability, we studied the bioavailability of acyl homoserine lactones (AHL). This signal is 

used by bacteria to coordinate population-level behaviors that underlie critical environmental 

processes, such as greenhouse gas production (Zhang et al., 2012), symbiosis formation (Sanchez-
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Contreras et al., 2007), and virulence activation (White and Winans, 2007). These processes are 

triggered only when the AHL reaches a threshold concentration (Schuster et al., 2013).  

To monitor AHL bioavailability in synthetic soils, we used a biosensor that couples gas 

production to the detection of an AHL with a long acyl chain, 3-oxo-C12-HSL (Cheng et al., 2018). 

In this biosensor (Ec-AHL-MHT), transcription of the MHT gene is controlled by the Plas promoter. 

Plas is only on when the transcription factor binds to the AHL (Fig. 4a). To obtain a per cell value 

for indicator gas production, we normalized all CH3Br measurements to CO2, a gas that correlated 

to cell number (Fig S9b). We hypothesized that differences in soil water potential would impact 

AHL diffusion through the soil, thereby limiting microbial access to the signal. To test this idea, 

we held θ constant while varying soil particle size, allowing ψm to vary as a result of changes in 

particle size. To accomplish this, we varied soil particle sizes (using soils Q1, Q2a, and Q3a) held 

at a fixed θ of 0.25 g(H2O)/g(soil). We added Ec-AHL-MHT (108 cells) at the bottom of 2 mL vials 

containing the artificial soils or no matrix (liquid control). After a 30-minute incubation, we added 

water (100 µL) containing or lacking AHL (1 µM) to the top of the soil (Fig. 4b). We then capped 

the vials and monitored CH3Br (dependent on microbial AHL detection) and CO2 (the proxy for 

cell growth) accumulation at different time points. We observed biosensor respiration in all soils 

±AHL (Figs. 4c-d). In the absence of AHL, the indicator gas signal was low (Figs. 4e) as well as the 

ratiometric signal (Fig. 4g). In contrast, addition of AHL (1 µM) led to a time-dependent indicator 

gas signal in all soils (Fig. 4f). Normalization of this signal to respiration allowed for direct 

comparison of sensing in different soils (Fig. 4h). To quantify differences in AHL sensing dynamics, 

the ratiometric (CH3Br/CO2) data was fit to an exponential growth and decay model to calculate 

the maximum CH3Br/CO2 signal (A) and the time for half maximum gas accumulation (T1/2 ) (Peleg 
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et al., 2009). We observed that A and T1/2 both vary with soil particle size. Maximum gas 

accumulation (A) follows the trend:  liquid ≈ silt loam (Q2a) > sand (Q1) > clay (Q3a). In sand (Q1), 

the AHL bioavailability was 55 ±12% that observed in liquid, while in silt loam (Q2a) and clay soils 

(Q3a) it was 94 ±9% and 26 ±2%, respectively. The speed of signal transmission also varied 

between artificial soils, with sand (Q1, T1/2 = 1.8 ±0.7 hours) allowing faster transmission than silt 

loam (Q2a, 13.8 ±2.3 hours) and clay (Q3a, 3.7 ±0.6 hours).  

To better understand the dynamics of AHL sensing, we also calculated the CH3Br/CO2 

production rate to visualize how the gas accumulation trends relate to the duration the microbes 

were growing (Fig S10). As expected, the ratiometric CH3Br/CO2 signal in liquid follows an 

exponential decay, which we posit is driven by nutrient consumption (R2 = 0.73). The rate of gas 

production was highest in sand (Q1) and silt loam (Q2a) and lowest in clay (Q3a). However, gas 

production persisted longer in silt loam (Q2a) and clay (Q3a).  

 

Soil mineralogy and pH affect signal bioavailability.  

Prior studies have shown that AHLs can sorb onto some soils (Cheng et al., 2018; Sheng et al., 

2018), but it is not known how soil mineral composition affects signal sorption. We hypothesized 

that differences in mineral surface area will impact the amount of AHL being sorb into the 

matrices, thereby changing microbial perception of this signal. To test this idea, we evaluated 

AHL bioavailability within soils having the same particle size distribution (silt loam) but different 

mineralogy (different surface area), including quartz only (Q2a), quartz and kaolinite (K2a), quartz 

and illite (I2a), and quartz and montmorillonite (M2a). Because water retention and pH vary with 

mineralogy, and pH can affect AHL half-life (Gao et al., 2016), we kept the ψm fixed at -80 kPa and 
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used buffered MIDV1 medium containing 0.25 M MOPS (pH = 7). For these experiments, we 

incubated Ec-AHL-MHT (108 cells) with varying AHL concentrations in soils and liquid for 6 hours 

and then measured CH3Br and CO2 (Fig. 5a). We chose this incubation time because E. coli 

showed similar growth across the different soils (Fig. S11). We found that soil containing 2:1 clays 

increase the AHL concentration needed to achieve a half maximum indicator gas production (k) 

by up to 3 orders of magnitude for a non-expanding clay (I2a) and 5 orders of magnitude for an 

expanding clay (M2a) compared with soils made of quartz (Q2a). Surprisingly, addition of a 1:1 

clay (K2a) did not affect k, even though the K2a surface area is ~10 higher than Q2a. We interpret 

this last result as arising because of differences in the porosity and/or cation exchange capacity 

of the 1:1 clay (K2a) compared with quartz (Q2a).  

Prior studies in liquid culture have shown that the AHL lactone ring can undergo a pH-

dependent hydrolysis reaction (Yates et al., 2002). In the absence of a lactone ring, microbes can 

no longer use this signal to communicate with one another (Gao et al., 2016). To explore whether 

soils with different pH values affect AHL bioavailability in situ, we performed experiments in two 

clay-sized, quartz-based soils. One soil had a neutral pH (Q3a), while the other (Q3a-pH8) was 

adjusted to pH = 8.5 using CaCO3 (Table S2). For these experiments, we first incubated different 

concentrations of AHL in the soils for 20 min. We then added Ec-AHL-MHT (108 cells) in buffered 

media to field capacity (ψm= -33kPa) to homogeneously mix the buffer in the soil; this led to 

identical pH values across samples. After 6 hours, we measured indicator gas production (Fig. 

5b). We found that microbes required ~3 orders of magnitude more AHL in alkaline soils (2.25 

nM) than neutral soils (3.42 pM) to trigger a similar population-level indicator gas production.  
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Comparing natural and artificial soils.  

As a first test of how individual soil properties affect soil microbial behavior, we generated a 

series of artificial soils that sequentially recreated the properties of a natural soil, and then 

monitored one microbial behavior (AHL detection) as artificial soil complexity increased. Our 

artificial soils were designed to replicate properties of the A horizon of an Austin Series Mollisol 

(Udorthentic Haplustoll) which we collected from the USDA facility in Temple, Texas. This Mollisol 

is an alkaline silt clay loam containing a 2:1 clay type (see Table S3 for. N content, organic carbon 

content, pH, and particle size distribution). Each artificial soil in our series differed by one layer 

of complexity from the natural Mollisol (artificial soil physical properties reported in Fig. S12). To 

understand how soil properties interact to modulate signal bioavailability, we incubated the AHL 

biosensing microbes in our artificial soil series with different amounts of AHL at a constant θ = 

0.4 for 6 hours. We then measured CH3Br and CO2, generated AHL dose-response curves, and 

fitted each curve to a Hill function (Fig. 6a). We found that as artificial soil complexity increased, 

natural and artificial soil AHL biosensor response curves grew more closely matched.  

In examining the effects of both natural and artificial soil matrices on microbial behavior, we 

explored two parameters describing microbial response: maximum biosensor gas production (A), 

expressed as CH3Br/CO2 (Fig 6b), and the amount of AHL required to generate half maximum 

signal induction (k), expressed in pM (Fig 6c), both terms generated from Hill equation fitting. We 

used A to understand matrix effects on the magnitude of biosensor signal output per cell, and we 

used k to understand the effects of matrix sorption on the shape of biosensor signal response. 

First, comparing A from biosensors grown the natural Mollisol to A generated by biosensors 

grown in liquid media, we found the response to AHL was 10.7 times lower in the Mollisol (Fig. 
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6b). The synthetic soil series gives us insight into the parameters driving this change: comparing 

the synthetic soil series A values to those generated by biosensor growth in liquid media, we 

found the largest change in AHL response was driven simply by the addition of a physical matrix 

(quartz particles), mimicking only the particle size distribution of the natural soil. In the quartz-

only artificial soil the maximum gas production (A) decreased by half compared to liquid media. 

These results underline the importance of the physical matrix in controlling microbial accessibility 

of diffusible compounds.  

To determine if the AHL concentration needed for half maximum induction was influenced 

by soil composition, we evaluated k (Fig. 6c). We found that the liquid control and the artificial 

soil that only resembles the natural soil’s particle size (PS) have a k within the same order of 

magnitude (~110 pM and ~244 pM respectively), while adding the mineralogy (PS+M) increases 

k by two orders of magnitude (~39 nM). This result suggests that sorption onto the minerals in 

the Mollisol decreases AHL bioavailability. Soil pH (PS+M+pH) further increased k by one order of 

magnitude (~163 nM) suggesting that pH-dependent hydrolysis also decreases AHL bioavailability 

in the Mollisol. The OM source (xanthan gum) used to make artificial soils (T+M+pH+OM) did not 

influence AHL bioavailability. Finally, the AHL concentration required for half maximum induction 

in the Mollisol (~107 nM AHL) was within 2-fold of the value observed in the artificial soil built to 

mimic the natural soil’s particle size, mineralogy, and pH.  
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DISCUSSION 

We designed a flexible recipe for artificial soils that allows for the individual, linear 

variation of a number of soil-forming factors. These artificial soils are an experimental tool built 

to allow researchers to study the impacts of each individual soil property on a whole soil's 

behavior. They should be potentially useful in a wide range of experiments probing the chemical, 

physical, and biological effects of individual soil properties on the entire soil system. We 

demonstrated that microbial growth and signaling can be monitored in situ using these 

constructed soils. We additionally tested the generality of one underlying assumption of the 

artificial soil design: that soil properties are additive, not emergent. To track microbial response 

we used biosensors: microbes that report on their environment and/or their behaviors. 

Although biosensors have been used to measure bacterial growth in soils (Cheng et al., 

2016; 2018), previous studies used incubation conditions to support optimal biosensor 

performance, such as excess of nutrients and salts. In this work, we show how biosensors can be 

used under experimental conditions that mimic natural soil osmotic conditions, setting water 

potential in the artificial matrices to values within real soil water potential ranges. By building 

artificial soils that vary two properties (particle size and OM content) separately, we 

benchmarked the effects of these variables individually on microbial growth. We observed a 

correlation between growth and soil water potential in artificial soils sampling a range of particle 

sizes held at similar water contents (Fig. 2). E. coli showed consistent maximal growth in soils 

with a range of particle sizes (Q1, Q2a, and Q3a), with peak growth occurring at later time points 

as particle size decreased and water potential increased. This finding suggests diffusional control 

on growth. B. subtilis showed peak growth at a similar time point in sand (Q1) and silt loam (Q2a) 
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soils, but did not grow in the clay soil (Q3a). The lack of B. subtilis growth at the highest water 

potential values suggests that sporulation was triggered under these conditions.  

The addition of OM to silt loam (Q2a) caused cell growth to vary with the source of OM. 

Overall, the complexity in cell growth response to OM suggests nonlinearities in the effects of 

OM on cell growth. Neither source of carbon used here (xanthan or chitin) was metabolizable by 

the microbes used; therefore, these experiments tested only the changes in microbial growth 

driven by OM physicochemical effects on soils. Increasing xanthan levels triggered a large 

increase in soil osmotic potential (Fig. 3), which decreased cell growth to a small extent, 

regardless of the amount added. In contrast, 1% and 0.5% chitin did not significantly alter osmotic 

potential but suppressed cell growth at 0.5% chitin and enhanced growth at 0.1% chitin. The OM 

effects on microbial growth do not follow a simple model where changes in matric potential 

linearly alter cell growth. These growth trends suggest that changes in osmotic potential do not 

alone control growth in these soils and that OM controls on cell growth are complex, even in 

studies that use simplified materials that cannot be metabolized. 

It is possible to conceive future experiments to deconvolve the nonlinearities observed 

here. In future cell growth experiments, other sources of OM (e.g., plant-derived OM, such as 

mucilage) can be added to the artificial soils (Benizri et al., 2007). Biosensors could also be 

incubated in the presence of microbial communities capable of metabolizing different OM 

sources to evaluate differences in water and nutrient availability simultaneously (Kehe et al., 

2019). A potential limitation for the latter approach is the large number of biosensor cells (106 to 

108) required for a detectable gas signal. To increase the sensitivity of gas detection while using 

fewer cells for incubation, gas preconcentration could be performed prior to GCMS analysis. 
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While this approach has not been applied to gas biosensors, it is widely used to measure 

emissions of methyl halides from fields (Redeker et al., 2000).  

Our biosensor studies within artificial soil show that successful delivery of the microbial 

AHL signal is controlled by a combination of soil texture, mineralogy, and pH. Prior studies 

examining quorum sensing in microfluidic devices suggest that fluid flow affects AHL 

bioavailability (Kim et al., 2016). Since water and oxygen content are controlled by soil texture 

when water content is held constant, we compared AHL signal transmission through quartz-

based matrices that sample a range of particle sizes. We hypothesized that the major 

determinants of signal dynamics under these experimental conditions are nutrient and signal 

flow through the matrix, altering microbial growth and signal availability. We found that the 

maximum AHL bioavailability varied by 3.6-fold, and the speed of signal transmission varied by 

7.7-fold (Fig. 4), with sandy soils leading to more rapid signal transmission and silty soils leading 

to greater overall signal transmission. To further expand on these initial findings, biosensor 

experiments need to be performed at larger scales, for example, using soil columns coupled with 

probes to measure water and gas flow.  

Mineralogy and pH had more dramatic effects on signal bioavailability than particle size, 

with mineralogy triggering AHL bioavailability shifts of 105 and pH causing shifts of 103, compared 

to particle size shifts in AHL bioavailability, which were less than 10-fold (Fig. 5) In other studies, 

biochar surface area has been found to correlate with loss of bioavailable AHL (Masiello et al., 

2015). Similarly, we found that artificial soils that vary surface area by changing mineralogy also 

decrease AHL bioavailability when held at the same pH. Our artificial soil measurements showed 

that mineralogy could decrease the AHL concentration by up to five orders of magnitude, 
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implicating sorption as a significant mechanism for attenuating AHL signals. The magnitude of 

this effect exceeds that previously observed when biochars having a range of surface areas were 

mixed with AHLs in a petri dish (Masiello et al., 2015). Furthermore, alkaline artificial soil 

decreased AHL bioavailable by three orders of magnitude. This effect is consistent with petri dish 

studies showing that the half-life of the lactone ring decreases in alkaline solutions because of 

hydrolysis (Gao et al., 2016). Our results suggest that AHL half-life, which influences calling 

distance, will vary by many orders of magnitude across different soils. In future studies, it will be 

interesting to sample soils with an even more comprehensive range of pH and mineralogy 

properties and determine if these physicochemical properties are also essential factors impacting 

other microbial signals' persistence, such as short chain AHLs, and olipeptide autoinducers. 

Our measurements comparing AHL bioavailability in a Mollisol and within artificial soils 

that mimic different levels of complexity within the Mollisol revealed that several soil properties 

have additive effects, including particle size, mineralogy, and pH. In the case where artificial soils 

reveal additive properties, artificial soils can be useful to inform predictive models to better 

understand natural soils' influence on biological processes. Artificial soils also carry information 

when they fail to behave additively, as they help us understand which soil properties are 

emergent. Herein, we found that the addition of microbially-derived OM to artificial soils does 

not bring the artificial system closer to a natural system. This result does not invalidate the 

possibility that other sources of OM might play a role attenuating AHL. An explanation for OM's 

nonlinear behavior is consistent with prior studies implicating soil organo-mineral associations as 

an emergent property (Wang and Allison, 2019). The formation of natural organo-mineral 

associations is a product of long-term soil formation processes, including the decade to millenial-
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scale interactions of plant, animal, and microbial exudates with soil minerals. Mimicking these 

processes within our simplified artificial soil model will require more methods development.  

This study used artificial soils in small gram-scale incubations, but they can be compatible 

with larger testing platforms, such as 3D-printed devices like EcoFAB (Gao et al., 2018; Zhalnina 

et al., 2018), soil boxes (Bhattacharjee et al., 2020), and other climate controlled chambers (Roy 

et al., 2020). These artificial soils can be combined with other tools developed to simplify soil 

microbiology studies to understand microbial processes, such as standardized soil growth media 

(Jenkins et al., 2017) and simplified soil microbial communities (Niu et al., 2017; Zegeye et al., 

2019). Stable microbial communities with reduced complexity are particularly appealing to target 

for future studies (McClure et al., 2020), since these soil consortia allow for studies of interspecies 

interactions that control community-scale behaviors, which can be intractable in native soil 

microbiomes.  

This study also shows that synthetic microbes that function as biosensors are compatible 

with synthetic soils. The use of synthetic soils and biosensors is expected to be useful for testing 

hypotheses generated by high throughput -omics techniques implemented in systems biology 

(Del Valle et al., 2020). This work focused on evaluating cell growth and perception of AHL signals, 

but future studies can use artificial soils to study other dynamic biological processes that are 

controlled by the bioavailability of different chemicals (Fig. 7a). The biosensors developed here 

can be easily used to report how metabolically active a microbe is in various soil and hydration 

conditions (Fig. 7b). Using constitutive biosensors in different artificial soils makes it possible to 

study microbial survival and distribution in a mixed community and shed light on 

biogeochemistry questions such as the effect of hydration pulses on soil respiration (Birch, 1958; 
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Schimel, 2018) (Fig. 7b). Additionally, gas biosensors could be coded to report on the 

bioavailability of other environmental parameters, such as different signaling molecules, 

intermediates in biogeochemical cycles, metal ions critical to the biocatalysis underlying these 

cycles, and osmolytes critical to survival in harsh environmental conditions (Del Valle et al., 2020). 

By designing artificial soils to deconvolute soil heterogeneity, in other words, artificial soil series 

where one property gradually changes, it will be possible to explore the effect of soil redox and 

nutrient gradients on microbial metabolism that regulates the outcome processes relevant at 

planetary scales (Fig. 7c), such as the production of greenhouse gases (Groffman et al., 2009; 

Glass and Orphan, 2012). As explored in other studies (Babin et al., 2017; Pronk et al., 2017), 

artificial matrices can be used in long-term experiments to study how different variables (e.g., 

microbial communities and mineral-organic interactions) can affect soil formation (Fig. 7d) . 

Finally, artificial soils are a helpful platform to study plant, fungi, and bacterial dynamics such as 

root colonization (Pini et al., 2017), agonist and antagonist interactions (Hassani et al., 2018), and 

how different types of soil amendments and land management practices impact these 

interactions (Fig. 7e).  
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MATERIALS AND METHODS  

Soil materials.  

Whole grain fine quartz sand (NJ2, particle size ~70 µm), and ground silt-sized quartz (Min-U-

Sil®40, particle size ~8.71 μm), and clay-sized quartz (Min-U-Sil®5, particle size ~1.7μm) were 

from US Silica. Kaolinite clay (one-layer octahedral sheet and one-layer tetrahedral sheet) and 

montmorillonite clay (two layers of tetrahedral sheets and one layer of octahedral sheet) were 

from Spectrum Chemical MFG Corp. CaCO3 powder was from Acros Organics, Glass vials (2 mL) 

and caps used for soil incubations were from Phenomenex, and 3-oxo-C12-HSL was from Sigma-

Aldrich. Other chemicals were from Thermo-Fisher Scientific, Millipore, or Sigma-Aldrich.  

 

Artificial soil production.  

A total of seven artificial soils were created using the protocol provided in the Supplemental 

Materials. These matrices, which sampled three common soil textures [sand (Q1), silty loam (Q2), 

and clay (Q3)] were created by mixing sand, silt, and clay-sized quartz as shown in Table 1. To do 

this, quartz materials (150 grams total) were added to an autoclaved 250 ml wide-mouth volatile 

organics analysis (VOA) glass jar (Thermo Fisher V220-0125). Samples were first manually mixed 

for 30 seconds by shaking and repeatedly turning the jar, and then placed on a horizontal shaker 

(VWR OS-500) at 7 rpm for 30 minutes. To design artificial soils that simulate reactive clay 

minerals, the clay-sized quartz fraction in the aggregated quartz-based silty loam artificial soil 

(Q2a) was replaced with clay minerals (Table 1). Kaolinite (K2a), illite (I2) and montmorillonite 

(M2a) were used because they represent the major structural classes of soil minerals. To create 

a higher soil pH, CaCO3 power (0.5% w/w) was added to dry soil of the same texture and mineral 
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composition as Q3a to create Q3a-pH8. Additionally, we designed four soils to contain model 

organic compounds to mimic soil organic matter. To this purpose, we thoroughly mixed xanthan 

or chitin at 0.5% and 1% w/w with dry artificial soils mixtures. 

Soil aggregate structure was created by subjecting the soils to multiple wet-dry cycles. In a 

glass jar, megaOhm water was mixed to reach water holding capacity (WHC). The mixture was 

stirred using a spatula until all grains were hydrated and a slurry-paste formed. The paste was 

poured into an aluminum pan and dried in an oven at 60°C overnight. Dry material was gently 

broken using a spatula into fragments small enough to be placed in the original glass jar. This 

procedure was repeated twice. The synthetic, aggregated matrices were sieved using a series of 

U.S. standard sieves. Aggregates ranging from 0.85 to 1.44 mm were used in all studies. We 

autoclaved matrices twice before use to sterilize. Q1 was not subject to this protocol because it 

does not aggregate. 

 

Water retention curves.  

Water retention was characterized at room temperature using a WP4C dewpoint 

potentiometer (Decagon Devices, Inc.). The typical accuracy of the equipment is ±50 kPa, and 

therefore the WP4C is generally not ideal for wet samples with water potential > -100 kPa. Briefly, 

Milli-Q water was added to each artificial soil in a glass jar and thoroughly mixed. The jar was 

covered and allowed to equilibrate for 2 to 4 hours. Artificial soil (~5 grams) was transferred to a 

stainless steel sample cup and analyzed using the WP4C in continuous mode. Under these 

conditions, the accuracy of the instrument is improved to ±10 kPa (Ghezzehei and Albalasmeh, 

2015). After the measurement, the sample was dried in the oven overnight at 60°C, and the dry 
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weight was recorded. The water content (θ) was calculated based on the water loss following 

drying. Before each sample measurement, the instrument was calibrated with a 0.5 M KCl 

standard solution. Water retention data was fit to the van Genuchten model (van Genuchten, 

1980) as shown in Eq 1:  

𝑆𝑒 = 	 % !
!"($%)!

&
'

 , '𝑚 = 1 − !
(
+ 

where Se corresponds to the effective water content defined as,  

𝑆𝑒 =
(𝜃 − 𝜃))
(𝜃* − 𝜃))

	

and a SWRC nonlinear fitting program was used to find 𝜃*, 𝜃), 𝛼, 𝑛 from the experimental data 

as described in Seki, 2007.  

 

Surface area analysis.  

Soil surface area was measured using a Quantachrome Autosorb-3b Surface Analyzer. 

Samples were degassed in glass cells and vacuum dried overnight at 200°C. Nitrogen 

adsorption/desorption isotherms were obtained at 77 K by using a 26-point analysis to obtain 

the relative pressures P/P0 from 1.21 × 10-4 to 0.99, where P is the adsorption equilibrium 

pressure and P0 is the vapor pressure of bulk liquid N2 at the experimental temperature. The 

specific surface area was calculated using Brunauer-Emmett-Teller (BET) theory. 

 

Microbial strains.  

Three strains were used for these studies. To study soil effects on growth, we used a 

previously developed Escherichia coli MG1655 strain (designated Ec-MHT here) that 
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constitutively expresses MHT from a chromosomally incorporated reporter gene (Cheng et al., 

2016). A Bacillus subtilis PY79 strain was also generated that constitutively expresses a fusion of 

green fluorescent protein (GFP) and MHT. This strain (designated Bs-MHT) was created by 

building DNA that uses a strong constitutive promoter (Pveg), a ribozyme (RiboJ), and RBS (MF001) 

to express a gene encoding a GFP-MHT fusion; the plasmid contains the ermB gene, which confers 

erythromycin resistance. This DNA, which was flanked by sequences that exhibit homology to the 

ganA (a β-galactosidase) region of B. subtilis PY79 chromosome, was cloned into a shuttle vector 

containing a kanamycin resistance cassette and a pSC101 origin of replication using Golden Gate 

cloning (Engler et al., 2009). The sequence-verified construct was linearized and transformed into 

B. subtilis (Castillo-Hair et al., 2019). Chromosomal integration was confirmed using PCR on the 

purified genome. GC-MS was used to show that this strain (PY79-mht) constitutively produces 

CH3Br like Ec-MHT. To study the bioavailability of AHLs, we used a previously described E. coli 

MG1655-las biosensor (designated Ec-AHL-MHT here) that reports on the presence of 3-oxo-C12-

HSL by synthesizing CH3Br (Cheng et al., 2018).  

 

Growth medium.  

Lysogeny Broth (LB) was used for culturing strains and all engineering. For soil studies, we 

developed a modified M63 minimal medium that we called MIDV1 which has an osmotic pressure 

within the range found in natural soils. MIDV1 contains 1 mM magnesium sulfate, 0.2% glucose, 

0.00005% thiamine, 0.05% casamino acids, 20 mM sodium bromide and 0.0125% of the M63 salt 

stock. The M63 salt stock solution was generated as described in Cheng et al., 2018. The M63 salt 

stock and the water were autoclaved before use, while all other components were sterile filtered. 
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For mineralogy and pH experiments, we added 0.25 M 3-(N-morpholino)propanesulfonic acid 

(MOPS) to the MIDV1 media to buffer the soil pH. MOPS has a pKa = of 7.2 and is commonly used 

to buffer bacterial growth medium (Good et al., 1966). 

 

Cell survival assay.  

To analyze microbial survival in artificial soils, matrices with different particle size 

distributions (Q1, Q2a, and Q3a) were adjusted to a water content (θ) of 0.25 g(H2O) g(soil)-1. 

Single colonies of Ec-MHT or Bs MHT were used to inoculate LB cultures (6 mL) and grown for 18 

hours while shaking at 37 and 30°C, respectively. Cultures were diluted 100x into LB medium and 

allowed to grow to mid exponential phase (OD600 = 0.5). Cells were pelleted by centrifugation 

(3000 rpm, 10 min), and resuspended in MIDV1 two times. Cells (106 CFU in 200μL) were added 

into glass vials (2 mL) containing artificial soils or lacking a matrix. Vials were capped, incubated 

at 30°C, and analyzed the total CH3Br accumulation after different incubation times. To allow 

comparison between experiments, CH3Br (µg/mL) was normalized to the maximum signal 

observed. The CH3Br production rates were calculated by subtracting gas production between 

adjacent data points. In the case of the liquid growth experiment, the gas signal was fit to Eq 2:  

𝑦 = (𝑦+ − 𝛽)𝑒,-. + 𝛽	

where y0 is the initial signal at t=0, 𝛽 is the maximum signal, and K is the rate constant. To 

analyze microbial survival in artificial soils containing OM, experiments were repeated using a 

similar protocol with quartz based silt loam soil (Q2a) lacking or containing xanthan or chitin at 

0.5% and 1% (w/w). Soils were adjusted to a water content (θ) of 0.4 g(H2O) g(soil)-1.  
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Signal bioavailability assays.  

To study AHL diffusion variability, we added cells to artificial soils (Q1, Q2a, and Q3a) at a low 

θ = 0.25 g(H2O) g(soil)-1. Ec-AHL-MHT were cultured as described for Ec-MHT in growth assays. 

Ec-AHL-MHT (108 CFU in 100 µL) was added to glass vials (2 mL) containing the artificial soils. A 

vial containing only the nutrients (no matrix) was included as a control. We sealed the vials using 

a hydrophobic porous sealing film and incubated them for 30 minutes at 30°C in a static 

incubator. After the incubation, we added AHL (1 µM) or sterile water (control) to reach a θ= 0.25 

g(H2O) g(soil)-1. Each vial takes 3 min to be analyzed using the GC-MS. For this reason, we capped 

one vial every 3 min to accumulate the gas for the same amount of time, and sequentially 

measured the total gas accumulation in vials every 3 hours using the GC-MS for a total of 45 

hours.  

We fitted the AHL pulse in soils after normalization (see statistics section) to a model using a 

multiplication of two Kohlraush functions, or stretched exponential functions as described in 

Peleg et al., 2009 and shown in Eq 3:  

𝑁(𝑡) = 𝑁/𝑒𝑥𝑝 9:
𝑡
𝑡01
;
'!

< 𝑒𝑥𝑝 =>−
𝑡
𝑡02
?
'3
@	

where No is the initial strength of the signal, the variables tcg and tcd represent the characteristic 

times for the signal growth and decay respectively. We used the parameters specified in Munoz-

Lopez et al., 2011 for Eq 4: 

𝑁(𝑡) = 𝑁/ 𝑒𝑥𝑝 𝑒𝑥𝑝	A𝛼𝑡4B 	𝑒𝑥𝑝 𝑒𝑥𝑝	(−𝑎𝑡5)	 

where 𝛼 = > !
."#
?
'!
	,𝑎 = ' !

."$
+
'3

, 𝛽 = 𝑚!, 𝑏 = 𝑚3, are outcomes of the fitted model, we 

calculated the time at which maximum signal (𝑇'67) is achieved in each soil by maximizing the 
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model using the minimize Nelder-Mead algorithm. We calculated the half-maximum induction 

(𝑇%
&'67

) by solving	8'()
3

 when the initial guess (𝑥+) 𝑥+ < 𝑇'67. The CH3Br production rate was 

obtained by subtracting the total gas accumulated between adjacent data points.  

We tested the bioavailability of AHL in artificial soils that have the same particle size 

distribution and aggregation, but different mineralogy (Q2a, K2a, I2a, and M2a). We first fixed 

the soil water potential (ψ) to -80 -kPa using data from water retention curves (WRC) for each 

soil. We mixed Ec-AHL-MHT (108 cells) in 200 uL of MIDV1 containing 0.25M MOPS pH = 7 with 

sterile water until the water content for the fixed soil water potential (-80 kPa) was achieved. We 

added 10x dilutions of 3-oxo-C12-HSL to the cells in a total volume of 1 µL of DMSO and 

immediately transferred them into 2 mL glass vials containing the different artificial soils. A vial 

containing only the nutrients (no matrix) was included as a control. We capped the vials every 3 

min, and accumulated gas at 30°C in a static incubator. We measured the gas production after 6 

hours using GC-MS. We fitted the gas production data to a dose-response curve after 

normalization using the Hill function shown in Eq 5: 

𝑦 = 𝑏 +	
𝐴 ∗ 𝑥(

𝑘( + 𝑥(	

where y represents gas production by the biosensor, x is the AHL concentration, A is the maximal 

response, b is the basal response, n indicates the steepness of the curve, and k is the AHL 

concentration that produces the half-maximum response.  

Experiments measuring AHL bioavailability in soils with different pH (Q3a and Q3a-pH8) were 

performed at a fixed ψ = -33 -kPa. Dilutions of 3-oxo-C12-HSL in 1 µL of DMSO were mixed with 

sterile water to reach the desired soil water potential in each soil. We mixed the liquid with the 
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artificial soils, and sealed the vials using a hydrophobic porous sealing film and incubated them 

for 1 hour at 30°C in a static incubator. We grew Ec-AHL-MHT to exponential phase (OD600=0.5) 

in LB at 37°C, washed the cells twice and resuspended them in concentrated (2x) MIDV1 and 

0.25M MOPS pH = 7. After AHL incubation in the soils, vials were opened and 108 cells in 100µL 

of medium were added. Vials were capped every 3 min and incubated at 30°C without shaking. 

After 6 hours, gas production was measured using GC-MS. The Ec-AHL-MHT signal was plotted as 

the ratio of the total mass of CH3Br normalized to CO2. 

 

Mollisol experiments.  

We used soil samples that had been previously collected from the A horizon of an Austin 

Series Mollisol (an Udorthentic Haplustoll) from a USDA facility near Temple, TX in 2009 (Polley 

et al., 2008). All soil samples were sieved through a 2 mm USA standard sieve and dried at 60°C, 

then stored. We measured C, H and N by catalytic combustion and subsequent chromatographic 

separation and detection of CO2, H2O, and N2 gases using a Costech ECS 4010 instrument. For OC 

measurement, inorganic C was removed first by full strength (7 M) HCl acid fumigation treatment 

in open-top silver capsules, following the procedure of (Harris et al., 2001). We measured particle 

size distribution using chemical dispersion followed by gravity sedimentation (Kettler et al., 

2001). Briefly, 30 g of soils were suspended in 3% hexametaphosphate (HMP) solution in a 250 

ml HDPE bottle with 3:1 HMP (90 mL) to soil (30 g) ratio. The suspension was mixed on a 

reciprocating shaker for 2 hours. The sand fraction was then collected using a 53 µm USA 

standard sieve; whereas the remaining silt and clay suspension fraction was stirred thoroughly 

and allowed to settle undisturbed in a 200 ml volumetric cylinder for a sedimentation period of 
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90 min. After the sedimentation, the suspended clay fraction was decanted. The sand fraction 

collected from sieving and the settled silt fraction was then dried in Al boats at 60 °C to constant 

weight. The clay fraction was calculated by subtracting the weight of sand and silt from the 

original sample mass. Using the obtained information regarding particle size, OC, and pH of the 

natural soil, we created three artificial soils to mimicking the soil properties with increased level 

of complexity (Table 2). 

We tested the bioavailability of AHL in the Mollisol and artificial soils designed to mimic the 

properties of the Austin soil (Table S3). We built a suite of artificial soils of increasing complexity, 

mimicking particle size distribution (PS) and then adding minerals (PS+M) and adjusting pH 

(PS+M+pH). We fixed θ = 0.4 g(H2O) g(soil)-1. We picked and grew three MG1655-las colonies for 

18h while shaking at 37°C in LB. The next day, we made a 100x dilution of these cells and grew 

them until exponential phase (OD600 of 0.5) in LB at 37°C. We washed the cells twice. MIDV1 

media was used for all experiments except when using the soil PS+M where MIDV1+ 0.25M MOPS 

was used to neutralize alkalinity of the minerals. Ec-AHL-MHT (108 cells) and 10x dilutions of 3-

oxo-C12-HSL were mixed and immediately transferred into 2 mL glass vials containing the 

different artificial soils and the natural soil (2x autoclaved). A vial containing only the nutrients 

(no matrix) was included as a control. We capped the vials every 3 min, and gas was accumulated 

at 30°C in static for 6h. Gas was measured using a GC-MS. Raw data was treated as described in 

Section 1.11.16. We report the Ec-AHL-MHT signal as the ratio of the total mass of CH3Br 

normalized by CO2.  

 

Gas partitioning curves.  
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In all our experiments the CH3Br generated by biosensors in response to AHL needed to pass 

through a hydrated soil matrix before being measured in the vial headspace. This means that the 

signal was likely influenced by a number of sorption, dissolution, and diffusion processes. To 

account for this, we generated standard CH3Br curves in each artificial soil and hydration 

condition used in this study (Figure S5). Standard curves were built for CH3Br using a 4x dilution 

in methanol of an analytical standard (2,000 μg/mL in methanol, purchased from Restek). We 

added 10x serial dilutions of the stock solution into 200 μL of MIDV1 media. We combined the 

dilutions with water needed to reach the desired hydration condition in the artificial soils, 

immediately mixed the liquid with the soils weighed into 2mL vials and rapidly crimped the vials 

to avoid gas loss. We incubated all vials for 6h at 30°C in a static incubator to allow each gas to 

reach equilibration between the different phases prior to the GC-MS analysis.  

We performed standard curves of CO2 by reacting H2CO3 and H3PO4 to produce CO2, H2O and 

Na3PO4. We added sterile 100μL of 85% H3PO4 and 10x serial dilutions (in 100μL) of a 200mM 

H2CO3 stock solution to vials containing the different artificial soils and MIDV1 to achieve the 

desired θ. The vials were immediately crimped, and gas was equilibrated for 6h at 30°C in a static 

incubator. Gas partitioned into headspace was measured using a GC-MS. We fitted all curves of 

mass vs. gas detected (peak area) to a log-log regression model using Eq 6: 

𝑙𝑜𝑔	(𝑦) = 𝑚 ∗ 𝑙𝑜𝑔	(𝑥) 	+ 𝑏 

 

Gas counts per cells.  

To determine how headspace gas concentrations and cell number relate, we grew biosensors 

to an OD600 of 0.5 in LB. We washed the cells twice in MIDV1 and made three 10x serial dilutions 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.01.478713doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478713
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

starting from 105 cells in 200 μL. Cells were added to 2mL glass vials and incubated for 3h at 30°C. 

After measuring gas production, we added LB (800 µL) to each vial and mixed the cultures for 3 

minutes at 900 rpm. Serial dilutions of cells were spread on LB-agar plates using a glass cell 

spreader. After a 24-hour incubation at 30°C, plates were imaged using a Nikon camera, and 

Image J 1.51 was used to count CFU. All gas signals were converted to mass, and plots of CFU 

versus gas were fit to Eq. 6.  

 

GC-MS analysis.  

We measured CO2, and CH3Br using an Agilent 7890B gas chromatograph and a 5977E mass 

spectrometer (GC-MS) using an Agilent 7693A liquid autosampler equipped with a 100 µL 

gastight syringe (Agilent G4513-80222). Headspace gas (50µL) was injected into a DB-VRX 

capillary column (20 m, 0.18 mm I.D., and 1 μm film) at 50:1 split ratio and the following oven 

temperature gradient was used to separate the gasses: an initial hold at 45°C for 84 seconds, 

then a transition to 60°C at 36°C per minute, and a final hold at 60°C for 10 seconds. MS analysis 

was performed using selected ion monitoring mode for CO2 (MW = 44 and 45) and CH3Br (MW = 

94 and 96). We used Agilent MassHunter Workstation Quantitative Analysis software to quantify 

the peak area of the major ions and used the minor ions as qualifiers. 

 

Statistics.  

All data presented in this paper was processed by converting the raw CH3Br and CO2 signal 

(peak area) into total mass of gas using the chemical standard curves. For experiments in which 

gas production was measured over time (cell survival and bioavailability assays), we calculated 
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the mass removed per each injection and added the cumulative sum to obtain total mass per 

each time point. A minimum of three replicates was used in each experiment and all data is 

presented as the average values with error bars represents ±1 standard deviation. The data was 

processed in Python 3.7.1 and plotted using GraphPad Prism 8.  
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Figure 1. Design and characterization of artificial soils. (A) Artificial soils produced by:  (1) mixing 
quartz of different sizes together to provide texture; (2) adding clay minerals to vary mineralogy; 
(3) adjusting pH using CaCO3; (4) aggregating using wet-dry cycles; and (5) hydrating to the 
desired water content (θ) and potential (ψm). (B) Three artificial soils (Q2a, M2a, and Q2x0.5) and 
a natural soil. (C) Water retention curves of soils that vary only in texture or (D) mineralogy. Plant 
available water follows the trend Q2a>Q3a>Q1. (E) Surface area of soils that vary in mineralogy. 
Error bars represent one standard deviation from three experiments.   
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Figure 2. Effect of particle size distribution on microbial growth. Genetic circuit used to program 
constitutive indicator gas production in (A) Ec-MHT (B) Bs-MHT. In both strains, the MHT gene is 
chromosomally integrated and expressed using a constitutive promoter so that it is always on. 
CH3Br production over time in (C) sand Q1, (D) liquid (E) silt loam Q2a, and (F) clay Q3a. For each 
measurement, 106 CFU of Ec-MHT (circles) or Bs-MHT (squares) in 200μL of MIDV1 medium were 
added to 2mL glass vials containing 800 mg of soil. Vials were capped and incubated at 30°C. 
CH3Br was measured using a GC-MS every 4 hours for 40 hours. Gas production was normalized 
to the maximum signal obtained. Error bars represent one standard deviation from three 
experiments. 
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Figure 3. Effect of OM on microbial growth in soils. Ec-MHT (106 CFU in 200 μL of MIDV1) were 
added to 2 mL glass vials containing 800 mg of soils with different  OM source and amount. Vials 
were capped and incubated at 30°C. CH3Br was measured using a GC-MS after 0 and 1 hour then 
every 3 hours thereafter. CH3Br production over time in soils with Xanthan (square) or chitin 
(triangle) at 0.5% (white) or 1% (gray) (w/w). An artificial soil without addition of OM, silt loam 
Q2a soil (white circle), and a liquid control (gray circle) are shown. Experiments were performed 
in triplicate. Error bars indicate one standard deviation. 
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Figure 4. AHL bioavailability changes with soil particle size. (A) Ratiometric gas reporting 
approach to monitor cell growth (CO2) and AHL sensing (CH3Br). In this circuit, LasR activates MHT 
production and CH3Br synthesis upon binding AHL. (B) To monitor AHL bioavailability, Ec-MHT 
(108 cells) in MIDV1 medium (100 µL) were added to the bottom of 2 mL glass vials containing 
each soil (800 mg). AHL (1μM) in MIDV1 medium (100 µL) was added to the top of the soil, and 
vials were capped and incubated at 30°C. CH3Br and CO2 was measured using GC-MS at time 0 
and 1 hour after capping, and then every 3 hours. (C) CO2 production in the absence and (D) 
presence of AHL reveals that cells grow under both conditions. (E) CH3Br production in the 
absence and (F) presence of AHL reveals that indicator gas production is AHL-dependent. (G) The 
ratio of CH3Br/CO2 allows for a comparison of the AHL sensed per cell in the presence and (H) 
absence of AHL. This data shows that soil texture affects the dynamics of AHL sensing. The dashed 
lines represent a fit to an exponential growth-decay model. Dots indicate average and error bars 
indicate one standard deviation calculated with n=3.  
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Figure 5. Mineralogy and pH affect AHL bioavailability. (A) AHL bioavailability in soils with 
different mineralogy but the same texture. Ec-AHL-MHT (108 CFU) were mixed with different 
concentrations of AHL and immediately added to vials containing artificial soils with different clay 
types in MIDV1. The medium contained 0.25M MOPS to obtain a ψm= -80 kPa. Vials were capped, 
and CH3Br and CO2 were measured using a GC-MS after 6 hours.The dashed lines represent a Hill 
function fit to the data. With this fit, different k values were obtained for liquid (7.8 x 10-11), Q2a 
(3.1 x 10-11), K2a (2.8 x 10-11), I2a (2.9 x 10-8), and M2a (4.2 x 10-6). (B) Different amounts of AHL 
were added in 100μL of MIDV1 medium to vials containing artificial soils with different pH. AHL 
was incubated for 30 min in the soils before adding the AHL biosensor (108 cells) in 100 μL of 
MIDV1 containing 0.25 M MOPS pH = 7 to achieve FC. Vials were capped and gas production was 
measured after 6 hours. The CH3Br/CO2 ratio represents the per cell sensing of AHL. The dashed 
lines represent a Hill function fit to the data. With this fit, distinct k values are obtained with 
liquid (1.2 x 10-11), Q3a (3.4 x 10-12), and Q3a-pH8 (2.3 x 10-9). Error bars represent one standard 
deviation determined from three experiments. 
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Figure 6. AHL bioavailability in artificial soils that recreate different properties of a Mollisol. (A) 
Different concentrations of AHL were added to MIDV1 medium (300 µL) containing Ec-AHL-MHT 
(108 CFU), and this mixture was mixed with a series of artificial soils (700 mg) that mimic different 
levels of complexity found in a Mollisolfrom Austin, TX. CH3Br gas was normalized by the CO2 
signal measured after a 6-hour incubation in closed vials. The dashed line indicates the Hill 
function fit to the data. PS = particle size, M = mineralogy, pH = addition of CaCO3, OM = addition 
of xanthan gum, and NS= natural soil. In the case of PS+M soil, 0.25 M MOPS pH 7 was included 
in the buffer to isolate the effect of mineralogy on bioavailability. (B) Maximum gas production 
(CH3Br/CO2) obtained from a fit of the data to the Hill equation reveals a decrease in maximum 
gas production as soil complexity increases. (C) Amount of AHL (pM) necessary for a half 
maximum gas response. Artificial soil that recreates texture, mineralogy, and pH requires an AHL 
concentration within the same order of magnitude as the natural soil to induce the biosensor. 
Error bar represents one standard deviation calculated from three replicates. 
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Figure 7. Artificial soil applications. Artificial soils with different properties can be used to study 
(A) the bioavailability of a wide range of chemicals of interest, (B) the survival and distribution of 
microorganisms under different hydration conditions, (C) microbial metabolisms under different 
oxygen gradients and availability of cofactors, (D) soil formation, and (E) plant-fungi-bacteria 
interactions.  
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Table 1. Composition of the artificial soils. Composition (w/w) of quartz-based soil particles 
(sand, silt, and clay), minerals (Kaolinite, Illite, Montmorillonite), and CaCO3. 

 
Soil name  Q1 Q2a Q3a K2a I2a M2a 

Mineralogy Quartz Quartz Quartz Kaolinite Illite Montmorillonite 
Texture  Sand Silty loam Clay Silty loam Silty loam Silty loam 

Composition (w/w)  
Quartz sand 90 20 20 20 20 20 
Quartz silt 5 60 20 60 60 60 
Clay-sized quartz 5 20 60 0 0 0 
Kaolinite 0 0 0 20 0 0 
Illite 0 0 0 0 20 0 
Montmorillonite 0 0 0 0 0 20 
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Table 2. Composition of the Austin series artificial soils. Percentage of sand, silt and clay quartz-
based soil particles to mimic particle size (PS). Clay particles are replaced by montmorillonite to 
simulate mineralogy (M). pH is adjusted using CaCO3. Xanthan was used as an OM source. 
 

Soil name  
Sand 
(%) 

Silt 
(%) Clay (%) 

Mineralogy (%) 
(montmorillonite) 

CaCO3 
(%) 

Xanthan 
(%) 

PS 13.3 32.1 54.7 - - - 

PS+M 13.3 32.1 - 54.7 - - 

PS+M+pH 13.2 31.8 - 54.2 1.0 - 

PS+M+pH+OM 13.0 31.4 - 53.6 1.0 1.1 
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