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1 Highlights10

• A target population of environments can be split into mega-environments (MEs) according11

to phenotypic, geographic, and meteorological information.12

• Reliable estimates of variance components are key to the identi�cation of ME, which can13

be obtained by analyses of historical experimental data.14

• From experimental soybean seed yields evaluated across 31 years of �eld trials, the pheno-15

typic variance was mostly attributed to location and location by year e�ects. In terms of16

genotype-by-environment interactions (GEI), estimated variances of genotype by location17

interactions was more important than the genotype by year interactions.18

• The GEI trend was successfully captured in terms of parametric probability distributions19

of variance components, that can be incorporated in simulation studies.20

2 Abstract21

Soybean (Glycine max (L.) Merr.) provides plant based protein for global food production and22

is extensively bred to create cultivars with greater productivity in distinct environments. Plant23

breeders evaluate new soybean genotypes using multi-environment trials (METs). Application24

of METs assume that trial sites provide representative environmental conditions that cultivars25

are likely to encounter when sold to farmers. Thus, it is important to understand the patterns26

of genotype by environment interactions (GEI) that occur in METs. In order to evaluate GEI for27

soybean seed yield and identify mega-environments, historical data were investigated with a ret-28

rospective analysis of 39,006 unique experimental soybean genotypes evaluated in preliminary29

and uniform trials conducted by public plant breeders from 1989-2019. Mega-environments (MEs)30

were identi�ed using yield records of lines from the annual trials and geographic, soil, and mete-31

orological records at the trial locations. Results indicate that yield variation was mostly explained32

by location and location by year interactions. The static portion of the GEI represented 26.30%33

of the total yield variance. Estimates of variance due to genotype by location were greater than34

estimates of variance due to genotype by year interaction e�ects. A trend analysis further indi-35

cated a two-fold increase in the genotypic variance. Furthermore, the heterogeneous estimates36

of genotypic, genotype by location, genotype by year, and genotype by location by year vari-37

ances, were encapsulated by distinct probability distributions. The observed target population of38

environments (TPE) can be divided into at least two and at most three MEs, thereby suggesting39

improvements in the response to selection can be achieved when selecting directly for clustered40

(i.e. regions, ME) versus selecting across regions. Clusters obtained using phenotypic data, lati-41

tude, and soil variables plus elevation, were the most e�ective.42

3 Keywords43

Soybean; Genotype by Environment Interaction; Multi-environmental trials; Target Population44

of Environments; Mega-environments45
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4 Introduction46

The terms genotype (G) and phenotype (P) were �rst coined by Johannsen (1911) after the redis-47

covery of Mendel’s work. Since then, the understanding of the mapping function that links G to48

P has been an on-going research interest (Pigliucci 2001, p. 2). The mapping of G to P for most49

quantitatively expressed traits is further complicated by the di�erential response of genotype(s)50

to di�erent environments, i.e. genotype by environment interactions (GEI), wherein phenotypic51

variation is shaped by G, Environment (E), and GEI (Tabery 2008; Sprague and Federer 1951).52

The GEI typically increases P variance and leads to a reduced estimates of heritability, complicat-53

ing breeding decisions and lowering response to selection. Additionally, it leads to unpredictable54

adaptation of genotypic lines in targeted agro-ecological zones (Mackay et al. 2019) and in�u-55

ences plasticity response of varieties in variable environments (Cooper and DeLacy 1994; Hal-56

dane 1947). Hence, the GEI is of particular importance to breeders as they attempt to develop57

stable and responsive varieties (Comstock, R. E. and Moll 1962).58

In order to reveal GEI patterns, plant breeders evaluate candidate genotypes in multi-environment59

trials (METs) (Oakey et al. 2016; Smith et al. 2001b). Sampled locations used in METs are as-60

sumed to represent the growing conditions that a candidate line is expected to encounter as a61

cultivar grown by farmers (Bustos-Korts et al. 2021). METs utilize locations that are sampled62

from a target population of environments (TPEs) which represent farm production environments.63

Hence, a TPE is composed of many environments (spatially across agro-ecological zones, and tem-64

porally over years) (Crespo-Herrera et al. 2021). The manifestation of GEI in a TPE has two65

components, the “static” environmental characteristics such as soil, longitude, latitude, and “non-66

static” seasonal characteristics such as weather and management practices (Cullis et al. 2000).67

If GEI is large and associated with consistent sub-groupings of environments within the TPE,68

greater gains from selection might be achieved by subdividing locations into Mega-Environments69

(MEs) (Crespo-Herrera et al. 2021; Yan 2016; Atlin et al. 2000a).70

According to CIMMYT (1989) p. 58, “MEs are broad, not necessarily contiguous areas, de�ned71

by similar biotic and abiotic stresses, cropping system requirements . . . ”. Another de�nition is a72

group of environments that share the same winning genotypes (Kang 2020; Gauch and Zobel73

1997), or that within ME there is minimal crossover interaction (COI) among the genotypes grown74

among environments (Smith et al. 2021). In a group of locations, if genotypes consistently75

perform the same relative to each other over a number of seasons, it is considered a ME (Singh76

et al. 2021, Chapter 4). One way of exploring GEI is to divide the TPE into MEs, and to select77

within ME (Yan 2016). Some studies have investigated strategies to subdivide the TPE in maize78

(Windhausen et al. 2012), barley (Atlin et al. 2000b), wheat (George and Lundy 2019; Bustos-79

Korts 2017), sorghum (da Silva et al. 2021), alfafa (Annicchiarico 2021), rice (Krishnamurthy80

et al. 2017), oat (Yan et al. 2010), and soybean (Zdziarski et al. 2019; Yan and Rajcan 2002).81

There are several methods for dividing the TPE into MEs. For example, the genotype main ef-82

fect plus GEI (GGE) Biplots (Yan et al. 2000) on soybean MET data was used by Zdziarski et al.83

(2019) to identify two MEs in Midwestern Brazil with contrasting altitudes, levels of fertilizer,84

and incidence of soybean cyst nematode pro�les. da Silva et al. (2021) and Krishnamurthy85

et al. (2017) also took advantage of GGE Biplots to pinpoint MEs for pre-commercial sorghum86

hybrids in Brazil and rice genotypes in India, respectively. For wheat, Crespo-Herrera et al.87

(2021) de�ned three MEs in India with climate and soil data through principal component anal-88

ysis, followed by a hierarchical clustering based on Euclidean distance with Ward’s method. For89
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maize in Africa (CIMMYT’s program), Windhausen et al. (2012) explored historical (2001-2009)90

METs data to determine MEs according to �ve subdivision systems (climate, altitude, geographic,91

country, and yield-level), and concluded there was enough genotype by subregion interaction92

relative to genotypic variance to justify the selection for the low and high-yielding sub-regions93

separately. Other methodologies such as the additive main e�ects and multiplicative interaction94

(AMMI) model (Bustos-Korts 2017; Gauch and Zobel 1997) and factor analytic (FA) models95

(Smith et al. 2021; Bustos-Korts 2017; Smith et al. 2015, 2001b; Piepho 1997) also have been96

used.97

It should be noted that the terms subregion, region/regional, subdivision, clusters, zones, agro-98

climatic, ecogeographic and MEs are sometimes interchangeably used in the literature. For the99

METs data analysis, when MEs are ignored, the baseline model includes genotypes, locations,100

years (or the combination location-year, called environment), all two-way and three-way inter-101

actions (Malosetti et al. 2013). When MEs are included in the model, it is called a zone-based102

model; therefore, yielding zone-based predictions (Buntaran et al. 2019). One of the main ad-103

vantages of modeling MEs in a mixed model framework is the ability to borrow information104

between zones from the genotype by ME interaction. This is particularly bene�cial when fewer105

testing locations are available creating a sparse representation of genotypes in some locations106

(Piepho et al. 2016; Piepho and Möhring 2005).107

The e�ectiveness of subdividing the TPE into MEs was assessed by Atlin et al. (2000a) based108

on the theory of correlated response to selection, �rst applied to the GEI problem by Falconer109

(1952). E�ective selection occurs when subdivision increases response to selection, which might110

occur if the genotype by ME interaction variance, i.e. genotype by region (σ2
GR), is large rela-111

tive to the genotypic variance (σ2
G). In terms of variance components, the GEI is composed of112

genotype by location (σ2
GL), genotype by year (σ2

GY ), and genotype by location by year (σ2
GLY )113

interaction variances. Both σ2
GY and σ2

GLY are non-static (unrepeatable) sources of variation. MEs114

can be identi�ed with the static portion of the σ2
GL, which is repeatable across years (Yan 2016).115

When MEs are identi�ed and modelled, the σ2
GL is partitioned into σ2

GR and genotype by location116

within ME (σ2
GL(R)). Furthermore, the σ2

GLY is partitioned into a genotype by ME by year inter-117

action (σ2
GRY ), and genotype by location within ME by year (σ2

GL(R)Y ) interaction (Atlin et al.118

2000a). Consequently, the estimation of variance components provide important information for119

decision-making and accurate estimates are critical.120

Variance components can be estimated with unbalanced historical data to provide information121

for designing novel breeding strategies and optimize resource allocation (Aguate et al. 2019).122

E�orts have been made to quantify component variability using historical METs data in wheat,123

maize, sun�ower, sugar beet, potato, rye (Meyer et al. 2011; Laidig et al. 2008), among other124

commercial crops. However, proper modeling of historical data can be a signi�cant challenge125

(Dias et al. 2020), and if not done properly can lead to erroneous interpretations. In terms of126

variance estimates, recent work from Aguate et al. (2019) and Hartung and Piepho (2021) con-127

sidered both the imbalance of data (due to selection) and the properties of the residual maximum128

likelihood (REML) method (Patterson and Thompson 1971) to shed light onto the bias of the129

estimates obtained from METs using linear mixed models. Their results served as guideline to130

design the variance estimation portion of this work, which will be discussed later.131

With the motivations of identifying and describing MEs for soybean in the primary produc-132

tion area of North America, we obtained historical soybean performance (seed yield) data from133

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.04.11.487885doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487885
http://creativecommons.org/licenses/by/4.0/


Uniform Soybean Cooperative Tests (USDA 2021). We purposely chose this dataset because these134

trials have been used for decisions on variety release by public breeding organizations. Further,135

because �owering in soybean is extremely sensitive to daylength, soybean breeders �rst classify136

experimental genotypes into maturity groups (MGs) and subsequently restrict yield evaluations137

to appropriate maturity zones (MZ) that are de�ned by lattitude. Thus, the lattitude (MZ) of a138

location used for soybean �eld trials is an implemented element of MEs for soybean �eld trials.139

The dataset consisted of 39,006 unique experimental soybean line yield data from 63 locations140

between 1989 and 2019. Note that experimental lines were not evaluated at all locations within141

years and most were not evaluated in more than one year. The objectives of this study were to: (i)142

investigate if the observed TPE spanning 31 years of trial evaluations can be classi�ed into MEs,143

and (ii) estimate probability density functions for the underlying trend of genotypic, genotype144

by location, genotype by year, genotype by location by year, and residual variance components.145

This modelling approach allowed us to �t parametric probability distributions to variance com-146

ponents in order to capture the GEI trend that can be used in future simulation studies, which147

will be needed for predicting plant breeding outcomes in changing climates. Currently, simula-148

tion studies rely on point estimates of variance components (Kleinknecht et al. 2016), or set149

heritability values (such as low or high) (Rutkoski 2019). By capturing the GEI trend using his-150

torical data, we generate reliable variance estimates that can be used to conduct more realistic151

simulation studies.152

5 Data and Methods153

5.1 Phenotypic data154

Annual PDF reports from the Northern Region of the USDA Uniform Soybean Tests were obtained155

from https://ars.usda.gov/mwa/lafayette/cppcru/ust. The data retrieved156

from the published PDF �les represent averages for seed yield for each genotype evaluated at157

each location-year combination (i.e., the empirical best linear unbiased estimate, eBLUE), the158

CV%, and the number of replicates per trial. Seed yield was adjusted to 13% moisture and results159

were reported in bushels per acre (bu/ac). For more information about the trial �eld plot design160

and agronomic practices, please refer to the PDF �les. Information from the PDF �les were tran-161

scribed into CSV format �les. The resulting �les consist of eBLUE values for seed yield (bu/ac)162

of experimental genotypes and check varieties grown in �eld trials of soybean maturity groups163

(MGs) 00 through IV from 1941 to 2020. For our purposes we restricted our analyses to data be-164

longing to MGs II and III from 1989 to 2019. Also, unusual data such as data from individual trials165

with estimates of reliability (i2) less than 0.10, coe�cients of variation (CV%) greater than 20%,166

and individual records within trials with estimated means less than 10 bu/ac were removed prior167

to further analyses. In addition, locations with less than three years of data were excluded from168

further analyses. The resulting data were comprised of 4,257 experimental genotypes evaluated at169

63 locations, in 31 years, resulting in 591 location-year combinations (environments) with 39,006170

yield values. However, because most experimental genotypes are only grown within appropriate171

MZs and are culled on an annual basis, only 0.47% of all potential combinations of experimental172

genotypes, locations and years exist in the data sets.173

For subsequent data analyses, the trials were divided into Preliminary (PYTs) and Uniform174
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Regional (URTs) trials. Experimental genotypes were �rst evaluated in PTs, and if not culled, were175

subsequently evaluated in URTs. Because there are large numbers of experimental genotypes176

created by several public breeding programs within each MZ, the PTs are further split into two177

groups: PT-A and PT-B. In a given year, a PT was usually conducted at nine or more locations with178

two replicates of each experimental genotype evaluated at each location. Experimental genotypes179

retained for regional trials were evaluated at 15 locations representing a URT in the next year180

with three or four replicates per location. Some experimental genotypes might be evaluated181

in two subsequent years of URTs. Experimental genotypes with introgressed transgenic alleles182

were evaluated independently in trials referred to as PT/URT-RR or PT/URT-TM, depending on183

the transgenes. The �eld trials at each location utilized a randomized complete block �eld plot184

design. In addition to the experimental genotypes, entries in each �eld block included common185

check varieties (∼ 3), but we noted that check varieties were seldom retained for more than four186

consecutive years.187

5.2 Environmental data188

In addition to phenotypic (PHE) data from yield trials, environmental data associated with trial189

locations were obtained. Elevation information was obtained from the “elevatr” package (Hol-190

lister et al. 2021). Soil characteristics at a depth of 5-15 cm were downloaded from Soilgrids191

(https://soilgrids.org/) with a modi�ed R script available at https://github.192

com/zecojls/downloadSoilGridsV2, and further processed with the package “raster”193

(Hijmans 2021). The soil characteristics are referred to as soil variables (SV) and included: bulk194

density (SV1), cation exchange capacity (SV2), clay content (SV3), total nitrogen content (SV4),195

pH (SV5), sand content (SV6), silt content (SV7), and organic carbon content (SV8). Detailed in-196

formation about SVs are available in the Soilgrids website. Latitudes for locations in the USA were197

downloaded fromhttps://simplemaps.com/data/us-cities, and Canadian loca-198

tions were obtained using Google Maps. Meteorological data, referred herein as MVs for each lo-199

cation were obtained from “NASA’s Prediction of Worldwide Energy Resources” (NASA POWER,200

https://power.larc.nasa.gov/) with the package “nasapower” (Sparks 2018), and201

further processed with the “EnvRtype” package (Costa-Neto et al. 2021). In total, 19 MVs were202

retrieved on a daily basis (averages) from the average planting date until the average check vari-203

ety maturity date (R8) for each environment (location by year combination). A summary of the204

environmental variables is provided in the appendix (Tables A1 and A2), and for more detailed205

information, please refer to the cited references.206

5.3 Data analyses207

A stage-wise approach to analyses composed of multiple models was followed (Piepho et al.208

2012; Smith et al. 2001a; Frensham et al. 1997). The �rst-stage analyses were applied to indi-209

vidual trials within locations (y1), second-stage analyses were applied to all trials within locations210

(y2), and a third-stage analysis was conducted across locations and/or years (y3). All analyses211

were implemented using “Asreml-R” version 4 (Butler et al. 2017) in the R programming en-212

vironment (R Core Team 2021). Variance components were estimated with REML followed by213

estimation/prediction of the �xed and random e�ects in Henderson’s mixed models (Henderson214
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1950, 1963). When possible, computation time was sped-up with parallel processing by applying215

the “doParallel” and “foreach” packages (Microsoft Corporation and Weston 2020a,b).216

5.3.1 First-stage analyses217

The �rst-stage analyses were previously performed by the collaborators, i.e., public soybean218

breeders, before the data were submitted to the USDA for aggregating and reporting. Individual219

trials within locations were analyzed using a model in which genotypes and blocks were consid-220

ered �xed e�ects, yielding eBLUE values, i.e., entry means for genotypes (y1). The eBLUE values221

were then analyzed with the following model to obtain an estimate of the genotypic variance222

(σ2
G) that was subsequently used to estimate reliability (i2) on an entry-mean basis:223

y1 = µ+ Zgg + ε (1)

where y1 is the vector of entry means reported for each trial in the PDF �les, µ is the intercept,224

Zg (m×m) is the incidence matrix of genotype e�ects, g (m×1) is a vector of genotype random225

e�ects with g ∼ N(0, σ2
GI), and ε is a vector of residuals with ε ∼ N(0, Σ1). The residual variance226

matrix Σ1 (m × m) is a diagonal matrix with elements equal to
1

SE
2 , where SE is the estimated227

standard error (Smith et al. 2001a; Frensham et al. 1997). The SE was estimated as
σε√
r
, where σε228

is the residual standard deviation calculated from the reported CV%, and r is the reported number229

of replicates for each trial. Because phenotypic values from each replicate are not reported, we230

assumed all genotypes from a given trial had the same SE, i.e., equal replication. The i2 was then231

estimated as i2 =
σ2
G

σ2
G+

σ2ε
r

, where σ2
G is the genotypic variance and σ2

ε is the residual variance232

(Bernardo 2020, p. 173). Note σ2
G could also be estimated from the variance of entry means (σ2

F ),233

where σ2
F =

σ2
ε

r
+ σ2

G.234

5.3.2 Second-stage analyses235

Second-stage analyses utilized data from multiple trials with common entries among trials at the236

same location within a year (e.g. PT-A, PT-B, and UT), which were analyzed using:237

y2 = µ+ Xtt + Xgg + ε (2)

where y2 (mj×1) is a vector of eBLUE values form genotypes evaluated across j trials at location238

l, µ is the intercept, Xt (mj × j) is the incidence matrix of �xed e�ects of trials, t (j × 1) is a239

vector of �xed e�ects of trials, Xg (mj×m) is the incidence matrix of �xed e�ects of genotypes,240

g (m×1) is a vector of �xed e�ects of genotypes and ε is a vector of residuals with ε∼ N(0, Σ1).241

The elements of the estimated residual variance matrix Σ1 (mj × mj) were obtained from the242

�rst stage analyses. Estimates of eBLUE values for genotypes and their SE from model 2 became243

input data (y3) for analyses across locations and years. Note the vector of observations y1 refers244

to the eBLUE values obtained from individuals trials in a single location, whereas y2 refers to245

multiple trials connected by checks or any common genotypes in a single location.246
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5.3.3 Multi-location and multi-year analyses247

For the third-stage of analyses the following “baseline” model was used to obtain estimates of248

variance components across multiple locations and years:249

y3 = µ+ Xll + Zgg + Zg.lg.l + Zyryr + Zg.yrg.yr + Zl.yrl.yr + Zg.l.yrg.l.yr + ε (3)

where y3 (mjt×1) is a vector of eBLUE values form genotypes evaluated across j locations and250

t years, µ is the intercept, l (j × 1) is a vector of �xed e�ects of locations, g (m× 1) is a vector251

of random e�ects of genotypes with g ∼ N(0, σ2
GI), g.l (mj × 1) is a vector of random e�ects of252

genotype by location interactions with g.l ∼ N(0, σ2
GL), yr (t × 1) is a vector of random e�ects253

of years with yr ∼ N(0, σ2
Y ), g.yr (mt × 1) is a vector of random e�ects of genotype by year254

interaction with g.yr ∼ N(0, σ2
GY ), l.yr (jt× 1) is a vector of random e�ects of location by year255

interaction with l.yr ∼ N(0, σ2
LY ), g.l.yr (mjt × 1) is a vector of random e�ects of genotype256

by location by year interaction with g.l.yr ∼ N(0, σ2
GLY ), and ε is a vector of residuals with ε257

∼ N(0 Σ2). Xl (mjt × j), Zg (mjt × m), Zg.l (mjt × mj), Zyr (mjt × t), Zg.yr (mjt × mt),258

Zl.yr (mjt× jt), and Zg.l.yr (mjt×mjt) are incidence matrices for their respective e�ects. The259

elements of the residual variance matrix Σ2 (mjt×mjt) were obtained from model 2.260

5.3.4 Probability distributions of estimated variance components261

A modi�ed jackknife resampling approach was used to obtain empirical probability distributions262

for the variance components σ2
G, σ2

GL, σ2
GY , and σ2

GLY . Following Aguate et al. (2019) and Har-263

tung and Piepho (2021), the data were divided into four groups representing consecutive eras264

of soybean cultivar development: From 1989 to 1995, from 1996 to 2003, from 2004 to 2011, and265

from 2012 to 2019. For the �rst group (1989-1995), there were 181 environments; for 1996-2003,266

194 environments; for 2004-2011, 100 environments; and for 2012-2019, 116 environments. The267

modi�ed jackknife approach consisted of leaving-one-environment out (instead of one observa-268

tion), and then estimating the variance components with a modi�ed version of model 3, that269

considered locations as a random e�ect with variance σ2
L. Estimates of variance components270

were then combined and evaluated for a best �t to probability distributions with the package271

“ForestFit” (Teimouri 2021). Given the lack of data from individual plots, trial-based estimates272

of σ2
ε from the �rst-stage of analyses were used (i.e., no resampling). Distributional parameters273

were estimated via the expectation maximization (EM) algorithm (Dempster et al. 1977) using274

the log-likelihood functions of the Gamma, Log-Logistic, Log-Normal, Burr, and F univariate and275

multivariate distributions. In addition to a visual comparison of the modeled distributions rela-276

tive to the empirical distributions, Akaike (AIC) and Bayesian (BIC) information criteria (Akaike277

1974; Schwarz 1978) as well as the Kolmogorov-Smirnov (KS), Cramer-von Mises (CM), and278

Anderson-Darling (AD) goodness-of-�t statistics (Stephens 1986) were considered to select the279

best-�t distribution for each variance component. A classical penalized criteria based on the280

loglikehood (AIC, BIC) provided protection from over�tting.281

5.3.5 Identi�cation of mega-environments282

Herein, “ME” and “cluster” are used interchangeably. We clustered 63 locations using six criteria:283

(i) phenotype, i.e., seed yield (PHE), (ii) eight soil variables (SVs) plus elevation (SoilE); (iii) lati-284
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tude, where locations were split into two groups (Lat2), (iv) latitude, where locations were split285

into three groups (Lat3); (v) 19 meteorological variables (MVs) with means across years (WA); and286

(vi) MVs with means nested within years (WW).287

With the exception of Lat2 and Lat3, the optimal number of clusters was then de�ned based288

on the Silhouette and Elbow methods using the package “factoextra” (Kassambara and Mundt289

2020), followed by a K-means clustering with the R base function kmeans() allowing for a maxi-290

mum of 1,000 iterations and 100 multiple initial con�gurations of the K groups.291

5.3.5.1 Clustering of PHE data292

293

Several variance-covariance structures (VCOV) for the genotype by location (Σgl) and genotype294

by year (Σgy) interaction terms in model 3 were evaluated. The simplest model (M3-1) assumed295

independent years and locations with homogeneous variances. The next set of models allowed296

heterogeneous variances for locations (M3-2), years (M3-3), or both (M3-4). Speci�c pairwise297

covariances for both Σgl and Σgy were assessed with models M3-5, M3-6, ..., to M3-20. In all298

cases, the elements of the residual matrix was assumed to be known (Model 2). Results from 19299

evaluated models are presented in Table 1. The VCOV models included identity (I), diagonal (D),300

and factor-analytic (FAk) of order k (Piepho 1997; Smith et al. 2001b, 2015). The best-�t model301

was selected according to the AIC selection criteria. For the FA models, the overall percentage302

of genetic variance accounted by each k factor, de�ned as 100[tr(ΛΛ′)/tr(ΛΛ′ + Ψ)], where “tr”303

is the trace of the matrix, Λ (j × k) is the matrix of loadings, and Ψ (j × j) is a diagonal matrix304

of speci�c variances associated with each location, was also considered. Models were selected305

based upon the AIC, the overall percentage of genotype by location [% Var(GL)] and genotype306

by year [% Var(GY)] variances explained by the FA models. With the best-�t FA model, locations307

were clustered based on the estimated Σgl loadings (Bustos-Korts 2017; Burgueño et al. 2008)308

after Varimax rotation. Genetic correlations between locations (C) were further estimated by309

C = DGD, where G = (ΛΛ′ + Ψ) is the estimator of genetic variances, and D is a diagonal310

matrix composed by the inverse of the square root of the diagonal values of G (Smith et al.311

2015).312

5.3.5.2 Clustering of SV data313

314

First the SVs (including elevation) were centered and scaled to a unit variance. Subsequently,315

a principal component analysis (PCA) by non-linear iterative partial least squares (Wold 1966)316

was performed to reduce collinearity with the “pcaMethods” package (Stacklies et al. 2007). The317

number of principal components (PC) was selected with a 90% threshold of cumulative variance318

explained, followed by a Varimax rotation.319

5.3.5.3 Clustering of MV data320

321

Prior to conducting cluster analyses, a Critical Environmental Regressor through Informed Search322

(CERIS) procedure proposed by Li et al. (2018) was used to identify relevant MVs. The method323

consists of screening meteorological data in all environments to identify a period (window) of324

days after planting with the greatest Pearson correlation between the population means (i.e.,325
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environmental means) and the MVs. The idea is to identify periods of meteorological data that326

are most likely to a�ect stages of growth and development associated with the phenotypic results327

(yield, plant height, etc.). We further modi�ed their approach to account for genotype by location328

deviations within years as follows:329

y3 = µ+ Xll + Xgg + ε (4)

where y3 (mj × 1) is a vector eBLUE values of m genotypes in j locations, µ is the intercept, l330

(j × 1) is a vector of �xed e�ects of locations, g (m× 1) is a vector of �xed e�ects of genotypes,331

and ε is a vector of residuals with ε ∼ N(0, Σ2). Xl (mj × j) and Xg (m × m) are incidence332

matrices for their respective e�ects, and Σ2 (mj × mj) was previously de�ned. Model 4 was333

applied within years. The residuals represent the genotype by location deviations nested within334

years. Each location was then represented as the average of the residuals squared. The CERIS335

was computed for observed location-year combinations within (WW) and across years (WA), and336

the best window (i.e., highest correlation) for each of the MVs was selected for clustering. For337

WA, correlations were computed for each MV with the 591 observed environments. For example,338

if a given location was observed in �ve out of 31 years, �ve environmental means were computed339

with the same selected window, and the location represented as the mean of these �ve values. On340

the other hand, for WW, each observed year can have its own best window. A minimum window341

of seven days was considered in all cases. After identifying the most relevant window for each342

MVs, the resulting data were centered and scaled to unit variance. Subsequently clustering was343

conducted as described for the SVs. Note that for both WA and WW, the input data for the344

clustering analysis was a matrix of centered and scaled environmental means with dimension of345

63 rows by 19 columns, which represent the number of locations and MVs, respectively.346

5.3.5.4 E�ectiveness of clustering347

348

We used the ratio of correlated responses from selection across all environments relative to direct349

responses to selection within MEs (CR/DR) (Atlin et al. 2000a; Bustos-Korts 2017) as a metric350

to assess the relative e�ectiveness of clustering environments into MEs. As previously demon-351

strated, CR/DR can be determined using variance components obtained from linear models:352

y3 =Xrr + Zl(r)l(r) + Zgg + Zg.lrg.l(r) + Zyy + Zy.ry.r

+ Zg.rg.r + Zlr.yl(r).y + Zg.yg.y + Zg.y.rg.y.r + Zg.y.lrg.y.l(r) + ε
(5)

where r is a vector of �xed e�ects of clusters, and l(r), g.l(r), y.r, g.r, lr.y, g.y.r, and g.y.lr, are353

random vectors with speci�c variances of locations within clusters, genotype by location within354

clusters interaction, year by clusters interaction, genotype by cluster interaction, locations nested355

in clusters by year interaction, and genotype by year by location within clusters, respectively.356

Xr, and Zlr up to Zg.y.lr , are incidence matrices for their respective e�ects and dimensions. The357

remaining model terms were previously de�ned.358

Estimates of variance components from model 5 were used to obtain CR/DR:359

CR/DR = ρg

√
i2

L

i2
SR

(6)
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where ρg is the correlation between estimated genotypic e�ects in the non-clustered and clustered360

sets of environments and i2
L

and i2
SR

are the estimated reliabilities of genotype means in the non-361

clustered and clustered sets of environments, respectively. If CR/DR < 1, response to selection362

will be more e�ective if selections are made within clusters (Atlin et al. 2000a; Bustos-Korts363

2017). Note that it is possible for CR/DR > 1, indicating that selection will be more e�ective364

if selection is based on eBLUE values obtained from non-clustered environments. As per (Atlin365

et al. 2000a) The terms in equation 6 are de�ned as follows:366

ρg =
σ2
G√

σ2
G(σ2

G + σ2
GR)

(7)

i2
L

=
σ2
G

σ2
G +

σ2
GR

nr
+

σ2
GL(R)

nl×nr +
σ2
GY

ny
+

σ2
GRY

ny×nr +
σ2
GL(R)Y

nl×nr×ny

(8)

i2
SR

=
σ2
G + σ2

GR

σ2
G + σ2

GR +
σ2
GL(R)

nl
+

σ2
GY

ny
+

σ2
GRY

ny
+

σ2
GL(R)Y

nl×ny

(9)

where σ2
G, σ2

GR, σ2
GL(R), σ

2
GY , σ2

GRY , and σ2
GL(R)Y are the genotypic, genotype by cluster, genotype367

by location nested in cluster, genotype by year, genotype by clusters by year, and genotype by368

location nested in cluster by year variance components, respectively. nr and ny are the harmonic369

means for the number of clusters and years in which genotypes were observed, respectively. nl370

is the median number of locations, obtained from harmonic means within clusters. The residual371

terms were omitted due to the lack of replicated data within environments.372

The Jaccard similarity coe�cient was used to compare the coincidence of locations within373

cluster across clustering-types. For the sake of simplicity, only the σ2
GR was estimated for each374

clustering-type with the jackknife approach presented in section 5.3.4. Lastly, to evaluate if lo-375

cations were simply allocated to clusters by chance, we randomly assigned locations into two,376

three, and four clusters, and assessed its CR/DR. This process was repeated 100 times.377

6 Results378

6.1 Single-trial and location analysis379

The number of evaluated genotypes by year including checks ranged from 126 to 233, and the380

number of locations per year ranged from 10 to 32 (Table A3). Estimates of i2 from single-trial381

analyses ranged from 0.10 to 0.99, with a median value of 0.55 (Figure 1). The majority of trials382

(844 out of 1423) had i2 values greater than 0.50. The coe�cient of variation (CV%) ranged from383

1.30 to 19.9%, with a median value of 7.60% (Figure 1-A). Genotypic eBLUE values ranged from384

10.16 to 112.40 bu/ac. Across years, there has been a positive trend for seed yield with an average385

increase of 0.49 bu/ac per year (Figure 1-B), although the relative contributions of genetic and386

non-genetic factors to this trend requires further analyses and is the subject of future research.387
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6.2 Variance components388

Most of the estimated phenotypic variance for seed yield among annual soybean �eld trials has389

been due to location (σ2
L) and location by year interaction (σ2

LY ) e�ects (Table 2). Among the es-390

timated GEI variance components (σ2
GL + σ2

GY + σ2
GLY ), the static contribution (σ2

GL) represented391

26.30% (Table 2, model M3-1).392

Estimated variance components reveal distinct multi-modal distributions over time (Figure393

2). For example, the estimated genotypic variance (σ2
G) more than doubled from ∼ 3.54 (bu/ac)

2
394

for the period 1989-1995 to ∼ 7.56 (bu/ac)
2

for the period 1996-2003. For the years 2004-2011,395

the estimated σ2
G decreased to ∼ 6.67, but then increased to ∼ 7.49 for the most recent period of396

2012 to 2019. While the smallest magnitudes of estimated GEI variance components were usually397

associated with the period from 1989 to 1995, subsequent changes across years were unique to398

each of the estimated variance component. A similar pattern was observed for empirical estimates399

of location, year, and location by year interaction variances (Figure A1).400

Several multi-modal models were evaluated for goodness of �t for the empirical distributions401

of variance components (Table A4). The best-�t models for variance components across time con-402

sisted of: a mixture of �ve Log-Logistic distributions for the empirical distribution of σ2
G, three403

Log-Logistic distributions for the empirical distribution of σ2
GL, six Log-Logistic distributions for404

the empirical distribution of σ2
GY , and �ve Gamma distributions for the empirical distribution of405

σ2
GLY (Figure 3). For the empirical distribution of estimated residual variances (σ2

ε ), obtained di-406

rectly rather then through jackknife resampling, the best-�t model was a univariate Log-Logistic407

distribution (Figure 4). Maximum Likelihood estimates for the distributional model parameters408

are reported for the selected models (Table 3).409

The criteria for determining best-�t models included low AIC and BIC values, goodness of �t410

statistics (KS, CM, AD), as well as visual graphical alignment of the model with the plotted empir-411

ical distributions. In total, 102 models were assessed. Plots with empirical and �tted cumulative412

distribution functions are provided in Figures A2 and A3.413

6.3 Clusters of meta-environments414

The six clustering criteria revealed that the observed 63 environments can be divided into at415

least two and at most three MEs. Clusters based on PHE criteria had the best (lowest) relative416

e�ectiveness value, CR/DR = 0.62 (Table 4). This value was computed using results from analysis417

from model 5, and PHE determined by estimates of genotype by location interaction (Σgl) from418

model M3-18 (Table 1). The simplest, but unrealistic model (M3-1) assumed homogeneous and419

independent variances and had the greatest AIC value.420

For PHE, the optimal number of clusters was three, while for SoilE, WW, and WA it was two.421

For all clustering types, both Silhouette and Elbow criteria indicated similar results (Figure A4).422

The number of environments within clusters ranged from 7 to 54 (Table 4 and Figure 5). Calcu-423

lated Jaccard distance metrics among the clusters created by di�erent criteria showed that many424

clusters have common members. Out of the 75 pairwise similarity indexes, 68 presented non-zero425

values. The greatest similarity was between clusters 1 and 2 from PHE and Lat2, respectively (Ta-426

ble A5).427

The best-�t model (M3-18) accounted for heterogeneous variances and pairwise genetic cor-428

relations with FA matrices of order k = 5 and k = 2 for Σgl and Σgly, accounting for 90.2% and429
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87.2% of the genetic variances, respectively (Table 1). Pairwise genetic correlations between the430

63 observed locations show a higher average correlation within phenotypic clusters compared to431

across phenotypic clusters (Figure A5).432

Prior to k-means clustering, a non-linear PCA was performed with centered and scaled en-433

vironmental variables (elevation, SV, and MV). The non-linearity relationship for most variables434

was evident from scatterplots (Figures A6, A7, and A8). For SoilE, WA, and WW, the selected num-435

ber of PC were �ve (93.06% of variance explained), four (93.42%), and six (91.12%), respectively436

(results not shown). Furthermore, for MV, just a small proportion of the data was used due to the437

CERIS biological �lter. For WA, the CERIS revealed that four out of 19 variables had negative cor-438

relations between genotype by location deviations and the mean of the environmental variable439

for the selected window. The selected windows (i.e., with the highest Pearson correlation) were440

smaller than 20 days, and most of them started at the beginning of the cropping season (Table A1441

and Figure A9). For WW and for the sake of simplicity, only the highest window for each MV are442

presented (Table A2), although locations were clustered as described in section 5.3.5.3.443

The e�ectiveness of clustering was assessed using CR/DR, which compares the response to444

selection in the divided and undivided sets of environments. The metric, computed from es-445

timated variance components from model 5 for each clustering type, presented ratios smaller446

than one in �ve out of the six cases. These results suggested an improvement in the response447

to selection when selecting directly within clusters (i.e., regions, ME) versus selecting across all448

locations for PHE, SoilE and Lat2, while a moderate response to selection was suggested for Lat3449

and WA. For WW, no improvements were predicted. The relative e�ectiveness metric is a�ected450

by the correlation between genotypic e�ects in the undivided and divided sets of environments451

(ρg) and the reliability within subregion (iSR). The PHE presented the lowest ρg value with an452

increase in the reliability (from i2L to i2SR), followed by Lat2 and SoilE. For Lat3 and WA, although453

e�ective, the reliabilities remained constant. Regarding the di�erences within �tted clusters, for454

SoilE, with the exception of pH and bulk density, all variables presented a big contrast between455

the two clusters. For WA, these di�erences were more subtle. For example, for growing degree-456

days (GDD), clusters 1 and 2 presented a mean di�erence of 2.61 units. For temperature related457

variables (mean, maximum, minimum, and range), the di�erence ranged between 0.21 and 2.94458

units. When locations were randomly assigned to two, three, or four clusters, the mean CR/DR459

values were always bigger than one, with large decreases in the reliability (Table 4).460

REML estimates of variances decreased for σ2
G when clusters were included in the complete461

dataset, with the exception of WW. The observed ratios σ2
GR/σ

2
G and σ2

GR/σ
2
GL were greather462

than 0.50 for PHE, SoilE, and Lat2. In terms of the partitioning of σ2
GL, the σ2

GL(R) portion was463

substantially reduced for PHE, Lat2, and Lat3. The σ2
GR was better captured by PHE, SoilE, and464

Lat2, being ine�ective for WW (estimate bounded at zero due to REML properties). On the other465

hand, for σ2
GLY , just a small portion of the variation was captured by σ2

GRY (Table 2). Both PHE466

and Lat2 clustering types were able to greatly capture σ2
GR according to analysis for each group467

of years (Figure 6). Lastly, large reductions in the variation of years (σ2
Y ) were observed for SoilE468

and Lat2.469
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7 Discussion470

Analyses of balanced data sets produced by METs using least square and mixed model estimators471

provide unbiased estimates of variance components. However, data generated by annual PYTs472

and URTs are unbalanced and sparse because every year most �eld plots (experimental units) are473

reserved for new experimental genotypes and most previously evaluated experimental genotypes474

are culled on an annual basis. For example, reports of soybean seed yield in MZ’s II and III475

evaluated in PYTs and URTs conducted from 1989 and 2019 included less than one percent of476

all possible combinations genotypes, locations and years. As a consequence estimators of the477

variance components are biased (Rothschild et al. 1979). A question to consider is whether the478

biased estimators produce large bias in the estimates.479

An additional challenge in using soybean seed yield data from PYTs and URTs is that the480

data consist of eBLUE values from individual trials within locations for each genotype. These481

values were transcribed from reports of individual trials formatted as PDF �les. To the best of482

our knowledge, all genotypes were evaluated in replicated �eld trials organized as randomized483

complete block design (RCBD’s) that were analyzed with a linear model consisting of �xed block484

and genotypic e�ects and random residual e�ects, where the residual e�ects were assumed to be485

estimated using equal numbers of replicates per genotype within a �eld trial. Implicitly this is486

equivalent to assuming there were no missing plots within any of the �eld trials, which is highly487

unlikely. Further, the estimates of σ2
GLY , σ2

GL and σ2
GY are confounded and biased by σ2

ε , i.e., plot488

to plot variability.489

A consequence of using eBLUE values instead of individual plot data is that estimates of490

variance components needed to be obtained in multiple stages. If the reports of �eld trials had491

provided individual plot data it would have been possible to produce a variance–covariance ma-492

trix associated with adjusted means from each trial. Indeed, if individual plot data are provided,493

the �eld plot designs need not be restricted to RCBD’s wherein the covariances among plots may494

be substantial and assumptions of independence among plots is inappropriate (Möhring and495

Piepho 2009). Under such �eld conditions use of spatial models and lattice designs where repli-496

cates are considered �xed and blocks as random e�ects (Möhring et al. 2015) can be utilized497

and the mixed model framework can provide appropriate weights for analyses of data combined498

across trials, locations and years. Toward this goal public soybean breeders are working with cu-499

rators of “SoyBase” (Drs. Rex Nelson and David Grant, personal communication, 2020) to include500

results from individual plots in future reports of PYTs and URTs.501

If data were obtained from only URTs they would provide very little information for estimat-502

ing σ2
GLY and σ2

GY because most experimental genotypes are not grown for more than one year503

of URTs. Although check varieties were replicated across multiple years, the checks are a small504

sample of genotypes representing mostly commercial varieties. Thus, interpretation of variance505

components based on only check varieties is limited. In order to broaden the inferences about506

interactions involving genotypes and years in MZs II and III, we included eBLUE values from the507

PYTs, thus providing at least two years of data for a broader base of genotypes.508

Even with inclusion of data from PYTs there is potential for bias in the estimates of σ2
GLY , σ2

GL,509

σ2
GY , and σ2

G due to the phenomenon of missing data between years. Many of the experimental510

genotypes evaluated in the PYTs will be culled before becoming entries in a subsequent year of511

URTs. As a consequence, the missing data are missing at random (MAR). If genotypes are MAR,512

selection is ignorable, and hence they will produce unbiased estimates of variance components513
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in likelihood-based analysis (Piepho and Möhring 2006; Rothschild et al. 1979). Note MAR514

does not state the missing genotypes are randomly eliminated (i.e., no selection), but instead it515

depends on the observed data due to selection (Piepho and Möhring 2006). Also, URTs can have516

experimental genotypes that were not included in a previous year of PYTs, a condition known as517

missing completely at random (MCAR) (Little and Rubin 2020; Rubin 1976). Fortunately recent518

work from Hartung and Piepho (2021) demonstrated that both MAR and MCAR conditions for519

�eld trials conducted in sequential years result in minor bias for likelihood-based estimators of520

variance components (Piepho and Möhring 2006; Little and Rubin 2020; Hartung and Piepho521

2021), a result previously noted for MAR by Piepho and Möhring (2006).522

For the sake of interpreting variance components involving genotypes, we recognize that523

PYTs and URTs include genotypes from multiple breeding programs. Each breeding program op-524

erates independently with distinct breeding objectives and breeding strategies for distinct mar-525

kets. For example, a couple of the breeding programs have objectives that include not only high526

seed yields, but also greater seed protein for food markets. Seed protein is negatively correlated527

with seed yield. Thus, the estimates of variance components involving genotypes from these528

trials is likely greater than it is for any individual breeding program.529

Despite the various caveats mentioned above, the eBLUE values for genotypes from both PYTs530

and URTs provided estimates of variance components with similar relative magnitudes as other531

studies. For example, we determined that environmental, i.e., non-genetic sources of variability532

were the predominant source of variance for seed yield. Similar results were found in wheat in533

California (USA) (George and Lundy 2019), winter wheat �eld trials in Germany between 1983534

to 2014 (Laidig et al. 2017a) and winter rye (Laidig et al. 2017b). Estimates of variance com-535

ponents (Table 2) revealed that the interactions of genotype with locations (σ2
GL) was larger than536

genotype by year interactions (σ2
GY ). Also, the three-way interaction among genotype, location,537

and years (σ2
GLY ), was greater than either of the two way interactions involving genotypes. The538

same pattern was observed when years were combined into four 7 to 8 years periods. Friesen539

et al. (2016) found similar results for winter wheat evaluated in Canada from 2000 to 2009, where540

the reported σ2
GLY represented 4.1% of the total variation, and both σ2

GL and σ2
GY together rep-541

resented less than 2%. Similar trends were also observed for yield in wheat (George and Lundy542

2019; Laidig et al. 2017a; Arief et al. 2015), rye (Laidig et al. 2017b), barley, maize, and sun-543

�ower (Laidig et al. 2008). While seed yields for multiple crops indicate σ2
GL > σ2

GY , it is544

not consistent for all traits. For example, Laidig et al. (2017b) evaluated the variation in crude545

protein content, amylogram viscosity and temperature in winter rye varieties, and reported that546

σ2
GY > σ2

GL, and that the year-to-year (σ2
Y ) variation was more important than the variation from547

location to location (σ2
L). Authors attributed this to the rye seed susceptibility towards wetness,548

low temperature, and radiation during harvest time.549

Aguate et al. (2019) simulated di�erent METs with variable numbers of genotypes, loca-550

tions and years to mimic wheat trials. They found that adding years is more bene�cial than551

adding genotypes or locations for obtaining unbiased estimates of genotypic related variance552

components. Furthermore, even in highly imbalanced datasets, estimates from at least 8 years of553

trials produced less than 5% bias in the estimates, compared to biases of ∼18% for σ2
G, >40% for554

σ2
GL, and >15% for σ2

GY , when only two years of METs were considered. Simulation results from555

Hartung and Piepho (2021) further demonstrated that non-signi�cant bias can be achieved for556

estimates of σ2
G, σ2

GL, and σ2
GY , with decreasing dropout rate and increasing number of years of557

testing. Given the dropout rate relies on the objectives and budget constraints of the breeding558
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program, in order to be con�dent with the REML estimates of variances obtained from METs,559

they recommended that at least seven to eight years of trials should be included. This result and560

the fact that soybean breeding cycles in public programs require seven to eight years, we created561

four subsets of data consisting of seven to eight years. The reader should keep in mind that the562

goal of minimizing bias in estimators is distinct from the magnitude and proportion of estimates563

of variance components. The former is a concern for algorithmic estimators while the latter is of564

concern for breeding decisions about whether to use more locations or more years in their crop565

species and for traits under selection.566

Estimates of variance components were also used to �t parametric probability distributions567

and to quantify the e�ectiveness of dividing the sampled 63 environments/locations into MEs.568

For the distributions, a jackknife resampling approach was implemented and consisted of leaving-569

one-environment out and estimating the variance components in each group of years (1989-1995,570

1996-2003, 2004-2011, 2012-2019). The selected distributions were Log-Logistic and Gamma (Ta-571

bles 3 and A4). Especially due to the well-known properties of the analysis of variance (ANOVA)572

among the breeding community, there is a misconception regarding the distribution of estimates573

of variance components. If the underlying population are normally distributed, the mean squares574

are distributed as a chi-square (χ2
), whereas normality and independence are requirements to575

compute valid F tests from ANOVA (Rencher and Schaalje 2007, Chapter 5). The χ2
distribu-576

tion is further used for inferences about variance uncertainty, but as mentioned, it does assume577

that the random variable is normally distributed. The computed empirical distributions from578

jackknife can be of any form (distribution), likewise other approaches such hierarchical Bayesian579

models can be employed to obtain posterior distributions of variance estimates. But regardless of580

the type of inference, our motivation was essentially to capture the GEI trend. For example, the581

point estimate for the genotype by location variance in the whole period was σ̂2
GL = 4.8 (bu/ac)

2
582

(Table 2). This is a valid estimate, however, it does not allow a trend quanti�cation. The GEI trend583

are crucial as they can be incorporated in simulation pipelines to depict genetic and non-genetic584

trends, which is current a topic under investigation.585

Logically, plant breeders are motivated to ask: What is an environment? Costa-Neto and586

Fritsche-Neto (2021) de�ned environment as “... an emergent property derived from the balance587

of inputs and frequency across the plant’s lifetime,” and from an agronomic point of view, “... a588

certain time window between planting date and harvesting.” Over 60 years ago, Comstock, R. E.589

and Moll (1962) described the di�erences between micro and macro-environment, and explained590

that GEI is the result of �uctuations in the macro-environment during a crop’s lifetime. More591

recently, introduction of enviromics/envirotyping (Costa-Neto et al. 2021; Xu 2016; Cooper592

et al. 2014), coupled with high-throughput phenotyping/genotyping are being investigated as593

an approach to connect environment and biology for sustainable food production. While some594

agronomic research has focused on variation among agronomic systems linked with ideotype595

breeding, genotypic sources of variability continue to be the primary approach used for genetic596

improvement by plant breeders.597

Results from the cluster analyses showed that all sampled environments can be e�ectively598

divided into three clusters using FA models. The obtained clusters can be considered disjoint599

subsets of environments with minimal genotypic crossover interaction (COI) (Burgueño et al.600

2008; Cooper and DeLacy 1994). Burgueño et al. (2008) analysed a maize MET dataset from601

CIMMYT and identi�ed �ve clusters of environments by �tting a FA(2) model. The authors com-602

puted the Euclidean distance between pairs of environments from the estimated loading matrix603
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(Λ, rotated with singular value decomposition), and environments were clustered based on com-604

plete linkage clustering strategy. Bustos-Korts (2017) analysed data embracing TPE in Denmark,605

Germany, The Netherlands, and the United Kingdom, with a FA(1) model. The results suggested606

improvements in the response to selection mostly for Denmark, where the CRS ratio was 0.93.607

More recently, Smith et al. (2021) proposed a new way to de�ne groups of environments that608

exhibit minimal COI based on FA models. The idea is to take advantage of the traditional in-609

terpretation of factor and principal component analysis, and classify environments into clusters610

based on the sign (positive or negative) of the estimated and rotated factor loadings.611

The identi�cation of homogeneous environments was also accomplished by considering soil612

plus elevation (SoilE) and meteorological variables when CERIS was applied across environments613

(WA). The rational is that a portion of the GEI results from static, repeatable variation (Crespo-614

Herrera et al. 2021; Yan 2016). It is well-known that temperature is a key driving force in the615

rate of seasonal plant growth (Setiyono et al. 2007), which is why GDD is commonly a base616

unit in crop models (Holzworth et al. 2014). Photoperiod plays a signi�cant role in soybean617

plant development, notably the change from vegetative to reproductive growth. Floral induction618

is essentially daylenght and temperature-independent (i.e. conversion of shoot apical and nodal619

meristems from a vegetative to �oral mode). In soybeans, this induction occurs as soon as the620

�rst unifoliolate lea�ets emerge and expand, becoming capable of measuring the night length621

(from dusk to dawn). Once �oral induction occurs at a given apical or axillary node, the few-622

celled vegetative apical zone is transformed from a vegetative development pathway into a �oral623

in�orescence development pathway. The development pathway is back under thermal control624

(Setiyono et al. 2007). Soybean is a quantitative long-night length sensing (not a short-day625

length sensing), and hence highly in�uenced by photoperiod and therefore by the latitude of626

the growing region/trial (Jackson 2009). This is a major reason that di�erent soybean maturity627

groups are grown at di�erent latitudes (Mourtzinis and Conley 2017). The estimated clusters628

(with the exception of the ad-hoc Lat2 and Lat3) follow a certain pattern in terms of latitude,629

which was also con�rmed by the Jaccard similarity. In addition, the inclusion of the URT data630

in SoyBase would facilitate identifying critical crop growth periods in order to narrow down the631

amount of environmental data used by CERIS.632

Herein, we identi�ed MEs through reliable estimates of variance components. However, other633

environmental subsets would have been formed using di�erent clustering strategies (Burgueño634

et al. 2008). Given this type of approach is an unsupervised learning (i.e., we do not know the635

truth about MEs), the objective is always to discover an interpretable grouping of members. We636

addressed interpretation using e�ectiveness of clustering (Atlin et al. 2000a). Other strategies637

for clustering can also be tested, for example, empirical knowledge of the TPE. But regardless of638

the de�nition/identi�cation of MEs, breeders can take advantage of best linear unbiased predic-639

tion (BLUP) that borrows information (strength) between MEs from the genotype by ME inter-640

actions. This type of modelling can be highly bene�cial for MEs that rely on a small number of641

locations (Buntaran et al. 2021; Piepho et al. 2016; Piepho and Möhring 2005). A natural con-642

tinuation for this work would be to (i) evaluate the e�ectiveness of a combined cluster from soil,643

elevation, and meteorological variables �ltered by CERIS; (ii) evaluate if BLUP based-models will644

improve the selection response upon regionalization in the Uniform Soybean Cooperative Tests;645

(iii) select an appropriate model that might account for heterogeneous covariances among MEs646

as well genetic relationships, because we con�ned attention to the compound symmetry model647

in order to facilitate comparison of the di�erent clustering types; and (iv) leverage how far back648
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in the historical data should we go in order to take maximum advantage of the data in current649

models. It is also worth investigating if modelling maturity groups (specially when more data is650

considered) would enhance the ability of �nding meaningful MEs using phenotypic models.651

8 Conclusion652

We dissected the sources of soybean seed yield variation using reports from Soybean Cooperative653

Tests for maturity groups II and III. We determined that sampled sets of environments can be split654

into mega-environments according to phenotypic, geographic, and meteorological information.655

Reasonable estimates of variance components are essential for analyses of data from historical656

�eld trials. Furthermore, it was possible to monitor trends in variance components involving657

genotypes in terms of parametric probability distributions. Historical �eld trials also evaluate658

traits like seed quality and size, iron de�ciency chlorosis, green stem, seed oil, and protein content.659

The approach presented herein can be applied to variation of multiple economically important660

quantitative traits. Finally, in addition to the practical and theoretical results applied to soybean661

genetic improvement, the analysis performed in this study may be applied to quantitative traits662

evaluated in any crop using multi-environment trials.663
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12 Tables and Figures683

Figure 1: Estimates of reliabilities (i2) and coe�cient of variation (%CV) for 1423 soybean �eld

trials conducted from 1989 to 2019 (A), and boxplots of empirical best linear unbiased estimates

(eBLUEs) of seed yield plotted by year (B) from 1989 to 2019. Red dots in B depict the average

yield of experimental cultivars excluding checks, whereas blue dots depict the average yield of

the check varieties.
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Genotype by location by year

Genotype by year

Genotype by location
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Variance estimates
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Figure 2: Empirical distributions of estimated variance components consisting of genotypic, geno-

type by location, genotype by year, and genotype by location by year variances for groups of years

1989-1995, 1996-2003, 2004-2011, and 2012-2019. Empirical estimates were obtained using a jack-

knife leave-one-location out method. Vertical bars on the x-axis represent point estimates across

all years.
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Figure 3: Empirical distributions and probability density function (PDF) of variance components

for genotypic (A), genotype by location (B), genotype by year (C), and genotype by location by

year (D). Empirical estimates were obtained using a jackknife leave-one-location out method.

The best-�t models for PDF’s are presented with di�erent colors, and include the name of the

distribution and its mixture number.
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Figure 4: Empirical distribution and probability density function (PDF) for the unimodal Log-

Logistic model of residual estimates from individual trials.
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Table 1: Models and criteria used to evaluate the models for purposes of clustering locations

into groups representing the most likely target population of environments. The best-�t model

(M3-18) is highlighted in bold.

Model

Covariance structure
a

Evaluation criteria

Σgl Σgy Σε AIC % Var(GL) % Var(GY)

M3-1 I ⊗ I I ⊗ I Σ2 175294 - -

M3-2 D ⊗ I I ⊗ I Σ2 174256 - -

M3-3 I ⊗ I D ⊗ I Σ2 174964 - -

M3-4 D ⊗ I D ⊗ I Σ2 173951 - -

M3-5 FA1 ⊗ I D ⊗ I Σ2 172845 48.5 -

M3-6 FA2 ⊗ I D ⊗ I Σ2 172560 67.3 -

M3-7 FA3 ⊗ I D ⊗ I Σ2 172359 78.2 -

M3-8 FA4 ⊗ I D ⊗ I Σ2 172303 87.6 -

M3-9 FA1 ⊗ I FA1 ⊗ I Σ2 172754 48.0 63.4

M3-10 FA2 ⊗ I FA2 ⊗ I Σ2 172472 66.2 82.5

M3-11 FA3 ⊗ I FA3 ⊗ I Σ2 172288 77.0 96.4

M3-12
b FA4 ⊗ I FA4 ⊗ I Σ2 - - -

M3-13 FA2 ⊗ I FA1 ⊗ I Σ2 172494 66.4 61.0

M3-14 FA3 ⊗ I FA1 ⊗ I Σ2 172296 77.6 61.0

M3-15 FA3 ⊗ I FA2 ⊗ I Σ2 172276 77.5 82.9

M3-16 FA4 ⊗ I FA2 ⊗ I Σ2 172205 84.7 86.3

M3-17 FA4 ⊗ I FA3 ⊗ I Σ2 172234 87.3 96.7

M3-18 FA5 ⊗ I FA2 ⊗ I Σ2 171990 90.2 87.2
M3-19 FA5 ⊗ I FA3 ⊗ I Σ2 172196 88.9 96.9

M3-20
b FA6 ⊗ I FA2 ⊗ I Σ2 - - -

a
The evaluated variance-covariance structures were identity (I), diagonal (D), and factor analytic (FAk) from order684

k = 1, ..., 6. Σ2 is the residual variance matrix assumed to be known from single trial and location analysis.685
b

Singularity in the Average Information matrix.686

687

22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.04.11.487885doi: bioRxiv preprint 

https://doi.org/10.1101/2022.04.11.487885
http://creativecommons.org/licenses/by/4.0/


Table 2: Point estimates and standard error of variance components for seed yield computed from

Soybean Cooperative Tests (1989-2019) using Model 3-1 (baseline) and six clustering methods for

clustering locations into mega-environments using Model 5.

Variance

components
a Model 3-1

Clustering criteria
b

PHE SoilE Lat2 Lat3 WA WW

σ̂2
G 6.3 (0.3) 4.5 (0.4) 5.0 (0.5) 4.8 (0.4) 5.6 (0.4) 5.7 (0.4) 6.3 (0.4)

σ̂2
L 58.9 (13.1)

c
56.4 (12.6) 58.6 (13.1) 59.5 (13.2) 48.9 (11.4) 59.1 (13.2) 60.5 (13.5)

σ̂2
Y 15.3 (5.4) 13.4 (6.6) 10.6 (7.2) 11.5 (6.3) 15.1 (6.1) 16.5 (6.5) 15.0 (6.4)

σ̂2
LY 81.4 (5.2) 74.6 (5.0) 79.9 (5.2) 76.5 (5.0) 77.7 (5.2) 80.0 (5.1) 79.9 (5.2)

σ̂2
GL 4.8 (0.3) - - - - - -

σ̂2
GY 3.2 (0.3) 2.8 (0.3) 2.9 (0.4) 3.2 (0.3) 3.1 (0.3) 2.8 (0.3) 3.0 (0.3)

σ̂2
GLY 10.1 (0.3) - - - - - -

σ̂2
RY - 12.2 (5.7) 7.6 (6.5) 10.2 (5.2) 5.9 (3.9) 2.8 (3.7) 3.6 (4.1)

σ̂2
GR - 4.1 (0.3) 2.9 (0.4) 2.5 (0.3) 1.5 (0.2) 1.1 (0.3) 0.0 (0.0)

σ̂2
GL(R) - 2.5 (0.3) 4.6 (0.3) 3.6 (0.3) 3.8 (0.3) 4.4 (0.3) 4.8 (0.3)

σ̂2
GRY - 0.9 (0.2) 0.5 (0.3) 0.1 (0.2) 0.1 (0.2) 0.7 (0.3) 0.5 (0.2)

σ̂2
GL(R)Y - 9.7 (0.3) 9.9 (0.3) 10.3 (0.3) 10.2 (0.3) 9.9 (0.3) 9.9 (0.3)

Clusters - 3 2 2 3 2 2

a
Genotypic (σ̂2

G), location (σ̂2
L), year (σ̂2

Y ), location by year (σ̂2
LY ), genotype by location (σ̂2

GL), genotype by year688

(σ̂2
GY ), genotype by location by year (σ̂2

GLY ), cluster by year (σ̂2
RY ), genotype by cluster (σ̂2

GR), genotype by location689

nested in cluster (σ̂2
GL(R)), genotype by cluster by year (σ̂2

GRY ), and genotype by location nested in cluster by year690

(σ̂2
GL(R)Y ).691

b
Phenotypic (PHE), soil and elevation (SoilE), latitude split into two groups (Lat2), latitude split into three groups692

(Lat3), weather from means across years (WA), and weather from means within years (WW).693
c

Locations were modelled as a random e�ect in model 3-1 (Table 1).694
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Table 3: Maximum Likelihood estimates of parameters for the best-�t univariate and multivariate

probability distributions for empirical distributions obtained using jackknife resampling. Esti-

mates of residual variance (σ2
ε ) were obtained from trials conducted from 1989 to 2019.

Variance
a

Distribution

Number of

distributions

Parameters
b

ŵi α̂i β̂i

σ2
G Log-Logistic 5

0.30 125.98 3.54

0.14 119.87 6.68

0.08 44.03 7.23

0.01 88.03 6.18

0.47 192.69 7.53

σ2
GL Log-Logistic 3

0.63 122.27 4.23

0.17 32.00 3.12

0.20 92.56 7.62

σ2
GY Log-Logistic 6

0.02 258.41 3.77

0.31 172.61 3.91

0.20 89.05 3.51

0.30 94.97 2.06

0.02 32.81 2.64

0.15 57.79 3.01

σ2
GLY Gamma 5

0.05 4078.04 0.0024

0.31 7755.00 0.0011

0.20 5306.62 0.0025

0.28 31922.50 0.0003

0.16 7301.02 0.0020

σ2
ε Log-Logistic 1 1 2.56 17.03

a
Genotypic (σ2

G), genotype by location (σ2
GL), genotype by year (σ2

GY ), and genotype by location by year (σ2
GLY )695

variance components.696
b

Estimates of weight parameters (wi) sums to one, and both Gamma and Log-Logistic distributions include a shape697

(αi) and scale (βi) parameter.698
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Table 4: The ratio of correlated responses from selection across all environments relative to di-

rect responses to selection within mega-environments (CR/DR) for each clustering type. ρg is the

correlation between estimated genotypic e�ects in the non-clustered and clustered sets of envi-

ronments, i2
L

and i2
SR

are the reliabilities of genotype means in the non-clustered and clustered

sets of environments, respectively.

Clustering type
a Number of Estimates of

Clusters Locations ρ̂g î2
L

î2
SR

ˆ
CR/DR

PHE 3 36 / 7 / 20 0.72 0.38 0.51 0.62

SoilE 2 9 / 54 0.88 0.39 0.45 0.81

Lat2 2 35 / 28 0.81 0.39 0.48 0.73

Lat3 3 16 / 36 / 11 0.89 0.44 0.44 0.89

WA 2 25 / 38 0.92 0.45 0.45 0.92

WW 2 19 / 44 1.00 0.51 0.43 1.08

At random

2 - 0.99 0.52 0.44 1.07

3 - 0.99 0.51 0.39 1.14

4 - 0.99 0.51 0.36 1.18

a
Phenotypic (PHE), soil and elevation (SoilE), latitude split into two groups (Lat2), latitude split into three groups699

(Lat3), weather from means across years (WA), and weather from means within years (WW).700

701
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- PHE - SoilE

- Lat2 - Lat3

 - WA  - WW

Figure 5: Geographic visualization of the target population of environments divided according

to phenotypic (A), soil + elevation (B), latitude split into two groups (C), latitude split into three

groups (D), weather across years (E), and weather within years (F) clustering types. In (A), the

states’ names are provided for geographic orientation.
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1989−1995 1996−2003 2004−2011 2012−2019

Figure 6: Jackknife estimates of genotype by cluster variances for the groups of years 1989-1995,

1996-2003, 2004-2011, and 2012-2019, for phenotypic (PHE), soil + elevation (SoilE), latitude split

into two groups (Lat2), latitude split into three groups (Lat3), weather across years (WA), and

weather within years (WW) clustering types.
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Location by year
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Variance estimates
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Figure A1: Jackknife estimates of location, year, and location by year variances for the groups of

years 1989-1995, 1996-2003, 2004-2011, and 2012-2019.
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Figure A2: Cumulative distribution function (CDF) for the best-�t models according to the geno-

typic (A), genotype by location (B), genotype by year (C), and genotype by location by year (D)

variances from jackknife. In each plot, the legends states for name of the distribution followed

by its mixture number.
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Figure A3: Cumulative distribution function (CDF) for the best-�t models according to the resid-

ual variances from individual trial level. The legends states for the name of the distribution

followed by its mixture number.
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Table A4: Goodness-of-�t (GOF) statistics and selection criteria for the �t of univariate and multi-

variate probability distributions for genotypic, genotype by location, genotype by year, and geno-

type by location by year variance components estimated from the jackknife analysis, and residuals

variances from trial-level. The best-�t model is highlighted in bold. KS, CM, AD, AIC, and BIC

stand for Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling, Akaike’s and Bayesian

Information Criterion, respectively.

Variance Distribution Mixture of

GOF statistics GOF criteria

KS CM AD AIC BIC Log-likelihood

Genotypic

Gamma 2 0.19 4.39 25.23 672.09 694.00 -331.05

Log-Logistic 2 0.15 3.32 19.97 598.57 620.48 -294.29

Log-Normal 2 0.19 4.48 25.66 680.36 702.27 -335.18

Burr 2 0.50 40.79 193.24 3978.69 4000.60 -1984.35

F 2 0.67 77.08 356.80 4338.62 4360.52 -2164.31

Gamma 3 0.07 0.81 5.56 182.11 217.16 -83.06

Log-Logistic 3 0.15 3.26 19.45 554.84 589.90 -269.42

Log-Normal 3 0.08 0.66 4.90 170.74 205.79 -77.37

Burr 3 0.52 44.39 207.91 3978.03 4013.09 -1981.02

F 3 0.67 77.08 356.80 4338.62 4360.52 -2164.31

Gamma 4 0.09 1.03 6.20 177.38 225.58 -77.69

Log-Logistic 4 0.15 3.26 19.45 565.62 613.82 -271.81

Log-Normal 4 0.08 0.52 3.61 74.67 122.87 -26.33

Burr 4 0.52 44.39 207.91 3984.04 4032.24 -1981.02

F 4 0.67 75.30 347.50 4351.57 4399.77 -2164.79

Gamma 5 0.10 0.74 5.85 155.12 216.47 -63.56

Log-Logistic 5 0.05 0.21 1.67 -9.63 51.71 18.82

Log-Normal 5 0.06 0.36 2.53 89.40 150.75 -30.70

Burr 5 0.53 45.19 211.25 3989.54 4050.89 -1980.77

F 5 0.67 75.93 350.80 4357.11 4418.45 -2164.55

Gamma 6 0.07 0.46 3.15 94.30 168.79 -30.15

Log-Logistic 6 0.05 0.20 1.89 32.97 107.47 0.51

Log-Normal 6 0.06 0.37 2.68 103.17 177.66 -34.59

Burr 6 0.52 43.68 205.00 3996.91 4071.40 -1981.45

F 6 0.66 74.44 343.11 4364.38 4438.87 -2165.19

Genotype

by

Location

Gamma 2 0.30 10.51 48.78 1164.59 1186.50 -577.29

Log-Logistic 2 0.24 8.35 49.77 1139.99 1161.90 -565.00

Log-Normal 2 0.30 10.80 50.82 1194.97 1216.87 -592.48

Burr 2 0.50 42.63 197.90 3466.48 3488.39 -1728.24

F 2 0.63 67.82 305.85 3830.34 3852.24 -1910.17

Gamma 3 0.30 10.52 48.87 1185.88 1220.94 -584.94

Log-Logistic 3 0.04 0.14 0.72 -80.42 -45.36 48.21

Log-Normal 3 0.06 0.49 2.38 -5.10 29.96 10.55

Burr 3 0.50 42.78 198.50 3477.58 3512.63 -1730.79

F 3 0.63 67.82 305.85 3830.34 3852.24 -1910.17

Gamma 4 0.30 10.51 48.83 1185.69 1233.89 -581.85

Log-Logistic 4 0.04 0.13 0.62 -80.72 -32.52 51.36

Log-Normal 4 0.06 0.48 2.20 -10.68 37.52 16.34

Burr 4 0.50 41.96 195.32 3482.35 3530.55 -1730.18

F 4 0.65 73.19 331.38 3854.78 3902.98 -1916.39

Gamma 5 0.02 0.07 0.56 -34.66 26.69 31.33

Log-Logistic 5 0.03 0.10 0.59 -73.99 -12.64 50.99

Log-Normal 5 0.02 0.06 0.49 -66.28 -4.93 47.14
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Table A4 continued from previous page

Variance Distribution Mixture of

GOF statistics GOF criteria

KS CM AD AIC BIC Log-likelihood

Burr 5 0.49 41.22 192.48 3488.02 3549.36 -1730.01

F 5 0.65 72.56 328.33 3860.42 3921.76 -1916.21

Gamma 6 0.02 0.06 0.40 -30.91 43.58 32.46

Log-Logistic 6 0.03 0.09 0.46 -74.96 -0.47 54.48

Log-Normal 6 0.03 0.04 0.25 -71.57 2.92 52.78

Burr 6 0.49 41.61 194.00 3494.23 3568.72 -1730.11

F 6 0.65 72.49 328.02 3866.55 3941.05 -1916.28

Genotype

by

Year

Gamma 2 0.13 2.33 17.77 805.22 827.13 -397.61

Log-Logistic 2 0.12 1.39 10.73 522.98 544.89 -256.49

Log-Normal 2 0.13 1.80 12.89 546.28 568.19 -268.14

Burr 2 0.46 34.26 165.40 2641.18 2663.09 -1315.59

F 2 0.67 80.39 375.82 3042.72 3064.63 -1516.36

Gamma 3 0.12 1.48 10.61 438.20 473.26 -211.10

Log-Logistic 3 0.08 0.29 1.48 69.69 104.75 -26.85

Log-Normal 3 0.13 1.36 10.01 402.06 437.11 -193.03

Burr 3 0.49 38.99 184.26 2636.35 2671.40 -1310.17

F 3 0.67 80.39 375.82 3042.72 3064.63 -1516.36

Gamma 4 0.12 1.34 9.44 391.85 440.05 -184.92

Log-Logistic 4 0.04 0.11 1.14 -21.98 26.22 21.99

Log-Normal 4 0.05 0.26 2.48 69.53 117.73 -23.77

Burr 4 0.48 36.59 174.58 2642.16 2690.36 -1310.08

F 4 0.65 73.44 338.37 3062.06 3110.26 -1520.03

Gamma 5 0.07 0.45 4.18 142.71 204.05 -57.35

Log-Logistic 5 0.03 0.09 1.07 -25.40 35.94 26.70

Log-Normal 5 0.05 0.27 2.52 73.76 135.10 -22.88

Burr 5 0.46 33.87 163.84 2652.24 2713.58 -1312.12

F 5 0.65 73.45 338.42 3068.16 3129.51 -1520.08

Gamma 6 0.05 0.29 2.90 78.16 152.65 -22.08

Log-Logistic 6 0.03 0.08 1.04 -35.86 38.63 34.93

Log-Normal 6 0.04 0.13 1.11 2.00 76.49 16.00

Burr 6 0.45 32.15 157.07 2645.95 2720.44 -1305.98

F 6 0.65 73.41 338.24 3073.76 3148.25 -1519.88

Genotype

by

Location

by

Year

Gamma 2 0.18 3.72 23.32 2027.94 2049.84 -1008.97

Log-Logistic 2 0.17 3.40 21.40 2104.98 2126.88 -1047.49

Log-Normal 2 0.18 3.73 23.33 2028.46 2050.36 -1009.23

Burr 2 0.57 46.63 216.45 4962.90 4984.81 -2476.45

F 2 0.68 68.15 308.55 5298.60 5320.51 -2644.30

Gamma 3 0.06 0.52 3.94 905.88 940.93 -444.94

Log-Logistic 3 0.17 3.22 19.52 1938.73 1973.78 -961.36

Log-Normal 3 0.06 0.52 3.96 909.36 944.42 -446.68

Burr 3 0.60 51.37 235.46 4969.12 5004.18 -2476.56

F 3 0.68 68.15 308.57 5304.63 5339.68 -2644.31

Gamma 4 0.06 0.41 3.50 830.66 878.86 -404.33

Log-Normal 4 0.06 0.36 3.30 810.14 858.34 -394.07

Burr 4 0.60 51.37 235.46 4975.11 5023.31 -2476.55

F 4 0.69 71.27 323.14 5313.82 5362.02 -2645.91

Gamma 5 0.05 0.21 1.74 709.98 771.33 -340.99

Log-Normal 5 0.06 0.22 1.15 715.12 776.47 -343.56

Burr 5 0.60 51.37 235.46 4981.10 5042.45 -2476.55
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Table A4 continued from previous page

Variance Distribution Mixture of

GOF statistics GOF criteria

KS CM AD AIC BIC Log-likelihood

F 5 0.70 75.75 344.66 5317.16 5378.51 -2644.58

Gamma 6 0.06 0.32 2.58 781.22 855.71 -373.61

Log-Normal 6 0.05 0.16 1.53 691.83 766.32 -328.91

Burr 6 0.58 48.52 223.96 4989.49 5063.98 -2477.75

F 6 0.68 68.92 312.13 5322.81 5397.30 -2644.40

Residual

(Trial-level)

Gamma 1 0.06 1.60 9.57 11139.50 11150.02 -5567.80

Log-Logistic 1 0.02 0.07 0.72 11063.82 11074.34 -5529.90

Log-Normal 1 0.02 0.09 0.67 11066.60 11077.12 -5531.10

Burr 1 0.41 79.00 377.80 13896.60 13907.11 -6946.30

F 1 0.54 131.37 594.40 14677.45 14687.97 -7336.73
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Figure A4: Graphical display of the optimal number of clusters based on the Silhouette (A) and

Elbow (B) methods for the phenotypic clustering type (PHE, A1 and B1), soil + elevation variables

(SoilE, A2 and B2), weather within year variables (WW, A3 and B3), and weather across year

variables (WA, A4 and B4).
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Figure A5: Heatmap of genetic correlations between the 63 observed locations from 1989 to 2019,

estimated from the factor analytic (FA) model M3-18. Fitted k-means clustering are ordered, from

1 to 3.
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Figure A6: Scatterplots of the scaled and centered soil variables and elevation. Pearson correlation

is displayed on the right. Variable distribution is available on the diagonal. The labels SV1, SV2,

to SV8 are the soil variables described in section 5.3.5.
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Figure A7: Scatterplots of the scaled and centered weather variables computed across years. Pear-

son correlation is displayed on the right. Variable distribution is available on the diagonal.The

labels MV1, MV2, ..., to MV19, are the weather variables described in Table A1.
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Figure A8: Scatterplots of the scaled and centered weather variables computed within years.

Pearson correlation is displayed on the right. Variable distribution is available on the diagonal.

The labels MV1, MV2, ..., to MV19, are the weather variables described in Table A2.
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Figure A9: Exhaustive search from the critical environmental window computed from the Pearson

correlation between the weather variables across years and the genotype by location deviations of

each environment (location-year combination). The dots depict the highest window correlation.

The labels MV1, MV2, to MV19 are the weather variables described in Table A1.
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