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. 1 Highlights

" « A target population of environments can be split into mega-environments (MEs) according

2 to phenotypic, geographic, and meteorological information.

13 « Reliable estimates of variance components are key to the identification of ME, which can
" be obtained by analyses of historical experimental data.

5 « From experimental soybean seed yields evaluated across 31 years of field trials, the pheno-
1 typic variance was mostly attributed to location and location by year effects. In terms of
1 genotype-by-environment interactions (GEI), estimated variances of genotype by location
18 interactions was more important than the genotype by year interactions.

1 « The GEI trend was successfully captured in terms of parametric probability distributions
20 of variance components, that can be incorporated in simulation studies.

. 2 Abstract

» Soybean (Glycine max (L.) Merr.) provides plant based protein for global food production and
» is extensively bred to create cultivars with greater productivity in distinct environments. Plant
» breeders evaluate new soybean genotypes using multi-environment trials (METs). Application
» of METs assume that trial sites provide representative environmental conditions that cultivars
» are likely to encounter when sold to farmers. Thus, it is important to understand the patterns
» of genotype by environment interactions (GEI) that occur in METs. In order to evaluate GEI for
» soybean seed yield and identify mega-environments, historical data were investigated with a ret-
» rospective analysis of 39,006 unique experimental soybean genotypes evaluated in preliminary
» and uniform trials conducted by public plant breeders from 1989-2019. Mega-environments (MEs)
» were identified using yield records of lines from the annual trials and geographic, soil, and mete-
» orological records at the trial locations. Results indicate that yield variation was mostly explained
1 by location and location by year interactions. The static portion of the GEI represented 26.30%
u of the total yield variance. Estimates of variance due to genotype by location were greater than
» estimates of variance due to genotype by year interaction effects. A trend analysis further indi-
% cated a two-fold increase in the genotypic variance. Furthermore, the heterogeneous estimates
» of genotypic, genotype by location, genotype by year, and genotype by location by year vari-
% ances, were encapsulated by distinct probability distributions. The observed target population of
» environments (TPE) can be divided into at least two and at most three MEs, thereby suggesting
» improvements in the response to selection can be achieved when selecting directly for clustered
a (ie. regions, ME) versus selecting across regions. Clusters obtained using phenotypic data, lati-
» tude, and soil variables plus elevation, were the most effective.

» 3 Keywords

« Soybean; Genotype by Environment Interaction; Multi-environmental trials; Target Population
s of Environments; Mega-environments
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« 4 Introduction

= The terms genotype (G) and phenotype (P) were first coined by JOHANNSEN (1911) after the redis-
s covery of Mendel’s work. Since then, the understanding of the mapping function that links G to
» P has been an on-going research interest (P1Liucct 2001, p. 2). The mapping of G to P for most
s quantitatively expressed traits is further complicated by the differential response of genotype(s)
s to different environments, i.e. genotype by environment interactions (GEI), wherein phenotypic
s variation is shaped by G, Environment (E), and GEI (TABERY 2008; SPRAGUE and FEDERER 1951).
55 The GEIl typically increases P variance and leads to a reduced estimates of heritability, complicat-
s ing breeding decisions and lowering response to selection. Additionally, it leads to unpredictable
s adaptation of genotypic lines in targeted agro-ecological zones (MACKAY ET AL. 2019) and influ-
s ences plasticity response of varieties in variable environments (CooPER and DELAcCY 1994; HAL-
s DANE 1947). Hence, the GEI is of particular importance to breeders as they attempt to develop
s stable and responsive varieties (ComsTock, R. E. and MoLL 1962).

5 In order to reveal GEI patterns, plant breeders evaluate candidate genotypes in multi-environment
o trials (METs) (OAKEY ET AL. 2016; SMITH ET AL. 2001b). Sampled locations used in METs are as-
« sumed to represent the growing conditions that a candidate line is expected to encounter as a
« cultivar grown by farmers (Bustos-Korts ET AL. 2021). METs utilize locations that are sampled
& from atarget population of environments (TPEs) which represent farm production environments.
« Hence, a TPE is composed of many environments (spatially across agro-ecological zones, and tem-
s porally over years) (CRESPO-HERRERA ET AL. 2021). The manifestation of GEI in a TPE has two
« components, the “static” environmental characteristics such as soil, longitude, latitude, and “non-
o static” seasonal characteristics such as weather and management practices (CULLIS ET AL. 2000).
s If GEI is large and associated with consistent sub-groupings of environments within the TPE,
» greater gains from selection might be achieved by subdividing locations into Mega-Environments
n (MEs) (CRESPO-HERRERA ET AL. 2021; YAN 2016; ATLIN ET AL. 2000a).

7 According to CIMMYT (1989) p. 58, “MEs are broad, not necessarily contiguous areas, defined
» by similar biotic and abiotic stresses, cropping system requirements ...". Another definition is a
7 group of environments that share the same winning genotypes (KanG 2020; GAucH and ZOBEL
n 1997), or that within ME there is minimal crossover interaction (COI) among the genotypes grown
»» among environments (SMITH ET AL. 2021). In a group of locations, if genotypes consistently
7% perform the same relative to each other over a number of seasons, it is considered a ME (SINGH
7 ET AL. 2021, Chapter 4). One way of exploring GEI is to divide the TPE into MEs, and to select
% within ME (YAN 2016). Some studies have investigated strategies to subdivide the TPE in maize
» (WINDHAUSEN ET AL. 2012), barley (ATLIN ET AL. 2000b), wheat (GEORGE and LuNDY 2019; BusTos-
5o KORTS 2017), sorghum (DA S1LvA ET AL. 2021), alfafa (ANNICCHIARICO 2021), rice (KRISHNAMURTHY
st ET AL. 2017), oat (YAN ET AL. 2010), and soybean (ZDZ1ARSKI ET AL. 2019; YAN and RajcAN 2002).
82 There are several methods for dividing the TPE into MEs. For example, the genotype main ef-
s fect plus GEI (GGE) Biplots (YAN ET AL. 2000) on soybean MET data was used by ZDZIARSKI ET AL.
s (2019) to identify two MEs in Midwestern Brazil with contrasting altitudes, levels of fertilizer,
s and incidence of soybean cyst nematode profiles. DA SiLvA ET AL. (2021) and KRISHNAMURTHY
ss ET AL. (2017) also took advantage of GGE Biplots to pinpoint MEs for pre-commercial sorghum
& hybrids in Brazil and rice genotypes in India, respectively. For wheat, CRESPO-HERRERA ET AL.
s (2021) defined three MEs in India with climate and soil data through principal component anal-
» ysis, followed by a hierarchical clustering based on Euclidean distance with Ward’s method. For
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o maize in Africa (CIMMYT’s program), WINDHAUSEN ET AL. (2012) explored historical (2001-2009)
o METs data to determine MEs according to five subdivision systems (climate, altitude, geographic,
» country, and yield-level), and concluded there was enough genotype by subregion interaction
o3 relative to genotypic variance to justify the selection for the low and high-yielding sub-regions
o« separately. Other methodologies such as the additive main effects and multiplicative interaction
s (AMMI) model (BusTos-KorTs 2017; GaucH and ZoBEL 1997) and factor analytic (FA) models
o (SMITH ET AL. 2021; BusTos-KorTs 2017; SMITH ET AL. 2015, 2001b; P1EPHO 1997) also have been
o7 used.

9 It should be noted that the terms subregion, region/regional, subdivision, clusters, zones, agro-
» climatic, ecogeographic and MEs are sometimes interchangeably used in the literature. For the
w METs data analysis, when MEs are ignored, the baseline model includes genotypes, locations,
w1 years (or the combination location-year, called environment), all two-way and three-way inter-
2 actions (MALOSETTI ET AL. 2013). When MEs are included in the model, it is called a zone-based
s model; therefore, yielding zone-based predictions (BUNTARAN ET AL. 2019). One of the main ad-
e vantages of modeling MEs in a mixed model framework is the ability to borrow information
s between zones from the genotype by ME interaction. This is particularly beneficial when fewer
ws testing locations are available creating a sparse representation of genotypes in some locations
w  (PIEPHO ET AL. 2016; PiEPHO and MOHRING 2005).

108 The effectiveness of subdividing the TPE into MEs was assessed by ATLIN ET AL. (2000a) based
o on the theory of correlated response to selection, first applied to the GEI problem by FALCONER
o (1952). Effective selection occurs when subdivision increases response to selection, which might
m occur if the genotype by ME interaction variance, i.e. genotype by region (), is large rela-
n  tive to the genotypic variance (¢2). In terms of variance components, the GEI is composed of
s genotype by location (0%, ), genotype by year (0Z,-), and genotype by location by year (c2,y)
e interaction variances. Both 02, and 0% are non-static (unrepeatable) sources of variation. MEs
s can be identified with the static portion of the o2, which is repeatable across years (YAN 2016).
ne  When MEs are identified and modelled, the 02, is partitioned into ¢ ;, and genotype by location
w within ME (03, 1(r))- Furthermore, the 02y is partitioned into a genotype by ME by year inter-
s action (0% gy), and genotype by location within ME by year (07, L Rr)y) interaction (ATLIN ET AL.
o 2000a). Consequently, the estimation of variance components provide important information for
i decision-making and accurate estimates are critical.

121 Variance components can be estimated with unbalanced historical data to provide information
12 for designing novel breeding strategies and optimize resource allocation (AGUATE ET AL. 2019).
s Efforts have been made to quantify component variability using historical METs data in wheat,
12« maize, sunflower, sugar beet, potato, rye (MEYER ET AL. 2011; LAIDIG ET AL. 2008), among other
s commercial crops. However, proper modeling of historical data can be a significant challenge
s (D1AS ET AL. 2020), and if not done properly can lead to erroneous interpretations. In terms of
127 variance estimates, recent work from AGUATE ET AL. (2019) and HARTUNG and P1epHO (2021) con-
s sidered both the imbalance of data (due to selection) and the properties of the residual maximum
1 likelihood (REML) method (PATTERSON and THomPSON 1971) to shed light onto the bias of the
1w estimates obtained from METs using linear mixed models. Their results served as guideline to
w design the variance estimation portion of this work, which will be discussed later.

122 With the motivations of identifying and describing MEs for soybean in the primary produc-
133 tion area of North America, we obtained historical soybean performance (seed yield) data from
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1« Uniform Soybean Cooperative Tests (USDA 2021). We purposely chose this dataset because these
155 trials have been used for decisions on variety release by public breeding organizations. Further,
13 because flowering in soybean is extremely sensitive to daylength, soybean breeders first classify
1w experimental genotypes into maturity groups (MGs) and subsequently restrict yield evaluations
1ws  to appropriate maturity zones (MZ) that are defined by lattitude. Thus, the lattitude (MZ) of a
1w location used for soybean field trials is an implemented element of MEs for soybean field trials.
w The dataset consisted of 39,006 unique experimental soybean line yield data from 63 locations
w between 1989 and 2019. Note that experimental lines were not evaluated at all locations within
w2 years and most were not evaluated in more than one year. The objectives of this study were to: (i)
w3 investigate if the observed TPE spanning 31 years of trial evaluations can be classified into MEs,
us and (ii) estimate probability density functions for the underlying trend of genotypic, genotype
us by location, genotype by year, genotype by location by year, and residual variance components.
us This modelling approach allowed us to fit parametric probability distributions to variance com-
w ponents in order to capture the GEI trend that can be used in future simulation studies, which
s will be needed for predicting plant breeding outcomes in changing climates. Currently, simula-
w tion studies rely on point estimates of variance components (KLEINKNECHT ET AL. 2016), or set
50 heritability values (such as low or high) (RuTkosk1 2019). By capturing the GEI trend using his-
51 torical data, we generate reliable variance estimates that can be used to conduct more realistic
12 simulation studies.

» 5 Data and Methods

s 5.1 Phenotypic data

155 Annual PDF reports from the Northern Region of the USDA Uniform Soybean Tests were obtained
s fromhttps://ars.usda.gov/mwa/lafayette/cppcru/ust. The data retrieved
17 from the published PDF files represent averages for seed yield for each genotype evaluated at
s each location-year combination (i.e., the empirical best linear unbiased estimate, eBLUE), the
s CV%, and the number of replicates per trial. Seed yield was adjusted to 13% moisture and results
w were reported in bushels per acre (bu/ac). For more information about the trial field plot design
1w and agronomic practices, please refer to the PDF files. Information from the PDF files were tran-
w2 scribed into CSV format files. The resulting files consist of eBLUE values for seed yield (bu/ac)
w3 of experimental genotypes and check varieties grown in field trials of soybean maturity groups
1w (MGs) 00 through IV from 1941 to 2020. For our purposes we restricted our analyses to data be-
165 longing to MGs II and III from 1989 to 2019. Also, unusual data such as data from individual trials
w with estimates of reliability (i%) less than 0.10, coefficients of variation (CV%) greater than 20%,
1w and individual records within trials with estimated means less than 10 bu/ac were removed prior
s to further analyses. In addition, locations with less than three years of data were excluded from
o further analyses. The resulting data were comprised of 4,257 experimental genotypes evaluated at
w63 locations, in 31 years, resulting in 591 location-year combinations (environments) with 39,006
i yield values. However, because most experimental genotypes are only grown within appropriate
12 MZs and are culled on an annual basis, only 0.47% of all potential combinations of experimental
s genotypes, locations and years exist in the data sets.

174 For subsequent data analyses, the trials were divided into Preliminary (PYTs) and Uniform
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s Regional (URTs) trials. Experimental genotypes were first evaluated in PTs, and if not culled, were
s subsequently evaluated in URTs. Because there are large numbers of experimental genotypes
7 created by several public breeding programs within each MZ, the PTs are further split into two
s groups: PT-A and PT-B. In a given year, a PT was usually conducted at nine or more locations with
1w two replicates of each experimental genotype evaluated at each location. Experimental genotypes
w0 retained for regional trials were evaluated at 15 locations representing a URT in the next year
w1 with three or four replicates per location. Some experimental genotypes might be evaluated
w2 in two subsequent years of URTs. Experimental genotypes with introgressed transgenic alleles
w3 were evaluated independently in trials referred to as PT/URT-RR or PT/URT-TM, depending on
s the transgenes. The field trials at each location utilized a randomized complete block field plot
w5 design. In addition to the experimental genotypes, entries in each field block included common
s check varieties (~ 3), but we noted that check varieties were seldom retained for more than four
17 consecutive years.

w 5.2 Environmental data

1o In addition to phenotypic (PHE) data from yield trials, environmental data associated with trial
w locations were obtained. Elevation information was obtained from the “elevatr” package (HoL-
w1 LISTER ET AL. 2021). Soil characteristics at a depth of 5-15 cm were downloaded from Soilgrids
w (https://soilgrids.org/) with a modified R script available athttps://github.
v com/zecojls/downloadSoilGridsV2,and further processed with the package “raster”
wis  (HipmANs 2021). The soil characteristics are referred to as soil variables (SV) and included: bulk
s density (SV1), cation exchange capacity (SV2), clay content (SV3), total nitrogen content (SV4),
ws pH (SV5), sand content (SV6), silt content (SV7), and organic carbon content (SV8). Detailed in-
w7 formation about SVs are available in the Soilgrids website. Latitudes for locations in the USA were
ws downloaded fromhttps://simplemaps.com/data/us-cities,and Canadian loca-
1 tions were obtained using Google Maps. Meteorological data, referred herein as MVs for each lo-
a0 cation were obtained from “NASA’s Prediction of Worldwide Energy Resources” (NASA POWER,
o https://power.larc.nasa.gov/) with the package “nasapower” (Sparks 2018), and
x2 further processed with the “EnvRtype” package (CosTA-NETO ET AL. 2021). In total, 19 MVs were
3 retrieved on a daily basis (averages) from the average planting date until the average check vari-
xa ety maturity date (R8) for each environment (location by year combination). A summary of the
»s environmental variables is provided in the appendix (Tables A1 and A2), and for more detailed
»s information, please refer to the cited references.

» 5.3 Data analyses

us A stage-wise approach to analyses composed of multiple models was followed (PIEPHO ET AL.
w9 2012; SMITH ET AL. 2001a; FRENSHAM ET AL. 1997). The first-stage analyses were applied to indi-
2o vidual trials within locations (y; ), second-stage analyses were applied to all trials within locations
a1 (y2), and a third-stage analysis was conducted across locations and/or years (y3). All analyses
22 were implemented using “Asreml-R” version 4 (BUTLER ET AL. 2017) in the R programming en-
z3 vironment (R Core TEAM 2021). Variance components were estimated with REML followed by
x4 estimation/prediction of the fixed and random effects in Henderson’s mixed models (HENDERSON
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zs 1950, 1963). When possible, computation time was sped-up with parallel processing by applying
ze the “doParallel” and “foreach” packages (MICROSOFT CORPORATION and WESTON 2020a,b).

a7 5.3.1 First-stage analyses

zs  The first-stage analyses were previously performed by the collaborators, i.e., public soybean
no  breeders, before the data were submitted to the USDA for aggregating and reporting. Individual
» trials within locations were analyzed using a model in which genotypes and blocks were consid-
= ered fixed effects, yielding eBLUE values, i.e., entry means for genotypes (y1). The eBLUE values
22 were then analyzed with the following model to obtain an estimate of the genotypic variance
2 (0Z) that was subsequently used to estimate reliability (:%) on an entry-mean basis:

yi=p+2Z,g+e€ (1)

2 where y; is the vector of entry means reported for each trial in the PDF files, p is the intercept,
»s Zy (mxm) is the incidence matrix of genotype effects, g (m x 1) is a vector of genotype random
s effects with g ~ N(0, 021), and € is a vector of residuals with € ~ N(0, X;). The residual variance
2 matrix 31 (m X m) is a diagonal matrix with elements equal to SE%, where SE is the estimated
»s  standard error (SMITH ET AL. 2001a; FRENSHAM ET AL. 1997). The SE was estimated as \‘}—;, where o,
29 is the residual standard deviation calculated from the reported CV%, and 7 is the reported number
2 of replicates for each trial. Because phenotypic values from each replicate are not reported, we

»  assumed all genotypes from a given trial had the same SE, i.e., equal replication. The i* was then

. . g, . . . . . .
» estimated as i? = —<—>, where o2 is the genotypic variance and o2 is the residual variance
Z€

9G r
2 (BERNARDO 2020, p. 173). Note 02 could also be estimated from the variance of entry means (0%),

2
2 where 07 = %= + 0Z,.

»s 5.3.2 Second-stage analyses

xs  Second-stage analyses utilized data from multiple trials with common entries among trials at the
2 same location within a year (e.g. PT-A, PT-B, and UT), which were analyzed using:

yo=p+ Xt +X,g + € (2)

zs  whereys (mjx1)isavector of eBLUE values for m genotypes evaluated across j trials at location
2 [, p is the intercept, X; (mj X j) is the incidence matrix of fixed effects of trials, t (j x 1) is a
x0 vector of fixed effects of trials, X, (mj x m) is the incidence matrix of fixed effects of genotypes,
g (m x 1) is avector of fixed effects of genotypes and € is a vector of residuals with € ~ N(0, X;).
22 The elements of the estimated residual variance matrix 3; (mj x mj) were obtained from the
23 first stage analyses. Estimates of eBLUE values for genotypes and their SE from model 2 became
xa  input data (y3) for analyses across locations and years. Note the vector of observations y; refers
»s  to the eBLUE values obtained from individuals trials in a single location, whereas y5 refers to
»s multiple trials connected by checks or any common genotypes in a single location.
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27 5.3.3 Multi-location and multi-year analyses

us For the third-stage of analyses the following “baseline” model was used to obtain estimates of
s variance components across multiple locations and years:

Ys=p + Xll + Zgg + Zg.lg-l + Zyryr + ZgAyrg-yr + Zl.yrl-yr + Zg.l.yrg'l'yr + € (3)

»0 where y3 (mjt x 1) is a vector of eBLUE values for m genotypes evaluated across j locations and
st years, p is the intercept, 1 (j x 1) is a vector of fixed effects of locations, g (m x 1) is a vector
» of random effects of genotypes with g ~ N(0, 021I), g.1 (mj x 1) is a vector of random effects of
»  genotype by location interactions with g.I ~ N(0, 6Z;), yr (¢ x 1) is a vector of random effects
»  of years with yr ~ N(0, 0%), g.yr (mt x 1) is a vector of random effects of genotype by year
s interaction with g.yr ~ N(0, 0%y), Lyr (jt X 1) is a vector of random effects of location by year
» interaction with [.yr ~ N(0, 0%,.), g.l.yr (mjt x 1) is a vector of random effects of genotype
7 by location by year interaction with g.l.yr ~ N(0, 0Z;,-), and € is a vector of residuals with ¢
s~ N X). X; (mjt X j), Zy, (mjt x m), Zy; (mjt x myj), Zy, (mjt x t), Z,,, (mjt x mt),
30 Ly (Mt x jt), and Z, ., (mjt x mjt) are incidence matrices for their respective effects. The
xw elements of the residual variance matrix X5 (mjt x mjt) were obtained from model 2.

s 5.3.4 Probability distributions of estimated variance components

22 A modified jackknife resampling approach was used to obtain empirical probability distributions
% for the variance components ¢, 02, 02y, and 02 . Following AGUATE ET AL. (2019) and HAR-
x4 TUNG and PIEPHO (2021), the data were divided into four groups representing consecutive eras
x5 of soybean cultivar development: From 1989 to 1995, from 1996 to 2003, from 2004 to 2011, and
xs  from 2012 to 2019. For the first group (1989-1995), there were 181 environments; for 1996-2003,
w7 194 environments; for 2004-2011, 100 environments; and for 2012-2019, 116 environments. The
xs modified jackknife approach consisted of leaving-one-environment out (instead of one observa-
w0 tion), and then estimating the variance components with a modified version of model 3, that
2 considered locations as a random effect with variance 7. Estimates of variance components
m were then combined and evaluated for a best fit to probability distributions with the package
o2 “ForestFit” (TEIMOURI 2021). Given the lack of data from individual plots, trial-based estimates
25 of 02 from the first-stage of analyses were used (i.e., no resampling). Distributional parameters
m  were estimated via the expectation maximization (EM) algorithm (DEMPSTER ET AL. 1977) using
zs  the log-likelihood functions of the Gamma, Log-Logistic, Log-Normal, Burr, and F univariate and
ze multivariate distributions. In addition to a visual comparison of the modeled distributions rela-
27 tive to the empirical distributions, Akaike (AIC) and Bayesian (BIC) information criteria (AKAIKE
2 1974; SCHWARZ 1978) as well as the Kolmogorov-Smirnov (KS), Cramer-von Mises (CM), and
29 Anderson-Darling (AD) goodness-of-fit statistics (STEPHENS 1986) were considered to select the
w0 best-fit distribution for each variance component. A classical penalized criteria based on the
x  loglikehood (AIC, BIC) provided protection from overfitting.

w 5.3.5 Identification of mega-environments

»3  Herein, “ME” and “cluster” are used interchangeably. We clustered 63 locations using six criteria:
x (i) phenotype, i.e., seed yield (PHE), (ii) eight soil variables (SVs) plus elevation (SoilE); (iii) lati-
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x5 tude, where locations were split into two groups (Lat2), (iv) latitude, where locations were split
s into three groups (Lat3); (v) 19 meteorological variables (MVs) with means across years (WA); and
x  (vi) MVs with means nested within years (WW).

28 With the exception of Lat2 and Lat3, the optimal number of clusters was then defined based
» on the Silhouette and Elbow methods using the package “factoextra” (KassaMBARA and MUNDT
w0 2020), followed by a K-means clustering with the R base function kmeans() allowing for a maxi-
»  mum of 1,000 iterations and 100 multiple initial configurations of the K groups.

» 5.3.5.1 Clustering of PHE data

»s Several variance-covariance structures (VCOV) for the genotype by location (£,) and genotype
»s by year (X,,) interaction terms in model 3 were evaluated. The simplest model (M3-1) assumed
»s independent years and locations with homogeneous variances. The next set of models allowed
»7 heterogeneous variances for locations (M3-2), years (M3-3), or both (M3-4). Specific pairwise
»s covariances for both Y and Y , were assessed with models M3-5, M3-6, ..., to M3-20. In all
w9 cases, the elements of the residual matrix was assumed to be known (Model 2). Results from 19
w evaluated models are presented in Table 1. The VCOV models included identity (I), diagonal (D),
s and factor-analytic (FAy) of order k (P1EPHO 1997; SMITH ET AL. 2001b, 2015). The best-fit model
w2  was selected according to the AIC selection criteria. For the FA models, the overall percentage
w3 of genetic variance accounted by each k factor, defined as 100[tr(AA’)/tr(AA” + ¥)], where “tr”
wa is the trace of the matrix, A (j X k) is the matrix of loadings, and ¥ (5 X j) is a diagonal matrix
ws of specific variances associated with each location, was also considered. Models were selected
»s based upon the AIC, the overall percentage of genotype by location [% Var(GL)] and genotype
w by year [% Var(GY)] variances explained by the FA models. With the best-fit FA model, locations
»s were clustered based on the estimated X, loadings (BusTos-KoRrTs 2017; BURGUENO ET AL. 2008)
ws after Varimax rotation. Genetic correlations between locations (C) were further estimated by
20 C = DGD, where G = (AA’ 4+ W) is the estimator of genetic variances, and D is a diagonal
s matrix composed by the inverse of the square root of the diagonal values of G (SMITH ET AL.
w 2015).

s 5.3.5.2 Clustering of SV data

314

»s  First the SVs (including elevation) were centered and scaled to a unit variance. Subsequently,
s a principal component analysis (PCA) by non-linear iterative partial least squares (WoLD 1966)
s 'was performed to reduce collinearity with the “pcaMethods” package (STACKLIES ET AL. 2007). The
s number of principal components (PC) was selected with a 90% threshold of cumulative variance
2w explained, followed by a Varimax rotation.

2 5.3.5.3 Clustering of MV data

321

22 Prior to conducting cluster analyses, a Critical Environmental Regressor through Informed Search
»3  (CERIS) procedure proposed by L1 ET AL. (2018) was used to identify relevant MVs. The method
24 consists of screening meteorological data in all environments to identify a period (window) of
»s days after planting with the greatest Pearson correlation between the population means (i.e.,
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»s environmental means) and the MVs. The idea is to identify periods of meteorological data that
2 are most likely to affect stages of growth and development associated with the phenotypic results
»s  (yield, plant height, etc.). We further modified their approach to account for genotype by location
29 deviations within years as follows:

y3=p+X1+X,g+e€ (4)

s where ys (mj x 1) is a vector eBLUE values of m genotypes in j locations, p is the intercept, 1
s (7 x 1) is a vector of fixed effects of locations, g (m x 1) is a vector of fixed effects of genotypes,
= and € is a vector of residuals with € ~ N(0, X5). X; (mj x j) and X, (m x m) are incidence
s matrices for their respective effects, and 35 (mj X mj) was previously defined. Model 4 was
su  applied within years. The residuals represent the genotype by location deviations nested within
»s  years. Each location was then represented as the average of the residuals squared. The CERIS
1 was computed for observed location-year combinations within (WW) and across years (WA), and
3w the best window (i.e., highest correlation) for each of the MVs was selected for clustering. For
s WA, correlations were computed for each MV with the 591 observed environments. For example,
s if a given location was observed in five out of 31 years, five environmental means were computed
s with the same selected window, and the location represented as the mean of these five values. On
s the other hand, for WW, each observed year can have its own best window. A minimum window
u2  of seven days was considered in all cases. After identifying the most relevant window for each
13 MVs, the resulting data were centered and scaled to unit variance. Subsequently clustering was
s conducted as described for the SVs. Note that for both WA and WW, the input data for the
us  clustering analysis was a matrix of centered and scaled environmental means with dimension of
us 63 rows by 19 columns, which represent the number of locations and MVs, respectively.

s 5.3.5.4 Effectiveness of clustering

348

us  We used the ratio of correlated responses from selection across all environments relative to direct
s responses to selection within MEs (CR/DR) (ATLIN ET AL. 2000a; BusTOs-KORTs 2017) as a metric
s to assess the relative effectiveness of clustering environments into MEs. As previously demon-
s strated, CR/DR can be determined using variance components obtained from linear models:

ys =X,r + Zl(r)l(r) + Zgg + Zg.lrg'l(r) + Zyy + Zy.rY'r

&)
+ 2y, 8r + 2y o)y + 2y g8y +2gy, 8y r+2gy,8yly) +e

s where r is a vector of fixed effects of clusters, and 1), g.1+), y.r, g.1, ..y, g.y.r,and g.y I, are
s random vectors with specific variances of locations within clusters, genotype by location within
55 clusters interaction, year by clusters interaction, genotype by cluster interaction, locations nested
s in clusters by year interaction, and genotype by year by location within clusters, respectively.
s X, and Z;, up to Z,,;, , are incidence matrices for their respective effects and dimensions. The
»s  remaining model terms were previously defined.

39 Estimates of variance components from model 5 were used to obtain CR/DR:
i
CR/DR = pyy[| =5 (6)
'SR
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x0 Where p, is the correlation between estimated genotypic effects in the non-clustered and clustered
% sets of environments and i? and %, are the estimated reliabilities of genotype means in the non-
w2 clustered and clustered sets of environments, respectively. If CR/DR < 1, response to selection
33 will be more effective if selections are made within clusters (ATLIN ET AL. 2000a; BusTOs-KORTS
x4 2017). Note that it is possible for CR/DR > 1, indicating that selection will be more effective
w5 if selection is based on eBLUE values obtained from non-clustered environments. As per (ATLIN
s ET AL. 2000a) The terms in equation 6 are defined as follows:

2
g,
_ G
Py = 55— (7)
05(0G + 0&r)
2
. g
ZI% = 2 ) - UG 2 = (®)
2 GR GL(R GY GRY GL RY
9a + nr + nlxnr + + nyxnr + nlxnrxny
o2 + o?
2 G GR
ZSR N GL(R) o2 o2 éL(R)Y (9)
GY GRY
UG + UGR + + + + nlxny

s wWhere 03, 02p, 051 ry Oys 0GRy and 03 )y are the genotypic, genotype by cluster, genotype
ws by location nested in cluster, genotype by year, genotype by clusters by year, and genotype by
w0 location nested in cluster by year variance components, respectively. nr and ny are the harmonic
w0 means for the number of clusters and years in which genotypes were observed, respectively. nl
sn 1s the median number of locations, obtained from harmonic means within clusters. The residual
w2 terms were omitted due to the lack of replicated data within environments.

3 The Jaccard similarity coefficient was used to compare the coincidence of locations within
s cluster across clustering-types. For the sake of simplicity, only the 0%, was estimated for each
w5 clustering-type with the jackknife approach presented in section 5.3.4. Lastly, to evaluate if lo-
w cations were simply allocated to clusters by chance, we randomly assigned locations into two,
s three, and four clusters, and assessed its CR/DR. This process was repeated 100 times.

= 6 Results

w 6.1 Single-trial and location analysis

s The number of evaluated genotypes by year including checks ranged from 126 to 233, and the
s number of locations per year ranged from 10 to 32 (Table A3). Estimates of i* from single-trial
% analyses ranged from 0.10 to 0.99, with a median value of 0.55 (Figure 1). The majority of trials
w (844 out of 1423) had i* values greater than 0.50. The coefficient of variation (CV%) ranged from
s 1.30 to 19.9%, with a median value of 7.60% (Figure 1-A). Genotypic eBLUE values ranged from
s 10.16 to 112.40 bu/ac. Across years, there has been a positive trend for seed yield with an average
s increase of 0.49 bu/ac per year (Figure 1-B), although the relative contributions of genetic and
s non-genetic factors to this trend requires further analyses and is the subject of future research.
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% 6.2 Variance components

s Most of the estimated phenotypic variance for seed yield among annual soybean field trials has
» been due to location (0%) and location by year interaction (0%,) effects (Table 2). Among the es-
» timated GEI variance components (02, + 0%y + 041y), the static contribution (0% ) represented
1 26.30% (Table 2, model M3-1).

93 Estimated variance components reveal distinct multi-modal distributions over time (Figure
» 2). For example, the estimated genotypic variance (02) more than doubled from ~ 3.54 (bu/ac)?
»s for the period 1989-1995 to ~ 7.56 (bu/ac)? for the period 1996-2003. For the years 2004-2011,
»s the estimated aé decreased to ~ 6.67, but then increased to ~ 7.49 for the most recent period of
w7 2012 to 2019. While the smallest magnitudes of estimated GEI variance components were usually
»s associated with the period from 1989 to 1995, subsequent changes across years were unique to
» each of the estimated variance component. A similar pattern was observed for empirical estimates
w of location, year, and location by year interaction variances (Figure A1l).

401 Several multi-modal models were evaluated for goodness of fit for the empirical distributions
w> of variance components (Table A4). The best-fit models for variance components across time con-
ws  sisted of: a mixture of five Log-Logistic distributions for the empirical distribution of ¢2, three
w  Log-Logistic distributions for the empirical distribution of ¢, six Log-Logistic distributions for
w5 the empirical distribution of 02y, and five Gamma distributions for the empirical distribution of
ws 02y (Figure 3). For the empirical distribution of estimated residual variances (02), obtained di-
w7 rectly rather then through jackknife resampling, the best-fit model was a univariate Log-Logistic
ws distribution (Figure 4). Maximum Likelihood estimates for the distributional model parameters
wo are reported for the selected models (Table 3).

410 The criteria for determining best-fit models included low AIC and BIC values, goodness of fit
m  statistics (KS, CM, AD), as well as visual graphical alignment of the model with the plotted empir-
a2 ical distributions. In total, 102 models were assessed. Plots with empirical and fitted cumulative
a3 distribution functions are provided in Figures A2 and A3.

m 6.3 Clusters of meta-environments

ss  The six clustering criteria revealed that the observed 63 environments can be divided into at
s least two and at most three MEs. Clusters based on PHE criteria had the best (lowest) relative
a7 effectiveness value, CR/DR = (.62 (Table 4). This value was computed using results from analysis
xs  from model 5, and PHE determined by estimates of genotype by location interaction (3,;) from
a0 model M3-18 (Table 1). The simplest, but unrealistic model (M3-1) assumed homogeneous and
20 independent variances and had the greatest AIC value.

o For PHE, the optimal number of clusters was three, while for SoilE, WW, and WA it was two.
n  For all clustering types, both Silhouette and Elbow criteria indicated similar results (Figure A4).
»3  The number of environments within clusters ranged from 7 to 54 (Table 4 and Figure 5). Calcu-
24 lated Jaccard distance metrics among the clusters created by different criteria showed that many
o5 clusters have common members. Out of the 75 pairwise similarity indexes, 68 presented non-zero
2 values. The greatest similarity was between clusters 1 and 2 from PHE and Lat2, respectively (Ta-
w2 ble AS).

s The best-fit model (M3-18) accounted for heterogeneous variances and pairwise genetic cor-
2 relations with FA matrices of order £ = 5 and k = 2 for ¥; and Y, accounting for 90.2% and
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o  87.2% of the genetic variances, respectively (Table 1). Pairwise genetic correlations between the
63 observed locations show a higher average correlation within phenotypic clusters compared to
s across phenotypic clusters (Figure A5).

v Prior to k-means clustering, a non-linear PCA was performed with centered and scaled en-
s vironmental variables (elevation, SV, and MV). The non-linearity relationship for most variables
s was evident from scatterplots (Figures A6, A7, and A8). For SoilE, WA, and WW, the selected num-
s ber of PC were five (93.06% of variance explained), four (93.42%), and six (91.12%), respectively
s (results not shown). Furthermore, for MV, just a small proportion of the data was used due to the
s CERIS biological filter. For WA, the CERIS revealed that four out of 19 variables had negative cor-
s relations between genotype by location deviations and the mean of the environmental variable
w for the selected window. The selected windows (i.e., with the highest Pearson correlation) were
s smaller than 20 days, and most of them started at the beginning of the cropping season (Table A1
s« and Figure A9). For WW and for the sake of simplicity, only the highest window for each MV are
w3 presented (Table A2), although locations were clustered as described in section 5.3.5.3.

" The effectiveness of clustering was assessed using CR/DR, which compares the response to
w5 selection in the divided and undivided sets of environments. The metric, computed from es-
us timated variance components from model 5 for each clustering type, presented ratios smaller
w7 than one in five out of the six cases. These results suggested an improvement in the response
us  to selection when selecting directly within clusters (i.e., regions, ME) versus selecting across all
w locations for PHE, SoilE and Lat2, while a moderate response to selection was suggested for Lat3
s and WA. For WW, no improvements were predicted. The relative effectiveness metric is affected
s by the correlation between genotypic effects in the undivided and divided sets of environments
s2 (pg) and the reliability within subregion (isr). The PHE presented the lowest p, value with an
s increase in the reliability (from i% to i%y), followed by Lat2 and SoilE. For Lat3 and WA, although
s effective, the reliabilities remained constant. Regarding the differences within fitted clusters, for
s SoilE, with the exception of pH and bulk density, all variables presented a big contrast between
s the two clusters. For WA, these differences were more subtle. For example, for growing degree-
i1 days (GDD), clusters 1 and 2 presented a mean difference of 2.61 units. For temperature related
s variables (mean, maximum, minimum, and range), the difference ranged between 0.21 and 2.94
s units. When locations were randomly assigned to two, three, or four clusters, the mean CR/DR
w values were always bigger than one, with large decreases in the reliability (Table 4).

61 REML estimates of variances decreased for o7, when clusters were included in the complete
« dataset, with the exception of WW. The observed ratios 02 /0% and 02 /02, were greather
«w than 0.50 for PHE, SoilE, and Lat2. In terms of the partitioning of 07, the 03, ) portion was
s« substantially reduced for PHE, Lat2, and Lat3. The O'é r Was better captured by PHE, SoilE, and
ws Lat2, being ineffective for WW (estimate bounded at zero due to REML properties). On the other
« hand, for 6%y, just a small portion of the variation was captured by o2y, (Table 2). Both PHE
« and Lat2 clustering types were able to greatly capture o2, according to analysis for each group
« of years (Figure 6). Lastly, large reductions in the variation of years (02) were observed for SoilE
s and Lat2.
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«~ 7 Discussion

m Analyses of balanced data sets produced by METs using least square and mixed model estimators
w2 provide unbiased estimates of variance components. However, data generated by annual PYTs
s and URTs are unbalanced and sparse because every year most field plots (experimental units) are
m  reserved for new experimental genotypes and most previously evaluated experimental genotypes
w5 are culled on an annual basis. For example, reports of soybean seed yield in MZ’s II and III
s evaluated in PYTs and URTs conducted from 1989 and 2019 included less than one percent of
w7 all possible combinations genotypes, locations and years. As a consequence estimators of the
ms  variance components are biased (ROTHSCHILD ET AL. 1979). A question to consider is whether the
s biased estimators produce large bias in the estimates.

480 An additional challenge in using soybean seed yield data from PYTs and URTs is that the
s data consist of eBLUE values from individual trials within locations for each genotype. These
s values were transcribed from reports of individual trials formatted as PDF files. To the best of
s our knowledge, all genotypes were evaluated in replicated field trials organized as randomized
s complete block design (RCBD’s) that were analyzed with a linear model consisting of fixed block
s and genotypic effects and random residual effects, where the residual effects were assumed to be
s estimated using equal numbers of replicates per genotype within a field trial. Implicitly this is
w7 equivalent to assuming there were no missing plots within any of the field trials, which is highly
#s unlikely. Further, the estimates of 0%, 02, and 6, are confounded and biased by ¢2, i.e., plot
s to plot variability.

190 A consequence of using eBLUE values instead of individual plot data is that estimates of
©1 variance components needed to be obtained in multiple stages. If the reports of field trials had
»2  provided individual plot data it would have been possible to produce a variance—covariance ma-
»  trix associated with adjusted means from each trial. Indeed, if individual plot data are provided,
»e  the field plot designs need not be restricted to RCBD’s wherein the covariances among plots may
w5 be substantial and assumptions of independence among plots is inappropriate (MOHRING and
ws  PIEPHO 2009). Under such field conditions use of spatial models and lattice designs where repli-
»7 cates are considered fixed and blocks as random effects (MOHRING ET AL. 2015) can be utilized
»s and the mixed model framework can provide appropriate weights for analyses of data combined
»o across trials, locations and years. Toward this goal public soybean breeders are working with cu-
0 rators of “SoyBase” (Drs. Rex Nelson and David Grant, personal communication, 2020) to include
s results from individual plots in future reports of PYTs and URTs.

502 If data were obtained from only URTs they would provide very little information for estimat-
w ing 0%,y and 02, because most experimental genotypes are not grown for more than one year
0 of URTs. Although check varieties were replicated across multiple years, the checks are a small
s sample of genotypes representing mostly commercial varieties. Thus, interpretation of variance
s components based on only check varieties is limited. In order to broaden the inferences about
sv interactions involving genotypes and years in MZs II and III, we included eBLUE values from the
ss  PYTs, thus providing at least two years of data for a broader base of genotypes.

509 Even with inclusion of data from PYTs there is potential for bias in the estimates of 6%+, 02,
s 02y, and o due to the phenomenon of missing data between years. Many of the experimental
sn  genotypes evaluated in the PYTs will be culled before becoming entries in a subsequent year of
sz URTs. As a consequence, the missing data are missing at random (MAR). If genotypes are MAR,
sz selection is ignorable, and hence they will produce unbiased estimates of variance components
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su in likelihood-based analysis (P1EPHO and MOHRING 2006; ROTHSCHILD ET AL. 1979). Note MAR
55 does not state the missing genotypes are randomly eliminated (i.e., no selection), but instead it
s depends on the observed data due to selection (P1EPHO and MOHRING 2006). Also, URTs can have
57 experimental genotypes that were not included in a previous year of PYTs, a condition known as
55 missing completely at random (MCAR) (L1TTLE and RUBIN 2020; RUBIN 1976). Fortunately recent
s work from HARTUNG and P1epHO (2021) demonstrated that both MAR and MCAR conditions for
s0 field trials conducted in sequential years result in minor bias for likelihood-based estimators of
s variance components (P1IEPHO and MOHRING 2006; LITTLE and RUBIN 2020; HARTUNG and P1EPHO
52 2021), a result previously noted for MAR by P1EPHO and MOHRING (2006).

523 For the sake of interpreting variance components involving genotypes, we recognize that
s4  PYTs and URTs include genotypes from multiple breeding programs. Each breeding program op-
s erates independently with distinct breeding objectives and breeding strategies for distinct mar-
s Kkets. For example, a couple of the breeding programs have objectives that include not only high
s seed yields, but also greater seed protein for food markets. Seed protein is negatively correlated
s with seed yield. Thus, the estimates of variance components involving genotypes from these
s» trials is likely greater than it is for any individual breeding program.

530 Despite the various caveats mentioned above, the eBLUE values for genotypes from both PYTs
s and URTs provided estimates of variance components with similar relative magnitudes as other
s»  studies. For example, we determined that environmental, i.e., non-genetic sources of variability
s»  were the predominant source of variance for seed yield. Similar results were found in wheat in
su California (USA) (GEORGE and LUNDY 2019), winter wheat field trials in Germany between 1983
s to 2014 (LAIDIG ET AL. 2017a) and winter rye (LAIDIG ET AL. 2017b). Estimates of variance com-
s ponents (Table 2) revealed that the interactions of genotype with locations (02, ) was larger than
= genotype by year interactions (02,-). Also, the three-way interaction among genotype, location,
s and years (02, ), was greater than either of the two way interactions involving genotypes. The
s same pattern was observed when years were combined into four 7 to 8 years periods. FRIESEN
so0  ET AL. (2016) found similar results for winter wheat evaluated in Canada from 2000 to 2009, where
s the reported 02,y represented 4.1% of the total variation, and both 0%, and 0%, together rep-
s resented less than 2%. Similar trends were also observed for yield in wheat (GEORGE and LuNDY
ss 2019; LAIDIG ET AL. 2017a; ARIEF ET AL. 2015), rye (LAIDIG ET AL. 2017b), barley, maize, and sun-
su flower (LAIDIG ET AL. 2008). While seed yields for multiple crops indicate o2; > 02y, it is
s not consistent for all traits. For example, LAIDIG ET AL. (2017b) evaluated the variation in crude
s protein content, amylogram viscosity and temperature in winter rye varieties, and reported that
w  Ogy > 0%y, and that the year-to-year (¢3) variation was more important than the variation from
s location to location (0%). Authors attributed this to the rye seed susceptibility towards wetness,
s low temperature, and radiation during harvest time.

550 AGUATE ET AL. (2019) simulated different METs with variable numbers of genotypes, loca-
1 tions and years to mimic wheat trials. They found that adding years is more beneficial than
s adding genotypes or locations for obtaining unbiased estimates of genotypic related variance
3 components. Furthermore, even in highly imbalanced datasets, estimates from at least 8 years of
sso  trials produced less than 5% bias in the estimates, compared to biases of ~18% for Ué, >40% for
555 aé 1, and >15% for Jéy, when only two years of METs were considered. Simulation results from
sss  HARTUNG and P1EpHO (2021) further demonstrated that non-significant bias can be achieved for
= estimates of 02, 02, and 0%y, with decreasing dropout rate and increasing number of years of
s testing. Given the dropout rate relies on the objectives and budget constraints of the breeding
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s program, in order to be confident with the REML estimates of variances obtained from METs,
s they recommended that at least seven to eight years of trials should be included. This result and
s« the fact that soybean breeding cycles in public programs require seven to eight years, we created
s four subsets of data consisting of seven to eight years. The reader should keep in mind that the
s goal of minimizing bias in estimators is distinct from the magnitude and proportion of estimates
s of variance components. The former is a concern for algorithmic estimators while the latter is of
s concern for breeding decisions about whether to use more locations or more years in their crop
s species and for traits under selection.

567 Estimates of variance components were also used to fit parametric probability distributions
s« and to quantify the effectiveness of dividing the sampled 63 environments/locations into MEs.
s For the distributions, a jackknife resampling approach was implemented and consisted of leaving-
s0 - one-environment out and estimating the variance components in each group of years (1989-1995,
s 1996-2003, 2004-2011, 2012-2019). The selected distributions were Log-Logistic and Gamma (Ta-
s bles 3 and A4). Especially due to the well-known properties of the analysis of variance (ANOVA)
s among the breeding community, there is a misconception regarding the distribution of estimates
s of variance components. If the underlying population are normally distributed, the mean squares
s are distributed as a chi-square (x?), whereas normality and independence are requirements to
% compute valid F tests from ANOVA (RENCHER and SCHAALJE 2007, Chapter 5). The x? distribu-
s tion is further used for inferences about variance uncertainty, but as mentioned, it does assume
s that the random variable is normally distributed. The computed empirical distributions from
s jackknife can be of any form (distribution), likewise other approaches such hierarchical Bayesian
s models can be employed to obtain posterior distributions of variance estimates. But regardless of
s the type of inference, our motivation was essentially to capture the GEI trend. For example, the
w point estimate for the genotype by location variance in the whole period was 6%; = 4.8 (bu/ac)?
s3 (Table 2). This is a valid estimate, however, it does not allow a trend quantification. The GEI trend
s are crucial as they can be incorporated in simulation pipelines to depict genetic and non-genetic
s trends, which is current a topic under investigation.

586 Logically, plant breeders are motivated to ask: What is an environment? CosTta-NETO and
sv  FRITSCHE-NETO (2021) defined environment as “... an emergent property derived from the balance
s of inputs and frequency across the plant’s lifetime,” and from an agronomic point of view, “... a
s certain time window between planting date and harvesting.” Over 60 years ago, CoMsTOCK, R. E.
so and MoLL (1962) described the differences between micro and macro-environment, and explained
s that GEI is the result of fluctuations in the macro-environment during a crop’s lifetime. More
2 recently, introduction of enviromics/envirotyping (CosTa-NETO ET AL. 2021; XU 2016; COOPER
3 ET AL. 2014), coupled with high-throughput phenotyping/genotyping are being investigated as
sa an approach to connect environment and biology for sustainable food production. While some
s agronomic research has focused on variation among agronomic systems linked with ideotype
s breeding, genotypic sources of variability continue to be the primary approach used for genetic
s improvement by plant breeders.

598 Results from the cluster analyses showed that all sampled environments can be effectively
s divided into three clusters using FA models. The obtained clusters can be considered disjoint
«0 subsets of environments with minimal genotypic crossover interaction (COI) (BURGUENO ET AL.
o1 2008; CooPER and DELACY 1994). BURGUERO ET AL. (2008) analysed a maize MET dataset from
o2 CIMMYT and identified five clusters of environments by fitting a FA(2) model. The authors com-
o3 puted the Euclidean distance between pairs of environments from the estimated loading matrix
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s (A, rotated with singular value decomposition), and environments were clustered based on com-
«s plete linkage clustering strategy. Bustos-KorTs (2017) analysed data embracing TPE in Denmark,
«s Germany, The Netherlands, and the United Kingdom, with a FA(1) model. The results suggested
«7 improvements in the response to selection mostly for Denmark, where the CRS ratio was 0.93.
«s More recently, SMITH ET AL. (2021) proposed a new way to define groups of environments that
s exhibit minimal COI based on FA models. The idea is to take advantage of the traditional in-
s terpretation of factor and principal component analysis, and classify environments into clusters
«n based on the sign (positive or negative) of the estimated and rotated factor loadings.

612 The identification of homogeneous environments was also accomplished by considering soil
13 plus elevation (SoilE) and meteorological variables when CERIS was applied across environments
s (WA). The rational is that a portion of the GEI results from static, repeatable variation (CREsPO-
ss  HERRERA ET AL. 2021; YAN 2016). It is well-known that temperature is a key driving force in the
s rate of seasonal plant growth (SETIYONO ET AL. 2007), which is why GDD is commonly a base
7 unit in crop models (HoLzwoRTH ET AL. 2014). Photoperiod plays a significant role in soybean
s plant development, notably the change from vegetative to reproductive growth. Floral induction
v is essentially daylenght and temperature-independent (i.e. conversion of shoot apical and nodal
o0 meristems from a vegetative to floral mode). In soybeans, this induction occurs as soon as the
o1 first unifoliolate leaflets emerge and expand, becoming capable of measuring the night length
2 (from dusk to dawn). Once floral induction occurs at a given apical or axillary node, the few-
o celled vegetative apical zone is transformed from a vegetative development pathway into a floral
o inflorescence development pathway. The development pathway is back under thermal control
o5 (SETIYONO ET AL. 2007). Soybean is a quantitative long-night length sensing (not a short-day
2 length sensing), and hence highly influenced by photoperiod and therefore by the latitude of
& the growing region/trial (JacksoN 2009). This is a major reason that different soybean maturity
s  groups are grown at different latitudes (MourTzINIs and CONLEY 2017). The estimated clusters
e (with the exception of the ad-hoc Lat2 and Lat3) follow a certain pattern in terms of latitude,
s which was also confirmed by the Jaccard similarity. In addition, the inclusion of the URT data
& in SoyBase would facilitate identifying critical crop growth periods in order to narrow down the
& amount of environmental data used by CERIS.

633 Herein, we identified MEs through reliable estimates of variance components. However, other
«u environmental subsets would have been formed using different clustering strategies (BURGUERO
o5 ET AL. 2008). Given this type of approach is an unsupervised learning (i.e., we do not know the
s truth about MEs), the objective is always to discover an interpretable grouping of members. We
v addressed interpretation using effectiveness of clustering (ATLIN ET AL. 2000a). Other strategies
e for clustering can also be tested, for example, empirical knowledge of the TPE. But regardless of
«» the definition/identification of MEs, breeders can take advantage of best linear unbiased predic-
s« tion (BLUP) that borrows information (strength) between MEs from the genotype by ME inter-
1 actions. This type of modelling can be highly beneficial for MEs that rely on a small number of
2 locations (BUNTARAN ET AL. 2021; PTIEPHO ET AL. 2016; PtEPHO and MOHRING 2005). A natural con-
o3 tinuation for this work would be to (i) evaluate the effectiveness of a combined cluster from soil,
o« elevation, and meteorological variables filtered by CERIS; (ii) evaluate if BLUP based-models will
«s improve the selection response upon regionalization in the Uniform Soybean Cooperative Tests;
o (iii) select an appropriate model that might account for heterogeneous covariances among MEs
« as well genetic relationships, because we confined attention to the compound symmetry model
s in order to facilitate comparison of the different clustering types; and (iv) leverage how far back
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e in the historical data should we go in order to take maximum advantage of the data in current
o0 models. It is also worth investigating if modelling maturity groups (specially when more data is
1 considered) would enhance the ability of finding meaningful MEs using phenotypic models.

= 8 Conclusion

3 We dissected the sources of soybean seed yield variation using reports from Soybean Cooperative
s Tests for maturity groups I and III. We determined that sampled sets of environments can be split
s into mega-environments according to phenotypic, geographic, and meteorological information.
s Reasonable estimates of variance components are essential for analyses of data from historical
7 field trials. Furthermore, it was possible to monitor trends in variance components involving
s genotypes in terms of parametric probability distributions. Historical field trials also evaluate
oo traits like seed quality and size, iron deficiency chlorosis, green stem, seed oil, and protein content.
s The approach presented herein can be applied to variation of multiple economically important
1 quantitative traits. Finally, in addition to the practical and theoretical results applied to soybean
s« genetic improvement, the analysis performed in this study may be applied to quantitative traits
3 evaluated in any crop using multi-environment trials.
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Figure 1: Estimates of reliabilities (i?) and coefficient of variation (%CV) for 1423 soybean field
trials conducted from 1989 to 2019 (A), and boxplots of empirical best linear unbiased estimates
(eBLUESs) of seed yield plotted by year (B) from 1989 to 2019. Red dots in B depict the average

yield of experimental cultivars excluding checks, whereas blue dots depict the average yield of
the check varieties.
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Figure 2: Empirical distributions of estimated variance components consisting of genotypic, geno-
type by location, genotype by year, and genotype by location by year variances for groups of years
1989-1995, 1996-2003, 2004-2011, and 2012-2019. Empirical estimates were obtained using a jack-
knife leave-one-location out method. Vertical bars on the x-axis represent point estimates across
all years.
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distribution and its mixture number.
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Figure 4: Empirical distribution and probability density function (PDF) for the unimodal Log-

Logistic model of residual estimates from individual trials.
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Table 1: Models and criteria used to evaluate the models for purposes of clustering locations
into groups representing the most likely target population of environments. The best-fit model
(M3-18) is highlighted in bold.

Covariance structure® Evaluation criteria
Xy Xy DI AIC % Var(GL) % Var(GY)
M3-1 I®I I®I pIP 175294 - -
M3-2 D®I I®I pIPS 174256 - -
M3-3 I®I DI 3, 174964 - -
M3-4 D®I D®I 3 173951 - -
M3-5 FA;, I DI 3, 172845 48.5 -
M3-6 FA; I DRI X, 172560 67.3 -
M3-7 FA; 1 DI 3, 172359 78.2 -
M3-8 FA, 1 DI X, 172303 87.6 -

Model

M3-9 FA,®I FA®I 3, 172754 48.0 63.4
M3-10 FA, ®1 FA, ®I 3, 172472 66.2 82.5
M3-11 FA3;®1 FA3; @1 X, 172288 77.0 96.4
M3-12° FA, ®1 FA, ®I 3, - - -

M3-13 FA, ®1 FA, ®1 X, 172494 66.4 61.0
M3-14 FA3;®I FA, @I X, 172296 77.6 61.0
M3-15 FA3;®I FA, @I X, 172276 77.5 82.9
M3-16 FA, ®1 FA, @1 X, 172205 84.7 86.3
M3-17 FA, ®1 FA;01 3, 172234 87.3 96.7
M3-18 FA; ®1 FA, ®I X, 171990 90.2 87.2
M3-19 FA;®1 FA; @1 X, 172196 88.9 96.9

M3-20° FAs®1 FA, @I X, - - -

64 @ The evaluated variance-covariance structures were identity (I), diagonal (D), and factor analytic (FAy) from order
65 k=1,..,6. X is the residual variance matrix assumed to be known from single trial and location analysis.
e U Singularity in the Average Information matrix.

687
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Table 2: Point estimates and standard error of variance components for seed yield computed from
Soybean Cooperative Tests (1989-2019) using Model 3-1 (baseline) and six clustering methods for
clustering locations into mega-environments using Model 5.

Variance Clustering criteria”
Model 3-1 -

components® PHE SoilE Lat2 Lat3 WA WwW
o2 6.3 (0.3) 45(0.4) 5.0(0.5) 48(0.4) 5.6(04) 5.7(04) 63(0.4)
o2 58.9 (13.1)¢ 56.4 (12.6) 58.6 (13.1) 59.5(13.2) 48.9 (11.4) 59.1 (13.2) 60.5 (13.5)
o2 15.3 (5.4) 134 (6.6) 10.6(7.2) 11.5(6.3) 15.1(6.1) 16.5(6.5) 15.0(6.4)
o2y 81.4(5.2) 74.6(5.0) 79.9(5.2) 76.5(5.0) 77.7(5.2) 80.0(5.1) 79.9(5.2)
62 4.8 (0.3) - - - - - -
G2y 3.2 (0.3) 2.8(0.3) 29(04) 3.2(0.3) 3.1(03) 28(03) 3.0(0.3)
0%y 10.1 (0.3) - - - - - -
0%y - 12.2(5.7) 7.6(6.5) 10.2(5.2) 59(3.9) 28(3.7) 3.6(4.1)
0%n - 41(0.3) 29(04) 25(0.3) 15(0.2) 1.1(0.3) 0.0(0.0)
6?;L(R) - 25(03) 4.6(03) 3.6(0.3) 3.8(0.3) 4.4(03) 4.8(0.3)
Gony - 0.9(0.2) 0.5(0.3) 0.1(0.2) 0.1(0.2) 0.7(0.3) 0.5(0.2)
fféL(R)Y - 9.7(0.3) 9.9(0.3) 10.3(0.3) 10.2(0.3) 9.9(0.3) 9.9(0.3)
Clusters - 3 2 2 3 2 2

s @ Genotypic (6%), location (6%), year (6% ), location by year (57,), genotype by location (6% ), genotype by year
s (02 ), genotype by location by year (62, -), cluster by year (6%,-), genotype by cluster (6% ), genotype by location
o0 nested in cluster (62, L( R)), genotype by cluster by year (6% ry-), and genotype by location nested in cluster by year
691 (&éL(R)Y)'

2 © Phenotypic (PHE), soil and elevation (SoilE), latitude split into two groups (Lat2), latitude split into three groups

03 (Lat3), weather from means across years (WA), and weather from means within years (WW).
w4 ¢ Locations were modelled as a random effect in model 3-1 (Table 1).
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Table 3: Maximum Likelihood estimates of parameters for the best-fit univariate and multivariate
probability distributions for empirical distributions obtained using jackknife resampling. Esti-

mates of residual variance (0?) were obtained from trials conducted from 1989 to 2019.

Number of Parameters’
distributions W, & Bi
0.30 12598 3.54
0.14 119.87 6.68
o2, Log-Logistic 5 0.08  44.03 7.23
0.01 88.03 6.18
0.47 192.69 7.53

Variance® Distribution

0.63 122.27  4.23
o2 Log-Logistic 3 0.17  32.00 3.12
0.20 92,56 7.62

002 25841  3.77
031 17261  3.91
020 89.05 351

2 . .

Log-Logist 6

oay 0g-LOgIstC 030 9497  2.06
002 3281 264
015 5779  3.01

0.05 4078.04 0.0024
031 7755.00 0.0011
02y Gamma 5 0.20 5306.62 0.0025
0.28 31922.50 0.0003
0.16 7301.02  0.0020

o? Log-Logistic 1 1 2.56 17.03

s @ Genotypic (02), genotype by location (¢ ), genotype by year (02+), and genotype by location by year (6 )
6 variance components.

o7 © Estimates of weight parameters (w;) sums to one, and both Gamma and Log-Logistic distributions include a shape
o8 () and scale (f3;) parameter.
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Table 4: The ratio of correlated responses from selection across all environments relative to di-
rect responses to selection within mega-environments (CR/DR) for each clustering type. p, is the
correlation between estimated genotypic effects in the non-clustered and clustered sets of envi-
ronments, 77 and i%; are the reliabilities of genotype means in the non-clustered and clustered
sets of environments, respectively.

. Number of Estimates of
Clustering type® - —
Clusters Locations g, 1 1% CR/DR

PHE 3 36/7/20 0.72 038 0.51 0.62
SoilE 2 9/54 0.88 0.39 045 0.81
Lat2 2 35/ 28 0.81 0.39 048 0.73
Lat3 3 16/36/11 0.89 0.44 0.44 0.89
WA 2 25/ 38 0.92 0.45 045 0.92
wWw 2 19/ 44 1.00 0.51 0.43 1.08

2 - 0.99 0.52 044 1.07
At random 3 - 0.99 0.51 039 1.14

4 - 0.99 0.51 036 1.18

¢ @ Phenotypic (PHE), soil and elevation (SoilE), latitude split into two groups (Lat2), latitude split into three groups
700 (Lat3), weather from means across years (WA), and weather from means within years (WW).

701
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B- SoilE

South
Dakota

C- Lat2 -3 D- Lat3

Figure 5: Geographic visualization of the target population of environments divided according
to phenotypic (A), soil + elevation (B), latitude split into two groups (C), latitude split into three
groups (D), weather across years (E), and weather within years (F) clustering types. In (A), the
states’ names are provided for geographic orientation.
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Figure 6: Jackknife estimates of genotype by cluster variances for the groups of years 1989-1995,
1996-2003, 2004-2011, and 2012-2019, for phenotypic (PHE), soil + elevation (SoilE), latitude split
into two groups (Lat2), latitude split into three groups (Lat3), weather across years (WA), and
weather within years (WW) clustering types.
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Figure A1: Jackknife estimates of location, year, and location by year variances for the groups of
years 1989-1995, 1996-2003, 2004-2011, and 2012-2019.
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Figure A2: Cumulative distribution function (CDF) for the best-fit models according to the geno-
typic (A), genotype by location (B), genotype by year (C), and genotype by location by year (D)
variances from jackknife. In each plot, the legends states for name of the distribution followed
by its mixture number.
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Figure A3: Cumulative distribution function (CDF) for the best-fit models according to the resid-
ual variances from individual trial level. The legends states for the name of the distribution
followed by its mixture number.
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Table A4: Goodness-of-fit (GOF) statistics and selection criteria for the fit of univariate and multi-
variate probability distributions for genotypic, genotype by location, genotype by year, and geno-
type by location by year variance components estimated from the jackknife analysis, and residuals
variances from trial-level. The best-fit model is highlighted in bold. KS, CM, AD, AIC, and BIC
stand for Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling, Akaike’s and Bayesian
Information Criterion, respectively.

Variance Distribution = Mixture of GOF statistics GOF criteria
KS CM AD AIC BIC Log-likelihood

Gamma 2 0.19  4.39 25.23 672.09 694.00 -331.05
Log-Logistic 2 0.15 3.32 19.97 598.57 620.48 -294.29
Log-Normal 2 0.19 448 25.66 680.36 702.27 -335.18
Burr 2 0.50 40.79 193.24 3978.69  4000.60 -1984.35
F 2 0.67 77.08 356.80 4338.62  4360.52 -2164.31
Gamma 3 0.07 0.81 5.56 182.11 217.16 -83.06
Log-Logistic 3 0.15 3.26 19.45 554.84 589.90 -269.42
Log-Normal 3 0.08 0.66 4.90 170.74 205.79 -77.37
Burr 3 0.52 44.39 20791 3978.03  4013.09 -1981.02
F 3 0.67 77.08 356.80 4338.62  4360.52 -2164.31
Gamma 4 0.09 1.03 6.20 177.38 22558 -77.69
Log-Logistic 4 0.15 3.26 19.45 565.62 613.82 -271.81

Genotypic Log-Normal 4 0.08  0.52 3.61 74.67 122.87 -26.33
Burr 4 0.52 4439 207.91 3984.04  4032.24 -1981.02
F 4 0.67 7530 347.50 4351.57  4399.77 -2164.79
Gamma 5 0.10 0.74 5.85 155.12 216.47 -63.56
Log-Logistic 5 0.05 0.21 1.67 -9.63 51.71 18.82
Log-Normal 5 0.06 0.36 2.53 89.40 150.75 -30.70
Burr 5 0.53 4519 211.25 3989.54  4050.89 -1980.77
F 5 0.67 7593 350.80 4357.11  4418.45 -2164.55
Gamma 6 0.07 0.46 3.15 94.30 168.79 -30.15
Log-Logistic 6 0.05 0.20 1.89 32.97 107.47 0.51
Log-Normal 6 0.06  0.37 2.68 103.17 177.66 -34.59
Burr 6 0.52 43.68 205.00 3996.91 4071.40 -1981.45
F 6 0.66 74.44 343.11 4364.38  4438.87 -2165.19
Gamma 2 030 10.51  48.78 1164.59  1186.50 -577.29

Genotype -

by Log-Logistic 2 0.24 835 49.77 1139.99  1161.90 -565.00

Location Log-Normal 2 0.30 10.80 50.82 1194.97 1216.87 -592.48
Burr 2 0.50 42.63 197.90 3466.48  3488.39 -1728.24
F 2 0.63 67.82 305.85 3830.34  3852.24 -1910.17
Gamma 3 0.30 10.52  48.87 1185.88  1220.94 -584.94
Log-Logistic 3 0.04 0.14 0.72 -80.42 -45.36 48.21
Log-Normal 3 0.06 0.49 2.38 -5.10 29.96 10.55
Burr 3 0.50 4278 198.50 3477.58 3512.63 -1730.79
F 3 0.63 67.82 305.85 3830.34  3852.24 -1910.17
Gamma 4 0.30 10.51  48.83 1185.69  1233.89 -581.85
Log-Logistic 4 0.04 0.13 0.62 -80.72 -32.52 51.36
Log-Normal 4 0.06 048 2.20 -10.68 37.52 16.34
Burr 4 0.50 41.96 195.32 3482.35 3530.55 -1730.18
F 4 0.65 73.19 331.38 3854.78  3902.98 -1916.39
Gamma 5 0.02  0.07 0.56 -34.66 26.69 31.33
Log-Logistic 5 0.03 0.10 0.59 -73.99 -12.64 50.99
Log-Normal 5 0.02  0.06 0.49 -66.28 -4.93 47.14

39


https://doi.org/10.1101/2022.04.11.487885
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.11.487885; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Table A4 continued from previous page

Variance Distribution  Mixture of S GOFCSI\TUSUCSAD AC GI;I; CnterLlig-likelihoo d
Burr 5 0.49 41.22 192.48 3488.02 3549.36 -1730.01
F 5 0.65 72.56 328.33 3860.42 3921.76 -1916.21
Gamma 6 0.02 0.06 0.40 -30.91 43.58 32.46
Log-Logistic 6 0.03 0.09 0.46 -74.96 -0.47 54.48
Log-Normal 6 0.03 0.04 0.25 -71.57 2.92 52.78
Burr 6 0.49 41.61 194.00 3494.23 3568.72 -1730.11
F 6 0.65 72.49 328.02 3866.55 3941.05 -1916.28
Gamma 2 0.13 2.33 17.77 805.22 827.13 -397.61
Log-Logistic 2 0.12 1.39 10.73 522.98 544.89 -256.49
Log-Normal 2 0.13 1.80 12.89 546.28 568.19 -268.14
Burr 2 0.46 34.26 165.40 2641.18 2663.09 -1315.59
F 2 0.67 80.39 375.82 3042.72 3064.63 -1516.36
Gamma 3 0.12 1.48 10.61 438.20 473.26 -211.10
Log-Logistic 3 0.08 0.29 1.48 69.69 104.75 -26.85
Log-Normal 3 0.13 1.36 10.01 402.06 437.11 -193.03
Burr 3 0.49 38.99 184.26 2636.35 2671.40 -1310.17
F 3 0.67 80.39 375.82 3042.72 3064.63 -1516.36
Gamma 4 0.12 1.34 9.44 391.85 440.05 -184.92
Genotype Log-Logistic 4 0.04 0.11 1.14 -21.98 26.22 21.99
by Log-Normal 4 0.05 0.26 2.48 69.53 117.73 -23.77
Year Burr 4 0.48 36.59 174.58 2642.16 2690.36 -1310.08
F 4 0.65 73.44 338.37 3062.06 3110.26 -1520.03
Gamma 5 0.07 0.45 4.18 142.71 204.05 -57.35
Log-Logistic 5 0.03 0.09 1.07 -25.40 35.94 26.70
Log-Normal 5 0.05 0.27 2.52 73.76 135.10 -22.88
Burr 5 0.46 33.87 163.84 2652.24  2713.58 -1312.12
F 5 0.65 73.45 338.42 3068.16 3129.51 -1520.08
Gamma 6 0.05 0.29 2.90 78.16 152.65 -22.08
Log-Logistic 6 0.03 0.08 1.04 -35.86 38.63 34.93
Log-Normal 6 0.04 0.13 1.11 2.00 76.49 16.00
Burr 6 0.45 32.15 157.07 2645.95 2720.44 -1305.98
F 6 0.65 73.41 338.24 3073.76 3148.25 -1519.88
Gamma 2 0.18 3.72 23.32 2027.94  2049.84 -1008.97
Log-Logistic 2 0.17 3.40 21.40 2104.98 2126.88 -1047.49
Log-Normal 2 0.18 3.73 23.33 2028.46 2050.36 -1009.23
Burr 2 0.57 46.63 216.45 4962.90 4984.81 -2476.45
F 2 0.68 68.15 308.55 5298.60 5320.51 -2644.30
Gamma 3 0.06 0.52 3.94 905.88 940.93 -444.94
Log-Logistic 3 0.17 3.22 19.52 1938.73 1973.78 -961.36
Log-Normal 3 0.06 0.52 3.96 909.36 944.42 -446.68
Genotype Burr 3 0.60 51.37 235.46 4969.12 5004.18 -2476.56
by F 3 0.68 68.15 308.57 5304.63 5339.68 -2644.31
Location Gamma 4 0.06 0.41 3.50 830.66 878.86 -404.33
by Log-Normal 4 0.06 0.36 3.30 810.14 858.34 -394.07
Year Burr 4 0.60 51.37 235.46 4975.11 5023.31 -2476.55
F 4 0.69 71.27 323.14 5313.82 5362.02 -2645.91
Gamma 5 0.05 0.21 1.74 709.98 771.33 -340.99
Log-Normal 5 0.06 0.22 1.15 715.12 776.47 -343.56
Burr 5 0.60 51.37 235.46 4981.10 5042.45 -2476.55
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Table A4 continued from previous page

Variance Distribution  Mixture of S GOFCﬁltIStICSAD ATC Glglé Cnterleg-likelihoo q

F 5 0.70 75.75 344.66 5317.16 5378.51 -2644.58

Gamma 6 0.06 0.32 2.58 781.22 855.71 -373.61

Log-Normal 6 0.05 0.16 1.53 691.83 766.32 -328.91

Burr 6 0.58 48.52 223.96 4989.49 5063.98 -2477.75

F 6 0.68 68.92 312.13 5322.81 5397.30 -2644.40

Gamma 1 0.06 1.60 9.57 11139.50 11150.02 -5567.80

. Log-Logistic 1 0.02 0.07 0.72 11063.82 11074.34 -5529.90
Residual

(Trial-level) Log-Normal 1 0.02 0.09 0.67 11066.60 11077.12 -5531.10

Burr 1 0.41 79.00 377.80 13896.60 13907.11 -6946.30

F 1 0.54 131.37 594.40 14677.45 14687.97 -7336.73
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Figure A4: Graphical display of the optimal number of clusters based on the Silhouette (A) and
Elbow (B) methods for the phenotypic clustering type (PHE, A; and B;), soil + elevation variables
(SoilE, A, and B,), weather within year variables (WW, A3 and Bs), and weather across year

variables (WA, A4 and By). 42


https://doi.org/10.1101/2022.04.11.487885
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.04.11.487885; this version posted May 11, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

wymore_ne
wooster_oh
urbana_il
powhattan_ks
pontiac_il
plaincity_oh
phillips_ne
ottawa_ks
novelty_mo
newton_il
mead_ne
mccooljunction_ne
lafayette_in
hoytville_oh
goehner_ne
eastlansing_mi
dwight_il
britton_mi
beemer_ne
arthur_il
vincennes_in
topeka_ks
manhattan_ks
fallscity_ne
columbia_mo
butlerville_in
bluffton_in
woodslee_on
winterset_ia
waseca_mn
wanatah_in
volga_sd
tingley_ia
tekamah_ne
stuart_ia
rippey_ia
ridgetown_ont
plymouth_ne
ord_ne
marshalltown_ia
lincoln_ne
lenaweecounty_mi
lamberton_mn
keystone_ia
hartington_ne
harrow_ont
griswold_ia
greenfield_ia
grandjunction_ia
fairfield_ia
elkpoint_sd
dekalb_il
davidcity_ne
crawfordsville_ia
cotesfield_ne
chatham_ont
centerville_sd
carlisle_ia
brookings_sd
boone_ia
beresford_sd
arlington_wi
ames_ia

0.8

0.6

0.4

0.2

0.0

--0.2

0.4

--0.6

CEVIDITEQ CEQOCCEVTCLVETTVOCTVCECTVECECORYNE=Q EQCCQOTOQ QL= =S Q
9EBSBARE 2 SE29EERSCRE S SRSESES58822 508 EE55E88T222887127628
8522332 ¢3 S5 e 2SR 8ES8 G 8052025082556 P5225R25982855858¢8
£E2o828352 0ES55E93555 a3 o0F 0 885 g e P es80852:88E54875
823 85885L%G 2253c322 2325EE829E828355E28585 s 252 70E2eSEE2gR858E
£ 8 S5 8 23E 88T Eg SE>88ETUE=55c88 @ 5§33 c 3568~ 9
=873 3 58£g8g=8 58 3T 35£8°53-E2g 8° Sggws5 goaf8Tsgsg
L 5 59 @ X s B 2 2290 289 g < £ 5= =X
8 5 G 3 8¢ ¢ ©Tg g 8 g s ] S g
- (o}
© £ [s}
c o
8 E

Figure A5: Heatmap of genetic correlations between the 63 observed locations from 1989 to 2019,
estimated from the factor analytic (FA) model M3-18. Fitted k-means clustering are ordered, from
1 to 3.
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Figure A6: Scatterplots of the scaled and centered soil variables and elevation. Pearson correlation
is displayed on the right. Variable distribution is available on the diagonal. The labels SV1, SV2,
to SV8 are the soil variables described in section 5.3.5.
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Figure A7: Scatterplots of the scaled and centered weather variables computed across years. Pear-
son correlation is displayed on the right. Variable distribution is available on the diagonal The
labels MV1, MV2, ..., to MV 19, are the weather variables described in Table A1l.
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Figure A8: Scatterplots of the scaled and centered weather variables computed within years.
Pearson correlation is displayed on the right. Variable distribution is available on the diagonal.
The labels MV1, MV2, ..., to MV 19, are the weather variables described in Table A2.
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Figure A9: Exhaustive search from the critical environmental window computed from the Pearson
correlation between the weather variables across years and the genotype by location deviations of
each environment (location-year combination). The dots depict the highest window correlation.
The labels MV1, MV2, to MV 19 are the weather variables described in Table A1.
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