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Summary  
  
Prior work has identified cortical regions selectively responsive to specific categories of visual stimuli. 
However, this hypothesis-driven work cannot reveal how prominent these category selectivities are in the 
overall functional organization of visual cortex, or what others might exist that scientists have not thought 
to look for. Further, standard voxel-wise tests cannot detect distinct neural selectivities that coexist within 
voxels. To overcome these limitations, we used data-driven voxel decomposition methods to identify the 
main components underlying fMRI responses to thousands of complex photographic images (Allen et al 
2021). Our hypothesis-neutral analysis rediscovered components selective for faces, places, bodies, and 
words, validating our method and showing that these selectivities are dominant features of the ventral visual 
pathway. The analysis also revealed an unexpected component with a distinct anatomical distribution that 
responded highly selectively to images of food. Alternative accounts based on low to mid-level visual 
features like color, shape or texture failed to account for the food selectivity of this component. High-
throughput testing and control experiments with matched stimuli on a highly accurate computational model 
of this component confirm its selectivity for food. We registered our methods and hypotheses before 
replicating them on held-out participants and in a novel dataset. These findings demonstrate the power of 
data-driven methods, and show that the dominant neural responses of the ventral visual pathway include 
not only selectivities for faces, scenes, bodies, and words, but also the visually heterogeneous category of 
food, thus constraining accounts of when and why functional specialization arises in the cortex. 
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Introduction  
   
           The last few decades of research in human cognitive neuroscience have revealed the functional 
organization of the cortex in rich detail. This organization features a set of regions that are selectively 
engaged in single mental processes, from perceiving faces or scenes or music, to understanding the 
meaning of a sentence, to inferring the content of another person's thoughts. Why do our brains have these 
particular specializations, and apparently not others? To answer this question, we need a more complete 
inventory of human cortical specializations, one that reflects not just the idiosyncratic hypotheses scientists 
have already thought to test, but the actual functional organization of the cortex itself. Here, we tackle this 
question for the ventral visual pathway, by searching in a hypothesis-neutral fashion for the dominant neural 
response profiles in this region in a large recently-released public dataset of fMRI responses to thousands 
of natural images in each of 8 participants1.  
         Extensive evidence2–7 from neurological patients, fMRI, and intracranial recording and stimulation 
has demonstrated that the ventral visual pathway contains distinct regions causally engaged in the 
perception of faces, scenes, bodies, and words. But are these categories the main ones, or might others 
exist that have not yet been found? The current evidence does not answer this question for several reasons.  
First, prior research on the ventral pathway has tested a relatively small number of stimulus categories, 
which may not have subtended the relevant part of stimulus space preferred by some neural populations. 
Second, this work has proceeded in a largely hypothesis-driven fashion, and so may have missed neural 
populations with response profiles scientists have not thought to test. Third, prior research based on 
voxelwise contrasts is not well suited for discovering neural populations whose high selectivity is masked 
because the fMRI signal averages their responses with the responses of other neural populations 
cohabiting the same voxels8.  

Here, we overcome these three limitations by analyzing fMRI responses to the very broad and large 
set of natural stimuli in the Natural Scenes Dataset (NSD1) with a data-driven analysis method that can de-
mix the underlying responses from neural populations that are spatially intermingled within individual fMRI 
voxels. Specifically, we factorized the matrix of response magnitudes of each voxel to each stimulus into a 
set of components, which we hypothesize correspond to distinct neural populations. Each component is 
described by a response profile across stimuli, and a weight matrix indicating how strongly that component 
contributes to each voxel’s response (Figure 1). This analysis method enables us to discover the main 
components that explain neural responses in the ventral visual pathway, potentially including new 
selectivities not described previously.  

 
 
Results 
 

We applied hypothesis-neutral Bayesian nonnegative matrix factorization (NMF)9 methods to the 
NSD1 to identify the dominant neural populations in the human ventral visual pathway. Importantly, the 
algorithm does not have any information about the images or the spatial location of voxels. Instead, it infers 
the response profiles and anatomical distribution of distinctive neural populations solely from the unlabeled 
voxel response matrix. This method is thus a powerful way to both validate known selectivities and discover 
new ones. Our approach is similar to that of Norman-Haignere et al (2015)8, except that we use NMF 
instead of Independent Components Analysis (See Methods for rationale). In Phase I of this project, we 
analyzed data for four of the eight available NSD participants and presented this work at the Vision Sciences 
Society meeting10. We then pre-registered our analyses on the Open Science Framework 
(https://osf.io/n47qf) and confirmed our hypotheses on the four held-out NSD participants (Phase 2). We 
report results for both groups analyzed separately as well as for each individual participant in Supplemental 
Information. 

Our general procedure is illustrated in Figure 1. We first applied the NMF algorithm on each 
subject’s data separately (Figure 1A, B) to identify subject-specific components (Phase 1 subjects viewed 
10,000 images, Phase 2 subjects viewed 5445 images). Bayesian Information Criterion (BIC) applied to 
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Bayesian NMF yielded ~20 components in each subject (Figure 1C and S1). Next, we used overlapping 
images viewed by all subjects (in Phase 1 and 2 separately) to identify and rank the consistent components 
across subjects using a pairwise inter-subject consistency metric. This method identified 5 consistent 
components across subjects with median pairwise consistency > 0.5. The 5 components derived from 
Phase 1 participants collectively accounted for ~50% of the replicable variance in the reliable voxels in 
Phase 2 subjects (reliability threshold > 0.3, 46% ventral stream voxels), and were highly correlated with 
the top five components identified independently in Phase 2 subjects (Figure S2), confirming reproducibility 
of this 5-component structure.  
 
 

 
Figure 1: Outline of the data-driven component modeling approach.  
A depicts the large swath of ventral visual cortex included in our analyses for one example subject.  
B illustrates the data-driven voxel decomposition approach. Bayesian non-negative matrix factorization was 
used to decompose the observed ventral visual stream data matrix of each participant as a product of two 
lower-dimensional matrices: (i) a response profile matrix that characterizes the response of each 
component to all 5,445-10,000 stimuli viewed by each participant and (ii) a component by voxel weight 
matrix that expresses the contribution of each component to each of the ~6,500-9,600 voxels per 
participant. C shows the Bayesian Information Criterion (BIC) as we vary the number of components in one 
participant. The optimal number of components was chosen as the minimum BIC. Other subjects had a 
similar trend, and their data is shown in Figure S1. Components present in all subjects were isolated by 
measuring pairwise inter-subject correlations of component response profiles, as illustrated in D for Phase 
I participants (right). Gray shaded region shows the proportion of stimuli viewed by all 4 participants in each 
phase (515 images in Phase 1 and 1,000 in Phase 2). The top 5 components based on this metric all had 
mean and median pairwise inter-subject consistency > 0.5 (D, right). 
 
1. Characterizing the Function of the Top Components 
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Figure 2: Response profile and preferred stimuli for the top five components 
A. Response profile for each of the top 5 components (with highest inter-subject consistency) across the 
515 images seen by all participants. These components were derived separately within each of the 8 
participants individually (see Figure S3 for corresponding data from each participant), but are shown here 
averaged across all 8 participants.  Each bar is an image, and the colors indicate the behavioral salience 
rating for the preferred category (e.g., the salience of faces for Component 2).  
B. Top 4 images producing the strongest response in each component in each Phase 1 (left) and Phase 2 
(right) participant. See Supplementary Movie 1 for the top 25 images for each component in each subject. 
 
We first qualitatively examined the response profiles of the top 5 components. For each component, we 
sorted stimuli by their response magnitude in this component and inspected the top 25 images of each 
component for each participant. These images (top 4 shown in Figure 2 and all the top 25 shown for each 
participant in Supplementary Movie 1) revealed a distinctive and familiar selectivity pattern for four of the 
top five components (Figure 2). The images that produced the highest responses in Components 1, 2, 4, 
and 5 were, respectively, scenes, faces, text (including words and symbol strings), and bodies (either full 
bodies or body parts). To validate this apparent preferred category of each component, we collected ratings 
for each of these preferred categories in a behavioral experiment where participants were asked to rate the 
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salience of each of these categories in each of the images viewed by all NSD participants (see Methods). 
Salience ratings for the scenes, faces, text, and bodies were strongly correlated with the response of 
Components 1, 2, 4, and 5 (respectively) across images. These findings are consistent with a large prior 
literature on selectivities for these categories in the ventral visual pathway11 (and their anatomical location, 
discussed below), so we considered these results as positive controls on our method, and did not 
interrogate these response profiles further. 
 
2. A Novel Component Selectively Responsive to Food 
 
Component 3, however, was unexpected. This component, the third most consistent component across 
participants in the separate analyses of both Phase 1 and Phase 2 participants, appeared to respond in a 
highly selective fashion to images of food. This food selectivity is evident both in the correlation of the 
component’s response profile with rated salience of food (Fig 2A) and in the images that produced the 
highest response in individual subjects (Fig. 2B).  Although most of the top-ranked images are of prepared 
food (e.g., a slice of pizza), unprepared food (e.g., a broccoli, carrot, banana, etc.) also produced strong 
responses in this component (see Supplementary Movie 1). But inspection of those top images also 
suggests several potential alternative accounts for this component’s responses. For example, the top 
images for this component also seem to share certain low-level and mid-level visual features, including 
warmer and more saturated colors, higher curvature, and a complex spatial structure with rich texture. To 
address these potential alternative accounts of food selectivity, we first estimated several image-
computable metrics of color, curvature, and texture (see Methods).  The component response was more 
strongly correlated to the behavioral salience ratings for food than any of these other visual feature metrics 
(Figure 3A). However, some of the visual properties were also significantly correlated with the component 
response, particularly the object-color probability metric12 (the probability of a hue being a natural object, 
which reflects the warm-cool color continuum). 
 
But how much unique variance do each of these variables explain of the component’s responses? Figure 
3A (right) demonstrates that the rated salience of food remains highly correlated with the response profile 
of Component 3 (R = 0.58, P=6e-47), even after partialling out all the visual features that appear to be most 
confounded with food. Some of these visual properties on their own account for a significant though much 
smaller part (e.g. for object-color probability, R=0.16, p=8e-6) of the Component’s response once food 
salience is partialed out, although the unique variance explained by food salience ratings is significantly 
greater than the variance explained by any of these visual properties with the effect of food salience 
removed (all ps<0.00001, Figure S5). Figure 3B further shows that the response of Component 3 was not 
significantly correlated with behavioral ratings of either valence or arousal provided for a subset of the 
stimuli in the original NSD study. Further, the food selectivity of this component persists strikingly across 
the large set of 5,445-10,000 images viewed by each participant (Figure S4).   
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Figure 3. Alternate accounts do not explain the food selectivity of Component 3 
A. Left: The correlation across stimuli between the magnitude of the Component 3 response averaged 
across the 8 participants and various image-computable feature dimensions and rated food salience (see 
Methods). Right: Same as A, but now with food salience partialled out for the image-computable measures, 
and with all other measures partialled out for the food salience measure.  
B. The correlation between the magnitude of the Component 3 response and valence and arousal ratings 
across the subset of 100 stimuli for which these ratings were available in the original NSD study (Allen et 
al 2021).  
C. Responses of Component 3 in each participant to food and nonfood stimuli selected in pairs of images 
(one food and one nonfood) that produce similar activations in the last convolutional layer (‘conv5’) of an 
AlexNet architecture pre-trained on ImageNet.  
D. Response of Component 3 in each participant to sets of stimuli chosen such that the food images were 
very low, and the nonfood images were very high on the object-color probability measure (Rosenthal et al., 
201812). See also Figure S5. 

  
These results indicate that the visual features most obviously related to Component 3 cannot alone explain 
the response of Component 3. However, it remains possible that this component selectively responds to a 
conjunction of multiple lower-level features (like reddish, round objects).  We therefore performed three 
further analyses. First, we identified pairs of images (one food and one nonfood) from the 5,445-10,000 
image set viewed by each participant that produce similar activations in the last convolutional layer (‘conv5’) 
of a pretrained AlexNet (see Methods). These food and nonfood pairs are visually very similar, with 
matching features in similar spatial locations (see Figure 3C). Yet food images still produced a significantly 
higher response than their matched nonfood images in each participant (paired t-tests all Ps<0.01). Second, 
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we identified food images that ranked low on an object-color probability measure (Rosenthal et al. 201812, 
i.e. ‘cool’ colored food) and nonfood images that ranked high on the same scale (i.e. ’warm’ nonfood 
images). The component response remained significantly higher to the food images than the nonfood 
images in every subject (all Ps<0.001, Figure 3D), suggesting that the component’s food selectivity 
overrides any sensitivity to object-color probability (see also Figure S5). Third, we selected subsets of food 
and nonfood stimuli that maximally span the embedding space of different layers of an ImageNet-trained 
AlexNet model13, such that the sampled images within each set are substantially dissimilar among 
themselves, and the selected subsets are diverse on perceptually relevant image properties (Figure S6; 
described further in the Methods). As a result, a linear classifier trained to discriminate between these food 
and nonfood images using the CNN features of the corresponding layer performs at chance (never 
exceeding 53%). And yet the food images still produce a significantly higher response than the nonfood 
images in Component 3, even across these highly heterogeneous food and nonfood subsets (Figure S6), 
showing that the food preference holds broadly and is not limited to specific kinds of food images.  
 
Our analyses thus far focused only on the stimuli included in the NSD. Although the NSD includes a large 
number of images (N = 56,720 across 8 subjects with full repetitions each), they span a small subset of the 
space of all possible images. To address this limitation, we built a deep neural network (DNN)-based 
encoding model to predict the response of Component 3 (see Ratan Murty et al., 202114). Our CLIP-
ResNet5015 based encoding model was highly accurate at predicting the response to images not 
encountered in the model training procedure (correlation between the cross-validated predicted and 
observed responses = 0.83, P < 0.00001, Figure 4A and Figure S7). Because this DNN-based model is 
image-computable and highly accurate, it enables us to test the predicted response of the Component 3 on 
images beyond those included in the NSD. Would the food selectivity of the component hold even when 
tested on a much larger battery of stimuli? To find out, we obtained predictions for the Component 3 
response to all 1.2 million stimuli from the ImageNet dataset16. All the top 1000 stimuli predicted to activate 
this component (from ~1.2 million possible images) contained food (see Figure 4B, top for the top 50 images 
and Supplemental Figure S8 for the top 200 images). This high-throughput screening procedure on DNNs 
validates the observed food selectivity of Component 3. 
 
Downing and Kanwisher (1999)17 had previously tested and rejected the food selectivity hypothesis when 
they failed to find higher responses to food textures compared to visually similar nonfood textures.  When 
these stimuli were tested on the DNN-based model of the Component 3, it predicted a significantly higher 
response to food than the nonfood matched textures (Figure 4C (top left), paired t-test t(14) = 5.21, P = 
1.53 x 10-5). Next, we handpicked a new set of food and nonfood images that look very similar (examples 
shown in Figure 4C, right). Here too, our computational model predicted a significantly higher response to 
food than matching nonfood images (Figure 4C (top right), paired t-test t(11) = 3.34, P = 0.003). Would food 
selectivity hold even when tested on grayscale images? We tested this in 3 different ways. First, we 
obtained predictions for the entire 1.2 million ImageNet stimuli again, but this time on greyscale versions of 
the same images. The correlation between the predicted response to the color versus grayscale version of 
each image was very high (N = 1,281,167 images, Pearson R = 0.98, P< 0.00001). Critically, the top 1000 
images predicted to have the highest response even from the grayscale set were all food (see Figure 4B, 
bottom for the top 50 images). Second, our computational model predicted a significantly higher response 
to food than the nonfood matched textures from the black and white versions of the Downing image pairs 
(Figure 4C, bottom left, paired t-test t(14) = 2.93 P = 0.007) . Third, our computational model also predicted 
a significantly higher response to black-and-white food than nonfood in our handpicked matched images 
(Figure 4C, bottom right, paired t-test t(11) = 2.44, P = 0.023) . Together, these computational modeling 
results complement our previous analyses by confirming the observed food selectivity of Component 3 
across a larger number of images, for stringent control images, and by showing that the selectivity of this 
component for food over nonfood persists even for grayscale images.  
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Figure 4. A DNN-based encoding model of Component 3 response enables tests on images beyond 
those in the NSD  
A. We used a ResNet50-CLIP encoder to predict the Component 3 response. The x-axis shows the 
predicted component response (based on the model trained on Phase 2 subjects) and the y-axis shows the 
observed Component 3 response (from Phase 1 subjects). Each dot is an image (total N = 515 shared 
images across all 8 subjects) that the model did not encounter in the model fitting procedure (cross-
validated on both images and subjects)  
B. Top 50 stimuli predicted by the encoding model to have the highest response across all 1.2M colored 
(top) and grayscale (bottom) images from the ImageNet dataset. All images are of food. 
C. Model prediction on colored (top) and grayscale (bottom) versions of the Downing pairs and our Matched 
pairs of food and nonfood images. The bars indicate the mean response, and each connected line indicates 
a particular matched food-nonfood pair. 
 
3. The Observed Components are Not Artifacts of the Stimulus Set Composition 
 
Might the observed components reflect the composition of the stimulus set, rather than a property of the 
brain itself? Of course, experiments cannot reveal selectivities for stimulus classes that are not included in 
the stimulus set, and there is likely to be some effect of the relative proportion of different stimulus types in 
the set.  However, it seems unlikely that the category selectivities found (for faces, places, bodies, text, and 
food) reflect an over representation of these categories in the stimulus set compared to human experience, 
given that most humans spend at least an hour per day engaged in activities where these visual stimuli 
feature prominently18. In addition, several further analyses show that the food-selectivity of Component 3 is 
not an artifact of the composition of the stimuli. First, the food-selective component emerges separately in 
each of the eight participants despite the fact that they saw mostly different stimuli, and it can also be 
identified in the completely separate BOLD5000 dataset19,20 (Figure 5). And conversely, no food-selective 
component is found when the same analyses are applied to responses to the same images in retinotopic 
cortex, dorsal and lateral visual streams or in early layers of a CNN. Thus, the use of the NSD stimulus set 
on its own is neither necessary nor sufficient to find food selectivity.  
 
Finally, to test whether any stimulus category that represents a sizable proportion of the stimuli will result 
in a component selectively responsive to that category, we performed one further analysis (Figure 5D,E). 
First, we selected a subset of the stimuli that contained equal numbers of exemplars in each of 9 categories 
including faces (as a positive control), food, and 7 other perceptually homogeneous categories (airplanes, 
clocks, horses, elephants, giraffes, trucks, motorcycles). Repeating the NMF analysis on these data 
revealed one component selectively responsive to faces and another to food, and no components as highly 
selectively responsive to any of the other categories, even though the food images were drawn to be one 
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of the least homogenous in this set. Thus, ample representation of a category, even a perceptually 
homogeneous category like airplanes or clocks, in the stimulus set is not sufficient for a component 
selective to that category to emerge, and cannot account for the food-selectivity of Component 3. 
 

 
 
Figure 5: Observed food component is not an artifact of the NSD stimulus composition.  
We first tested the dependence of stimulus composition, if any, on the completely independent 
BOLD5000.v2 fMRI dataset. A. Response profile for the food component identified in the BOLD5000 data 
(from images shared with NSD) on images unique to BOLD5000.v2. The x-axis shows the stimuli, and the 
y-axis shows the inferred response magnitude for the Component 3 for images unique to BOLD5000. The 
bars in red are images that were labeled as food and the bars in gray are images labeled nonfood in the 
(imperfect) annotations provided with MS-COCO. B. Top 10 images for each of the four subjects in the 
BOLD5000v2 dataset. C. Boxplots showing the food selectivity distribution across BOLD5000 subjects (y-
axis) for the components inferred from different cortical regions (x-axis). Food selectivity was observed only 
in ventral visual cortex, not in other regions. D. Next, we performed the NMF decomposition on a curated 
subset of the NSD with 9 stimulus categories, each with an equal number of images within each subject 
(top) with high within-category visual similarity for the nonfood categories (bottom). E. NMF decomposition 
on this curated stimulus set revealed components with strong selectivity only for faces (positive control) and 
food, not for any other category. The y-axis shows the highest selectivity obtained for each of the 9 
categories (amongst all components) based on category labels from MS-COCO using two different metrics 
(left, correlation with a binary category label vector indicating whether the category was present/absent in 
the image; and right, t-value comparing the mean response to stimuli from that category versus all other 
stimuli). See Methods for details. 
 
4. Demixing reveals stronger selectivity for components than voxels 
 
Why was food selectivity not observed before, particularly in previous hypothesis-driven investigations17,21? 
We speculated that the spatial overlap of food-selective neural populations with other selectivities dilutes 
food selectivity in individual voxels which our demixing procedure is able to uncover. We tested this idea 
by measuring the selectivity of the demixed Component 3 and of the average response across the top 1% 
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voxels with the highest weight on Component 3. Food selectivity was significantly higher for the demixed 
Component 3 (mean R across subjects=0.53, P<0.00001) than in the top voxels (mean R=0.41, P<0.00001) 
in each participant (t(8)=10.7, p<0.0001, Figure 6). For comparison, face selectivity of Component 2 was 
as strong in the top voxels as within the inferred component response (t(8)=0.85, p=0.42, Figure 6). These 
results indicate that the neural populations selective for food are likely more mixed with other neural 
populations within voxels than the face-selective neural populations, explaining why strong food selectivity 
has not been found previously with standard analysis methods. 
 

 

 
Figure 6: Stronger Selectivity for Components than Average Response across Voxels. Left: Average 
response profile of the top 1% voxels with the highest weights on Component 3 (top) and the response 
profile of Component 3 (bottom) for one subject. Food-selectivity of the respective response profiles is 
reported at the top of each subplot. Right: Face selectivity of the mean responses across top 1% voxels 
with highest weights on Component 2 (the face-selective component) and the corresponding selectivity of 
Component 2. Rightmost plot shows the food selectivity of the mean response across top 1% voxels with 
highest weights on Component 3 (the food-selective component) and the corresponding selectivity of 
Component 3. Each dot in the swarm plot is an individual subject. Here, selectivity is computed as the 
correlation between responses and the salience ratings for the preferred category over the 515 stimuli 
shared across all 8 participants.  
 
5. Anatomical Distribution of Components 
 
We next characterized the anatomical distribution of each component by projecting its voxel weights back 
into anatomical coordinates within each participant individually. For known selectivities, the component 
anatomies exhibited clear agreement with the corresponding regions identified with an independent 
functional localizer:  the face component produced highest voxel weights in the fusiform face area (FFA) 
and other face-selective sites like aTL-faces (anterior temporal lobe faces) and mTL-faces (mid temporal 
lobe faces), the word component was concentrated within the visual word form area (VWFA) and the bodies 
component in parts of FFA and the extrastriate body area (EBA), as shown qualitatively in Figure 7 and 
Supplementary Movie 2. Quantitatively, the voxel weight maps demonstrated high correlations with the t-
statistics pertaining to the relevant domain from the functional localizer experiment (Figure S9).    
 
The weight maps for the novel food-selective component appeared patchy across the cortex, with 
considerable variability across participants. To quantify this impression (Figure S10), and compare it to 
other components, we first registered each participant’s voxel weight map to a common MNI space, and 
then measured the correlation of the weight map for each participant with the average weight map across 
the 7 other participants (averaged across 8 folds). This analysis showed the highest inter-subject correlation 
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of the weight maps for the Component 1 (scenes), followed by Components 2 and 4 (faces and text, 
respectively) and then Components 3 (food) and 5 (bodies). We next quantified the spatial distribution of 
the voxel weights for each component using a sparseness measure based on the relationship between L1 
and L2 norms22. Component 3 was less sparse than the others, except for Component 5. Kurtosis and 
skewness of the voxel weight distributions of each component show that all components have voxel weights 
that are positively skewed and kurtotic, relative to a Gaussian, indicating a peakier, heavy-tailed distribution 
skewed towards higher values. A measure of lateralization of the weight maps showed that the face 
component was right lateralized, and the text component left lateralized, (as expected). The food 
component trended toward left lateralization, although the lateralization effect was found to be non-
significant (one-sample one-tailed t-test: t(8)=1.76, p=0.06). Taken together, these analyses indicate that 
the inter-subject variability, the sparseness, and degree of the lateralization of the food component is within 
the range of the other components, but at the lower end of that range. 
 
 

 
Figure 7: Anatomical locations of highest weights for each component. Top 5% voxels with the highest 
weights on each component are visualized on cortical flatmaps for one subject. Established regions of 
interest, defined from the functional localizer scans by computing the contrast of preferred versus all other 
stimuli, are shown in white outlines (t-value > 2.5). Lower right: Voxel weight maps of face, food and text-
selective components are visualized together on the RGB colormap to show component overlap for the 
same subject. Similar maps for the remaining subjects are shown in Supplementary Movie 2.   
 
Given the small but significant correlation across stimuli of the Component 3 response with various 
measures of color information, even after food salience was factored out, we next asked how similar the 
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anatomical distribution of this component was to the distribution of color responsiveness across the 
cortex23,24. Specifically, we measured the correlation between the saturation of nonfood stimuli with voxel 
responses in the VVC to those stimuli, and then compared the resulting correlation map with the voxel 
weights for Component 3, separately within each participant. We find (Figure S11) that the saturation-
responsiveness map is indeed correlated with the Component 3 weight map in every subject (mean ~0.4), 
and more so than for any other component (p < 0.01 for all 4 comparisons using a paired t-test). Thus, the 
anatomical distribution of Component 3 and color responses are correlated with each other across the 
cortex. 
  
Discussion 
 
We applied data-driven analyses to a very large data set of fMRI responses to thousands of natural images 
and found that the dominant neural response profiles in the ventral visual pathway include selective 
responses to faces, scenes, bodies, text, and food. Although the first four of these selective responses have 
been reported in many previous studies, what is novel in the current study is their emergence unbidden 
from a hypothesis-neutral analysis of a dataset that was not designed to test for or reveal them. The fact 
that these four previously reported selectivites emerged separately within each of the 8 individual 
participants in this study (each of whom saw mostly non overlapping images), shows that they reflect not 
just the idiosyncratic whims of the scientists who chose to test these hypotheses in the past, but the actual 
dominant features of the neural response in the ventral visual pathway. But our most novel result is the 
discovery of a new neural response that has not been reported previously for the ventral visual pathway 
that is highly selective to images of food. Taken together, these results give a more comprehensive and 
data-driven characterization of the dominant neural response profiles of the ventral visual pathway, describe 
a new neural selectivity for visual food images, and provide new clues into why we have the neural 
selectivities we do. 
 
Because our finding of neural selectivity for food was unexpected, we embarked on an extensive series of 
control experiments to test alternatives to this hypothesis. We found that although the magnitude of 
response of Component 3 was correlated with the presence of visual features such as color saturation, 
warm colors, curved shapes, and texture properties, the only factor that remained highly correlated with the 
food component response when other factors were partialled out was the salience of food in the image 
(Figure 3A). Second, when we pitted the presence of warm colors against food salience as accounts of the 
response of this component, we found that food trumped color: cool-colored food produced a higher 
response in this component than warm-colored nonfood. Third, the food selectivity of this component 
persisted even for computationally-matched stimulus pairs (one food, one nonfood) that elicit similar 
activation patterns in deep layers of a pre-trained CNN. Fourth, we built a CNN-based model for Component 
314, which accurately predicted responses of this component to held-out stimuli, and we used this model to 
turbocharge our search for counterevidence of the food selectivity of this component. We ran all 1.2 million 
images from ImageNet through this model and looked at the top 1,000 predicted to produce the highest 
response. They were all food. Fifth, we constructed pairs of visually similar food and nonfood images by 
hand (e.g., a yellow crescent moon and a banana), and ran these images through our predictive model of 
Component 3. Again, predicted responses were higher to the food images than to their paired visually 
similar nonfood images. Sixth, an analysis of responses to a subset of nine stimulus categories, including 
an equal number of stimuli in each category, and importantly, only including food images that are maximally 
distinct from each other, revealed components selectively responsive to faces and food, but no components 
responsive to the other 7 categories, showing that the observed selectivity for food is not an artifact of its 
over-representation in the stimulus set or of the homogeneity of specific kinds of food in the dataset. Taken 
together, these analyses argue that Component 3 is selectively responsive not to any particular visual 
features, but to food per se. We have therefore labeled this inferred neural population the Ventral Food 
Component. Confirming this finding, two preprints based on the same NSD fMRI data finding voxelwise 
selectivity for food and their overlap with color-biased regions appeared recently25,26. Our study using 
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hypothesis-neutral methods further shows that food selectivity is a dominant feature of ventral visual cortex, 
that food selectivity is strong when revealed by demixing methods, and that food selectivity overrides low 
and mid-level features, including color. 
 
While a distinctive response to visual images of food has been described in taste-sensitive regions of the 
insular cortex27, a robust and highly food-selective response in the visual cortex has never been observed 
before. Why has the food selective component not been reported previously, despite past efforts to look for 
it21,28,29? The likely account is that prior studies primarily analyzed raw voxel responses, which do not reveal 
strong selectivity for food, because the food component is spatially intermingled with other neural 
populations within voxels. In contrast, our voxel decomposition method demixes these neural responses, 
revealing the strong selectivity of the food component alone. Indeed, when we obtained the visually 
matched pairs of food and nonfood textures that had produced similar responses in Downing and 
Kanwisher’s (1999) study17, leading them to argue against food selectivity, we found that our predictive 
model for Component 3 produced a  higher response to food than nonfood. A similar pattern was observed 
previously with our voxel decomposition analysis of responses in auditory cortex8, where we found only 
weak selectivity for music in raw voxels, but strong selectivity for music in the inferred music component, 
which was later validated by clear music selectivity in the responses of individual intracranial electrodes30. 
 
A notable property of Component 3 is that even though its selectivity for food cannot be explained by 
responsiveness to color properties alone, the two are clearly linked. The response profile of Component 3 
has a much smaller but still significant correlation with color metrics even after food selectivity has been 
partialled out, and its anatomical distribution across the cortex is correlated with the anatomical distribution 
of responsiveness to color information (see Figure S11).  Why might the apparently same neural population 
be responsive to both food and color information, even when each is unconfounded from the other? Many 
have noted the importance of color for the detection, evaluation, and choice of food31,32.  
Neuropsychological studies of patients with cortical color blindness (achromatopsia) have noted particular 
difficulties in discriminating food. Pallis (1955)33 quotes an achromatopsic patient saying, “I have difficulty 
in recognizing certain kinds of food on my plate. I can tell peas and bananas by their size and shape. An 
omelette, however, looks like a piece of meat.” Further, behavioral studies have shown that adults, 
preschool children34, and monkeys35 use color more than shape when generalizing across food categories, 
but the opposite when generalizing across nonfood categories. Indeed, Santos et al. (2001)35 argued that 
the use of color over shape only in food learning suggests the existence of a domain-specific mechanism 
for visual food choice.  Studies in typical adults also reinforce the deep link between color and food 
perception, finding for example that images of food (but not  nonfood) are rated as having higher arousal if 
they contain red, and lower arousal if they contain green31. The authors of that study speculate that red 
color was indicative of the caloric and nutritional value of food for our evolutionary ancestors but is much 
less so today (in prepared foods and where food dyes are used), and hence reveals the evolutionary basis 
of the connection between color in general and red in particular in food preference. Of course, food 
preferences are famously culture-specific and learned36, and infants’ food choice is primarily learned from 
other people. But color may still play a role in domain-specific learning about food, and in bootstrapping the 
development of a cortical circuit for visual food discrimination. One hypothesis is that the color bias in food 
choice may arise relatively early in development (though not apparently in infancy34), with the cortical locus 
of the Ventral Food Component accordingly arising in regions already biased for warm colors12, but that the 
particular visual food stimuli that activate this system are most likely learned through individual experience 
(like orthographies in the VWFA). 
 
What does food selectivity tell us about which categories get their own specialized neural machinery in the 
brain?  Because food has been of fundamental importance to humans both throughout their evolution, and 
in modern daily life36, and because food choice often starts with vision, a specialization for food in the visual 
cortex is consistent with both evolutionary and experiential origins of cortical specializations. On the other 
hand, food seems more visually heterogeneous than other categories with selective responses in the 
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ventral pathway, an impression confirmed by visual similarity measures based on feature responses in 
pretrained AlexNet (Figure S12). Nonetheless, food is linked to some visual features, notably color, and 
indeed we find that Component 3 does show a small but significant color preference even after food salience 
is partialled out. This finding is reminiscent of other feature biases in category-selective cortex (e.g 
curvature biases in face selective cortex37), and invites the same chicken-and-egg question: Do category 
selectivities colonize cortical regions with pre-existing relevant feature biases37, or are these visual feature 
preferences simply by-products of category selectivity? Finally, the finding of food selectivity resolves a 
previous conflict with the hypothesis that category selectivity in visual cortex is determined by the 
computational requirements of the task38. We had proposed this hypothesis in a recent study38, based on 
our finding that convolutional neural networks trained on both face discrimination and object classification 
spontaneously segregated themselves into separate systems for face and object recognition. But that study 
also found spontaneous segregation for food in a network trained on both food and object classification, a 
finding that seemed then not to fit the brain, but that now does. Thus, the novel selectivity for food reinforces 
the computational hypothesis that task constraints play a role in determining which categories are 
processed with their own specialized neural machinery. 
 
What computational advantages might a selective response to food confer? Any form of selectivity in a 
neural population inherently implies a sparse code, as it suggests that the neural population responds 
strongly to only a specific subset of all possible stimuli. Such sparse neural codes have long been argued 
to make information explicit and easier to read out39–41, and to support faster learning42–44. Reducing 
metabolic costs would also favor sparse codes for stimuli that are most frequently encountered in our 
environment. Of course, we cannot have specialized neural codes for all possible classes of stimuli, so it 
would be sensible to allocate such specialized systems to a relatively small number of the most important 
object classes - like food.   

 
A final note is that our analysis did not find evidence for selective neural responses to several visual features 
and categories for which ventral visual pathway specializations have been proposed in the past, including 
animals45 (which are well represented in the stimulus set) and stubby-shaped and spikey-shaped objects46. 
We also did not see evidence for previously-proposed selectivities for small inanimate objects45,47 or 
tools48,49, although these selectivities may be located more on the lateral than ventral surface of the brain, 
outside the search window used here. Of course, there are many reasons why selectivities that exist in the 
brain might not be detected using fMRI, but the failure of previous findings from fMRI to emerge from the 
current analysis raises questions about whether those selectivities might already be better accounted for 
by the components found here50. 
 
In sum, our hypothesis-neutral investigation on the ventral visual pathway reveals neural populations 
selective for faces, places, bodies, text, and food. The fact that these selectivities emerge from a 
hypothesis-neutral analysis, across multiple largely non-overlapping sets of images, indicates that they 
reflect not just the capricious interests of researchers in the past, but rather constitute dominant features of 
the functional organization of the ventral visual pathway. Further, the novel selectivity for food reported here 
raises fascinating questions about its developmental origins, connectivity, and behavioral consequences. 
Another important open question is whether this neural population represents the mere presence of food, 
or its familiarity, appeal, or caloric or nutritive content. This new finding further shows that selective neural 
responses in the ventral visual pathway arise not only for perceptually homogeneous categories that may 
reflect confluences of overlapping visual feature maps51, but also categories that are visually quite 
heterogeneous, especially if exemplars of that category require specialized computations for their 
discrimination38 and engage our frequent and abiding interest. 
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Methods 
  
Natural Scenes Dataset 

A detailed description of the Natural Scenes Dataset (NSD; http://naturalscenesdataset.org) is provided 
elsewhere (Allen et al., Nature Neuroscience, 20211). Briefly, the NSD contains measurements of fMRI 
responses from 8 participants who each viewed 9,000–10,000 distinct color natural scenes (22,000–30,000 
trials) over the course of 30–40 scan sessions. Scanning was conducted at 7T using whole-brain gradient-
echo EPI at 1.8-mm resolution and 1.6-s repetition time. Images were taken from the Microsoft Common 
Objects in Context (COCO) database52, square cropped, and presented at a size of 8.4° x 8.4°. A special 
set of 1,000 images were shared across half the subjects with full repetitions (participant NSD IDs: 1,2,5,7) 
and a subset of these (515 images) were shared across all 8 participants. The remaining images were 
mutually exclusive across subjects. Images were presented for 3 s with 1-s gaps in between images. 
Subjects fixated centrally and performed a long-term continuous recognition task on the images. The fMRI 
data were pre-processed by performing one temporal interpolation (to correct for slice time differences) and 
one spatial interpolation (to correct for head motion). A general linear model was then used to estimate 
single-trial beta weights. Cortical surface reconstructions were generated using FreeSurfer, and both 
volume- and surface-based versions of the beta weights were created. In this paper, we used the 1.8-mm 
volume ‘nativesurface’ preparation of the NSD data and version 3 of the NSD single-trial betas 
(betas_fithrf_GLMdenoise_RR). 

Additional Data preprocessing 
We analyzed responses only to images that were seen three times in the participant in question. We 
averaged single-trial betas across the 3 repetitions after z-scoring every voxel separately within each scan 
session to create our voxel responses. This within-scan normalization was performed to account for 
differences in mean percent signal change (PSC) across scan sessions, which may arise due to incidental 
variability in global BOLD signals.  
We extracted high-level ventral visual stream voxels by using the streams atlas provided in the native space 
of each subject with NSD. This atlas is largely based on fsaverage folding but also accounts for the noise 
ceiling to ensure that the regions cover reliable voxels. To make the data matrix suitable for NMF so that it 
contains all positive entries, we perform a baseline shift of voxel responses by subtracting the minimum z-
scored response of each voxel (across all stimuli) from its responses to all stimuli.   
 
A Bayesian Matrix Factorization approach for the analysis of large-scale fMRI recordings  
 
We model the data matrix (voxels x images) as the product of two lower rank matrices. The first matrix 
(called the response profile matrix henceforth) encodes the response profiles of each component (`neural 
populations') to all images and the second matrix (called the component by voxel weight matrix) specifies 
the relative contribution of all voxels to each component. We chose NMF for our matrix factorization 
algorithm for several reasons. First, PCA/ICA based approaches do not yield “signed” components, i.e., 
negative and positive weights are treated equivalently. Initial pilot analyses of our data using the PCA/ICA 
approach of Norman-Haignere et al. (2015)8 revealed single components with both positive and negative 
responses and voxel weights which couldn’t be oriented (or flipped) such that the response and voxel 
weights predominantly have the same sign. Negative response magnitudes are generally not consistent 
with neural response in the ventral visual pathway, which usually increase after stimulus presentation, and 
negative voxel weights violate our modeling assumptions about the voxel weight matrix representing the 
relative anatomical proportions of each component in every voxel. Further, ICA requires the statistical 
independence of unmixed components and can fail in practice when no linear demixing matrix is found, as 
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can happen when there is significant spatial overlap between distinct neural populations and independence 
is not achievable. NMF is better equipped to handle spatially overlapping signals in such cases, and has 
been more effective in other neuroscience domains that rely on demixing of spatially overlapping 
components53. Importantly, NMF makes only minimal and biologically meaningful assumptions about the 
components by enforcing the basis functions to be nonnegative. These considerations led us to favor an 
NMF-based approach over other decomposition techniques. Since choosing the number of components is 
an important problem in NMF, we adopted a Bayesian NMF approach9 since it affords a principled way of 
selecting the number of components based on likelihood (e.g., Bayesian Information criterion).  For a 
comparison of the food selectivity of the NMF-derived food component with the most food-selective PCA 
component and cluster (given by k-means clustering), see Figure M1. 
 
Mathematically, the Bayesian NMF algorithm models the data matrix D as,  

𝑫 = 𝑹𝑽	 + 	𝑬, 
  
where D is the images x voxels data matrix for every participant, R is the image x components (N x C) 
response profile matrix, V is the components x voxels (C x V) voxel weight matrix and E is an images x 
voxels (N x V) residual matrix. In the Bayesian approach to NMF, all parameters for (R, V, E) are stated in 
terms of their prior densities. For efficient inference, following Schmidt et al., (2009)9, we choose a zero 
mean normal residual matrix E with variance 𝜎!, and a normal data likelihood, 
 
   𝑝(𝑫|𝑹, 𝑽, 𝑬)~	Π"#$,..,';)#$,..,*	𝒩(𝐷+,,; (𝑹𝑽)+,,, 𝜎!)	.  
 
Further we assume that R and V are independently exponentially distributed with scales 𝜌+,- and 𝛾-,,, 

𝑝(𝑹)~	Π"#$,..,';.#$,..,/		𝜌+,- exp8−𝜌+,-𝑅+,-; ↿ (𝑅+,- > 0)  
                   and 𝑝(𝑽)~	Π.#$,..,/;)#$,..,*		𝛾-,, exp8−𝛾-,,𝑉-,,; ↿ (𝑉-,, > 0) 
 
 
The conditional probabilities of R and V thus have a rectified Gaussian distribution. Following Schmidt et 
al., (2009)9, the prior for the variance in E is assumed to have an inverse gamma distribution, resulting in 
an inverse-gamma conditional probability. Parameters for (R, V, E) are optimized by sequentially drawing 
samples from these conditional densities using the Bayesian Markov Chain Monte Carlo (MCMC) sampling 
method derived in Schmidt et al., (2009)9.   
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Figure M1. Food selectivity of the NMF-based Component 3 is compared against the selectivity of the PCA 
component (among top 20 components) and cluster (as partitioned with k-means clustering using k=20) 
with the highest food-selectivity. Selectivity is computed by correlating the response profile of each 
component/cluster with the salience ratings for food. Right panel shows the respective response profiles 
colored by food salience ratings for one representative subject. 
 
Extracting robust components in individual subjects with a consensus approach 
 
Like standard NMF, Bayesian NMF is also a stochastic algorithm sensitive to initialization and accurate 
initialization of the estimates is critical. To get robust components, we run this algorithm N= 50 times on the 
data matrix for each subject to get C=20 components per run. We then perform a consensus NMF 
procedure inspired by Kotliar et al. (2018)54 to aggregate results from different runs of the NMF algorithm 
into a single stable matrix factorization result. In this procedure, the estimated response profile matrices 
from each run are concatenated across the component dimension to create an (images x NC) matrix where 
each column is a component from a single run of the algorithm. We follow the same procedure as described 
in Kotliar et al. (2018)54 to get the consensus response profile matrix (images x C) from this aggregated 
data matrix. This consensus algorithm first isolates and removes unreliable components by running an 
outlier detection procedure, enabling us to filter out components that are not replicable across runs. Next, 
the remaining components over all runs combined are clustered (with C clusters) and the medians of these 
clusters are returned as the consensus (stable) response profiles of the C components.  
 
The final voxel weight matrix for each subject is then obtained by finding component indices in individual 
NMF runs that have the highest correlation with each of the C consensus NMF component response 
profiles. The respective voxel weights for each index are normalized (to sum up to 1) and then averaged 
across runs. This gives us the consensus voxel weights for each component.   
 
Extracting components with high inter-subject consistency 
 
The previous analysis yielded 20 components in each individual subject. Since we are interested in 
discovering the functional organization structure shared across individuals, we next analyzed the one-to-
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one correspondence between these components across subjects. To determine which of the resulting 
components for each participant are shared across participants, we use the 1,000 images (or 515 images 
in the case of Phase II participants) that were viewed by all participants. Specifically, we rank-ordered 
components based on the highest average inter-subject correlation in their response to the shared images. 
Since there are 4 subjects in each phase of our analysis, we get 6 unique pairwise correlation values for 
every possible combination of ordered component indices across the 4 subjects (20 x 20 x 20 x 20). The 
inter-subject correlation measure, called ‘inter-subject consistency’, is computed as the average of these 6 
values. We first pick the component indices (i, j, k, l) that yield the highest inter-subject consistency. We 
then repeat the same procedure on the (19 x 19 x 19 x 19) matrix after removing the indices (i, j, k, l) and 
repeat this procedure until the inter-subject correlation drops significantly. As shown in Figure 1, this value 
drops sharply after a handful of components, and we restrict our analysis to the top 5 components which 
all demonstrate an average inter-subject correlation value of 0.5 or greater.  
 
Independent replication with held-out subjects data  
 
The hypothesis that the ventral pathway contains a neural population that responds selectively to food was 
formulated based on analyses of the data from four participants in Phase 1 (NSD participants 1,2,5,7), 
before hypotheses and analysis methods were registered on OSF, and then tested on the held-out data in 
Phase 2 (NSD participants 3,4,6,8).  
 
Only the top few images for the 5 most inter-subject consistent components were visually inspected to 
ascribe semantic categories to components. The same top 5 components (with top images respectively 
selective for faces, scenes, food, text, and bodies) were obtained in the Phase 2, confirming reproducibility 
of our findings and allowing us to combine responses across the different phases.  
This apparent category selectivity of each of the top 5 components was subsequently rigorously assessed 
using quantitative measures based on salience ratings, as described below. 
 
Behavioral experiment  
 
We collected subjective salience ratings from Amazon Mechanical Turk for the 1,000 images viewed by all 
the Phase I participants. Among these images, 515 images were also viewed by all Phase II participants 
with three repetitions. In this experiment, participants were asked to rate the salience of each of the 5 
categories that seemed to be intuitively represented in the top images for each component, namely, scenes, 
faces, bodies, text, and food. Specifically, participants were given the following task: ‘Rate how prominent 
[category] is within each image’ and were instructed to provide a rating on a scale of 0 to 9. Each participant 
completed salience ratings for one category over a series of 220 images and we obtained 5 ratings per 
category (from 5 participants) and averaged the ratings across participants to get an overall measure of the 
salience of each category for each image. Salience ratings for scenes were odd, presumably because most 
natural images have some kind of scene context, and participants were unsure what we meant. Therefore, 
for the scene category only we instead asked two experts in scene-selective cortex who were uninvolved 
in the study to rate their prediction for how strongly the image would drive the scene-selective cortex. 
 
 
Component selectivity analysis 
 
We performed a correlation analysis (Pearson’s r) to quantify the extent of agreement between the 
responses of each component and the salience ratings of their preferred category (as visualized in the top 
images) over all 515 images that were viewed by all participants. Component responses were first averaged 
across all 8 subjects before correlation computation (Figure 2). We further also computed these correlations 
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at the single-subject level using all stimuli for which the salience ratings were available (1,000 for Phase I 
participants and 515 for Phase II participants), as shown in Supplementary Figure S3. 

   
 
Control analyses on the novel component 
 
I. Image-computable properties: We computed the following image-level properties to assess their 

respective impact on driving food component responses (our alternative accounts for food 
selectivity). These properties include: 

 
Color metrics:  

(a) Saturation: Mean saturation of every image is computed after transforming the image from RGB to 
HSV space 

(b) Brightness: Brightness is computed as the mean value across the ‘V’ channel after transforming 
the image from RGB to HSV color space. 

(c) Colorfulness: This metric is included to capture the perception of colorfulness. We compute the 
colorfulness metric for every image based on the opponent color space representation discussed 
in Hasler and Suesstrunk (2003)55.  

(d) Hues (Redness): The histogram of the hue channel is computed after binning the hue values across 
all spatial locations in the image into 8 equally spaced radial bins. The top hue (among the 8 bins) 
that had the highest correlations with the food component response roughly corresponded to red 
hues. We thus included the hue values in this bin in the subsequent partial correlation analysis 
while assessing the unique contribution of each metric in explaining the food component response.  

(e) A color representational axis defined in Rosenthal et al. (2018)12, called ‘Object-color probability’ is 
computed as the probability of a given hue being a natural object in an image. Using the natural 
image database of over 20,000 images annotated with object segmentation masks (data curated 
by Microsoft and further annotated and analyzed in Rosenthal et al. 2018), we computed the object 
probability for each color using the procedure described in Rosenthal et al.12 as follows: (i) Each 
image is first encoded in the cylindrical representation of the Lu’v’ chromaticity space, namely the 
Hue-Chroma-Luminance color space (ii) Number of natural object and background pixels that fall 
within each color bin (from 240 colors bins at 24 equally spaced hue and 10 equally space chromas 
values) are then computed separately using the segmentation masks of natural objects. (ii) The 
object probability of each color is then derived as the number of pixels having that color in natural 
objects divided by the number of pixels having the same color in either natural objects or 
background. Once the probabilities are estimated, we compute the mean object color probability 
for each NSD image as the average of the probability over all color bins weighted by the number 
of pixels in the image that fall within each color bin.  

 
Texture:   
We use entropy as a loose local statistical measure for texture. Entropy (E) is computed as the 
Shannon’s entropy of the grayscaled version of every image.  
E = −∑𝑝0log𝑝0 
where 𝑝0 is the probability of pixels to have a grayscale intensity value of k.  

 
Curvature index:  
We used an image-computable curvature index to estimate the average curvature of contours in 
every image (as implemented by Li and Bonner (2020)56). This model convolves the grayscale 
version of each stimulus with a curvature filter bank with 176 different filters (16 orientations and 
11 levels). Each filter in this bank functions as a curved contour detector with a specific orientation 
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and curvature level. The grayscale image is also fed to an edge detection algorithm to find the edge 
pixels in each image. The overall curvature index is finally estimated by taking the average 
curvature over all the edge pixels in the image. 

 
Quantifying the relationship between image-computable properties and Component 3 responses  
 
Correlation analysis: We measured the relationship between each of the above variables and the responses 
of Component 3 to the shared image set using Pearson’s correlation coefficient.  
 
Partial correlation analysis: We also performed a partial correlation analysis to assess the unique variance 
explained by each of the above image-level metrics in the responses of Component 3. We computed the 
correlation of the residuals resulting from a linear regression of all the above variables individually and food-
salience ratings on the responses of Component 3 (the food-selective component). For food, we partialled 
out the effect of all the above confounders while computing the partial correlation.   

 
 
II.   Analysis on computationally matched food/non-food image pairs: 
We identified pairs of images (one food and one nonfood) from the 5,445-10,000 image set viewed by each 
participant that produce similar activations in the last convolutional layer (‘conv5’) of an AlexNet13 pre-
trained on ImageNet16 categorization. This matching analysis was performed on the entire image set of 
each participant at the subject-level (not just shared images), since having a larger stimulus set increases 
the chance of finding a stronger control pair. This computational matching procedure yielded 20-40 image 
pairs per participant. Mean food-nonfood similarity score, computed as the correlation between the features 
in the conv5 layer for the food image and the corresponding non-food image, across all pairs was thus very 
high (mean = 0.55, s.d. = 0.09); importantly, all pairs had a similarity score > 0.33. This was further 
substantially greater than the pairwise similarity among all the food images (mean = 0.16, s.d. = 0.17) and 
non-food images separately (mean = 0.11, s.d. = 0.18). Visual inspection further confirmed that these 
matched food-nonfood images contain similar visual features like similar colors and textures (example pairs 
shown in Figure 3C). We then performed a paired t-test to compare the responses of Component 3 to these 
food-nonfood pairs, separately for each participant.  
  
III. Analysis on warm-colored non-food and cool-colored food stimuli: 
Since the partial correlation analysis revealed a low, yet significant correlation of Component 3 responses 
with the object color probability measure (which reflects the warm-cool color continuum), we performed a 
subsequent analysis by directly pitting food preference against warm-color preferences. We sampled 50 
food images from the lowest end of the object-color probability distribution over all 5,445-10,000 images 
(bottom 15 percentile) per participant and sampled non-food stimuli from the highest end of this distribution 
(top 15 percentile). This resulted in cool-colored food stimuli and warm-colored non-food stimuli.  We then 
compared the responses of Component 3 to these two sampled subsets using an unpaired t-test separately 
for each participant. Example food and non-food stimuli from this selectively sampled distribution for one 
subject are shown in Figure 3D along with the distribution of the selection measure (object-color probability) 
for food and non-food stimuli.  
 
While the food images from this analysis visually appeared to be cool-colored, this sampling procedure, 
however, could result in images where the ‘food’ itself is warm-colored since we are computing the mean 
object-color probability across the entire image. We thus conducted a subsequent analysis where we 
sampled 50 food stimuli such that the mean object-color probability over just the food pixels (as defined 
using the food segmentation masks obtained from MS-COCO annotations52) was at the lower end of this 
selection measure. This yielded images where the food itself was cool-colored. We repeated the statistical 
analysis by comparing the responses of Component 3 to these two sampled subsets and again found that 
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the Component 3 responds much more strongly to food than non-food stimuli (Figure S5,B). This strongly 
suggests that the food-selectivity of Component 3 overrides any selectivity for warmer colors.  
 
 
IV. Analysis on diverse subsets of food and non-food stimuli: 
We selected diverse subsets of food and non-food stimuli that maximally span the representational space 
of different layers of a pre-trained DNN, such that the images within each subset are substantially more 
dissimilar (in terms of the average pairwise distance computed in the representational space of the 
corresponding layer) than what would be expected if the images were drawn at random from the respective 
set. The images were selected greedily so as to maximize the distance of each image with its closest 
neighbor. The procedure is outlined as follows: for each layer l,  
(i) we first randomly sample a food image,  
(ii) we then select the next image from the set of all food images viewed by each participant (N=10,000 in 
Phase 1 and 5,445 in Phase 2) as the image which has the largest correlation distance (1-r) to its closest 
neighbor among the already selected food images, where the distance is computed between the image 
features extracted at layer l and  
(iii) we repeat (ii) until we get the desired number of images (N=50).  
The same procedure is repeated for the set of non-food images as well to get N=50 non-food images. 
These selected images are so diverse that a linear classifier trained to discriminate between these food 
and nonfood images using the features of the corresponding layer l performs at chance (never exceeding 
53% across all layers), presumably because there is no remaining simpler visual characteristic shared by 
stimuli within the two subsets that a classifier can latch onto.  We then compared the responses of 
Component 3 to these two stimulus subsets using an unpaired t-test, separately for each layer and each 
participant. This helps us address whether food selectivity is driven by only certain kinds of food images, 
which would indicate that it is not `food’ selectivity per se but rather a more restricted notion that applies to 
only specific instances of food; or whether the selectivity even persists under conditions of wide visual 
variability within food and within non-food images, which would in turn indicate that it is indeed `food’ 
selectivity construed more broadly.  
 
 
V. Measuring the relationship between affective features and responses of Component 3:  
Valence and arousal ratings were obtained from the NSD Meadows behavioral dataset which was released 
along with the NSD dataset (Further details provided in Allen et al., 20211). These ratings were released 
for a total of 100 images from the shared image set viewed by all NSD participants. On this image set, we 
computed the correlation between the responses of Component 3 (averaged across subjects) and subject-
averaged valence and subject-averaged arousal ratings separately. For fair comparison, we also report the 
correlation between food salience ratings and Component 3 responses on this small subset. The statistical 
significance of these correlations is assessed by computing the p-value of the obtained sample correlation 
coefficient for the null hypothesis of uncorrelation under the assumptions of a bivariate normal distribution. 
 
  
 
Analysis on curated Natural Scenes Dataset 
 
To test whether a high proportion of exemplars of any category in the dataset might be sufficient for a 
component to emerge that responds selectively to that category, we sampled a subset of images with a 
fixed number of examples from each of 9 categories. These categories were selected because there were 
enough images in each subject belonging to those categories and include the following: face, food, clock, 
airplane, elephant, giraffe, horse, truck, motorcycle. Importantly, we chose an equal number of stimuli for 
each of these categories within each subject in this subset (although this number varied slightly across 
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subjects because each subject saw different images, N=197, 207, 182, 191 per category for Phase 1 
participants 1, 2, 5 and 7, respectively). The food images in this subset were drawn so that they are 
maximally heterogenous (dissimilar amongst themselves) following the procedure for sampling diverse 
subsets described above. The question was whether we'd get equally selective components for other 
categories that are in the same proportion as faces and food, which might suggest that the food-selective 
component could arise as an artifact of the data bias in NSD. These categories are also more visually 
homogeneous than food (e.g. airplane).  We quantified the within-category visual similarity of images by 
computing mean pairwise correlations between the corresponding image features in the last convolutional 
layer of a pre-trained CNN (layer conv5 of AlexNet trained on image categorization using ImageNet). 
Distances computed in the feature space of trained DNNs (versus image space) are known to correspond 
well to perceptual image similarity measures, and are widely used as “perceptual distance” metrics57,58; this 
metric is further also well-suited to capture similarities in mid-level visual features like texture; thus, the 
average pairwise image distance metric computed in this deep visual representational space for each 
category is likely to capture the perceptual homogeneity of that category (at least, as represented in the 
NSD).  
We repeated the Bayesian NMF analysis on this curated dataset. On this subset, the BIC criterion 
suggested 7 instead of 20 components in each participant. We computed the selectivity of resulting 
components for each of the 9 categories using two indices: (i) Correlation (Pearson’s R), where we 
computed the correlation of component responses to the curated stimuli with a binary vector indicating 
whether the category was present/absent in the image over all stimuli and (ii) t-statistic, comparing the 
mean responses of the component to the category in question, versus all other stimuli. For each category, 
we then computed the maximum selectivity value based on either of the above indices over all 7 
components, as reported in Figure 5.   
The top 2 components (based on their highest correlation with any of these category labels) in each 
participant were still faces and food respectively.  And the highest correlation of each remaining category 
with all the components was substantially lower than the selectivity of the top 2 components for faces and 
food, respectively. This control analysis indicated that data bias (either a large number of food images in 
NSD or some form of visual homogeneity among the food images within NSD) cannot explain the existence 
of the food-selective component.  
 
 
Analysis on the independent BOLD5000 dataset 
 
We assessed whether food-selective responses can also be identified in other independent datasets 
beyond NSD. To test this, we analyzed another publicly available large-scale dataset, namely, the 
BOLD5000 dataset. This dataset comprised BOLD responses from four participants (CSI1, CSI2, CSI3, 
CSI4), while they each viewed several thousands of natural images, though most images had only single 
repetitions. Importantly, the shared set of 1,000 images viewed by all Phase I NSD participants were also 
viewed by all BOLD5000 subjects, with the exception of subject CSI4 who only viewed 594 shared images. 
We used these overlapping images to localize the food component in the ventral visual stream of subjects 
CSI1-4. This localization procedure relies on inferring the voxel weights corresponding to Component 3 (the 
food-selective component) in new participants using the response profile of Component 3 derived from NSD 
over the overlapping image set. In the non-negative matrix factorization parlance, this amounts to inferring 
only one weight matrix (the components by voxel weight matrix), when the other matrix (the response profile 
matrix) is known, subject to non-negativity constraints. Here, the latter is fixed to the Component 3 
responses averaged across NSD subjects for the overlapping image set (N=1,000 for CSI1-3 and N=594 
for CSI4).  Mathematically, given component responses to N overlapping images derived from NSD as R 
(Nx1), and the data matrix D (N x V) containing the responses of all V voxels to these N stimuli in a 
BOLD5000 subject , the non-negative voxel weights W (Vx1) for the component can be estimated by 
minimizing the expression,  
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||𝑹 − 𝑫𝑾1𝟏||𝟐𝟐	    subject to 𝒘𝒊 > 𝟎 for all i =1,..,V 
 
This optimization problem is convex and the optimal voxel weights Ŵ can be derived following the standard 
routine for solving the non-negative least squares problem based on the active set algorithm59. With these 
inferred voxel weights, we can then estimate the component responses to novel stimuli unique to the 
BOLD5000 dataset (DU) as follows, 

𝑹𝑼 = 𝑫𝑼Ŵ1𝟏 
 
We restrict our focus to stimuli that had food/no-food annotations in the BOLD5000 dataset, namely, the 
MS-COCO images. We excluded all MS-COCO images that were viewed by any of the NSD participants 
from this analysis. We then computed the food-selectivity of estimated component responses to these 
stimuli as the correlation (Pearson’s R) between component responses and a binary vector indicating 
whether the image contained food or not. These images were further rank-ordered by their response 
magnitude and colored by food labels for ease of response visualization. We further performed a control 
analysis by running the component localizer in other areas of the visual cortex, including early visual areas 
as all intermediate and high-level lateral and parietal areas, and computing the food-selectivity of the 
estimated component in each case. These ROIs, including the ventral visual stream ROI as used above, 
were defined by co-registering the streams atlas from NSD to the BOLD5000 anatomical space.     
 
Quantification and statistical analysis on all component voxel weights 
 

I. Agreement with functional localizer statistics 
Once the voxel weights are projected back into anatomical coordinates (in the native space of each 
NSD participant), we can also compute the quantitative agreement between these voxel weights and 
the voxel-level selectivity for different categories as estimated with the independent functional localizer 
runs in NSD (fLOC).  We computed the correlation between the voxel weights of each component 
against the voxel-wise t-statistic of the component’s preferred category as obtained with the fLOC 
experiments by contrasting responses to each category against all other stimuli. For e.g. the face 
component voxel weights were correlated against the t-value contrasts for responses to the domain of 
faces over responses to all other stimuli. Note that food was not defined as a domain in the NSD fLOC 
experiment, since a selectivity for food in the visual cortex had never been described before; thus, we 
cannot perform a similar analysis for Component 3.  

 
II. Anatomical similarity between saturation-responsive visual cortex and Component 3 

The anatomical distribution of Component 3 appeared to overlap with previously studied color-biased 
regions60. To quantify the similarity between the anatomy of saturation-responsive regions and 
Component 3, we conducted a subsequent analysis. We first extracted non-food images (food salience 
rating of zero) from the shared set of 515 images viewed by all participants. We next computed the 
correlation between the saturation of all non-food stimuli (N=356) and the responses of all VVC voxels 
to the corresponding stimuli in order to construct a saturation-responsive voxel weight map per 
participant.  Relationship between food selectivity and saturation-responsiveness in the ventral visual 
pathway is finally assessed by correlating this saturation-responsive weight map with the voxel weight 
map for each of the 5 components. These correlations were transformed to z-scores using Fisher's z-
transformation for statistical comparisons.    
  

III. Quantifying the spread of voxel weights per component  
We further characterized the distribution of voxel weights for each component using quantitative 
measures of sparseness and statistical measures of skewness and kurtosis.  
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(a) Skewness of the voxel weight distribution 𝒘𝒄 for each component c is computed using the Fisher-
Pearson coefficient of skewness, calculated as: 
Skewness (𝒘𝒄) =

7!

7"
!/"	, 

where  𝑚!	and  𝑚8 are respectively the second and third sample central moments of the voxel weights 
𝒘𝒄 for each component c. The 𝑟th sample moment 𝑚9 are computed using the standard formula as,  
𝑚9 =	

$
:
∑ (𝑤-,; −𝑤-̄)	9	:
;#$ , 

where  𝑤-,; is the voxel weight for component c in voxel i and 𝑤-III  is the mean component weight across 
all N voxels. This measure is computed separately for the voxel weights per component and per 
participant where different participants have differing numbers of voxels (N~6,500-9,000). 
For a gaussian distribution (perfect symmetry), the skewness is zero; positive values indicate a 
rightward skew with more voxels that have higher weights on the component whereas negative values 
point towards a leftward skew.  
 

(b) Sparseness in the voxel weights of each component, 𝒘𝒄 with N voxels is computed using the definition 
of [Hoyer et al., 2004] as, 

Sparseness (𝒘𝒄) =	
√"#

∑ |#$,&|
'
&()

*∑ #$,&
+'

&()

√"#$
,  

Sparseness is 1 when only a single voxel has a non-zero weight on the component and is zero when 
all voxel weights are equal (non-sparse distribution). Values between 0 and 1 indicate intermediate 
levels of sparsity, interpolating smoothly between the two extremes.  

 
(c) (Excess) Kurtosis of the voxel weight distribution for each component c is computed following Fisher’s      
definition, as the ratio of the fourth sample central moment of the voxel weights 𝒘𝒄 and their second central 
moment squared,  

  Kurtosis (𝒘𝒄) =
7$
7"
" 	− 3, 

Here, 3 is subtracted to provide a simple comparison to the Gaussian distribution which yields a kurtosis 
of zero under the above definition. Higher values (above 0) indicate a super-gaussian or heavy-tailed 
distribution indicative of sparsity.  

 
IV. Quantifying the inter-subject heterogeneity of voxel weights per component  

We transformed the voxel weight maps from the native space of each participant to a common 
anatomical space (MNI 1mm) in order to measure inter-subject alignment in the anatomy of each 
component. For each component, this alignment was measured using correlation (Pearson’s R) 
between the co-registered weight map of each participant and the average voxel weight map for that 
component across the other 7 participants (averaged across all 8 folds). 

 
Encoding model of the inferred components 
 
We used a CLIP-ResNet5015 convolutional neural network (CNN) model to predict the response of the 
inferred components from the NMF analysis. The encoding model was designed to map the features from 
a given layer of the CNN model to the inferred responses from the component analyses (see Ratan Murty 
et al. (2021)14 for more details). Importantly, we fixed all the hyper-parameters of the model based on the 
data from Phase 1 subjects. Specifically, we fixed the model layer (block4-1-conv2). The model features 
corresponding to the images used in the experiment were extracted for this layer. Next we mapped the 
extracted features to the inferred component responses of Phase 2 subjects via a ten-fold regularized ridge-
regression (the ridge parameter fixed at 0.01). Even though the model was trained on data from Phase 2 
subjects, it was evaluated on data from Phase 1 subjects (thus cross-validating on both subjects and 
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images). The model prediction accuracy was calculated as the Pearson correlation between the predicted 
response of the model (over folds) and the observed response. Our CLIP-ResNet50 encoding model is 
image-computable and can be used to predict the observed responses for images not included in the NSD. 
We obtained predictions for: 1) The large publicly available ImageNet dataset which has diverse stimuli 
from 1000 stimulus categories (N = 1,281,167 images). 2) Black and white versions of the same 1.2M 
images as in 1, 3) color and grayscale versions of the texture-matched Downing pairs. These images were 
previously used to test and reject the food selectivity hypothesis in the brain17. Predictions were obtained 
for both color and grayscale versions of these images. (Figure 4). 4) Handpicked images that were matched 
across a number of stimulus features. See Figure 4 for examples. Predictions were obtained for both color 
and grayscale versions of these images (Figure 4).  
 
Data availability 
  
The NSD dataset is freely available at http://naturalscenesdataset.org. Images used for NSD were taken 
from the Common Objects in Context database (https://cocodataset.org). 
  
 
Supplementary Movies: 
 
Supplementary Movie 1: Top 25 images producing the highest response in each of the top 5 components 
in each participant (both Phase 1 and Phase 2). 
https://drive.google.com/file/d/15m9Ys_ougo0WN09KU1SyDnU8qAvfu_yV/view?usp=sharing 
 
 
Supplementary Movie 2: Top 5% voxels with the highest weights on each component are visualized on 
cortical flatmaps for each of the 8 subjects. Established regions of interest, defined from the functional 
localizer scans by computing the contrast of preferred versus all other stimuli, are shown in white outlines 
(t-value > 2.5). Voxel weight maps of face, food and word components are also visualized together on the 
RGB colormap to show component overlap for each subject.  
https://drive.google.com/file/d/1jab7RFrUL0eA0CGDrU5VCjwyUYpjR6qs/view?usp=sharing 
  
Supplementary Figures  
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Figure S1: Bayesian Information Criterion (BIC) used for selecting the number of components. The optimal 
number of components, as suggested by the BIC, were 15-20 in all subjects. 
 
 

 
Figure S2: A. Accuracy of the 5 component model derived from Phase 1 participants in explaining 
responses of raw voxels in the ventral visual stream of held-out subjects from Phase 2. Accuracy is 
expressed as the % of replicable variance explained by the five components taken together (median across 
voxels) as we vary the reliability threshold for voxel selection (median noise ceiling expressed in correlation 
units) in accuracy computation. The five-component model can explain ~50% of the replicable variance in 
the response of voxels with 0.3 or greater reliability (which includes about 46% voxels in the ventral visual 
stream averaged across different participants). B. Scatter plots showing the subject-averaged responses 
of each component in Phase I against the subject-averaged responses of the same component identified 
in Phase II.   
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Figure S3: Response profile of each component in each individual across all shared images, sorted by the 
response magnitudes and colored by the salience rating of the preferred category for that component for 
every image. Left panel shows the response profiles of Phase 1 participants who each viewed a common 
set of 1,000 images whereas the right panel shows the results for Phase 2 participants who viewed 515 
shared images, distinct from the images unique to each participant. For Component 1, responses are shown 
only for 515 images in Phase 1 participants since we obtained expert scene salience annotations for 515 
images viewed by all 8 participants. Correlations between salience ratings for the preferred dimension for 
that component and subject-specific component responses across all shared images are displayed on the 
top right of each subplot.  
 

 
 
 
 
Figure S4 : Complete response profile of the food component across all 10,000 (Phase One participants, 
A) or 5,445 (Phase Two participants, B) images, colored by food labels obtained from MS COCO 
annotations. Binary food labels (red) can explain a large proportion of response variation for this component 
in all participants (r=0.44-0.63). Right panel shows the images labeled as ‘food’ that produce the lowest 
response in the food component in each participant. As can be seen in the figure, most of these are images 
that were either mislabeled or where the food is not particularly salient.   
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Figure S5: A.The partial correlation across stimuli between the magnitude of the Component 3 response in 
individual subjects and various image-computable feature dimensions (with the effect of food salience 
removed) and rated food salience (with the effect of all other feature dimensions removed). The partial 
correlation with food salience is significantly greater than any of the others (all ps < 0.00001). B. (Top) 
Response of the Component 3 in each participant to sets of stimuli chosen such that the images of food 
were very low and the nonfood images were very high on the object-color probability measure (Rosenthal 
et al., 2018). (Bottom) Same as the top except that sets of food stimuli were chosen such that the mean 
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object-color probability across food pixels (segmentation masks for food were obtained using MS-COCO 
annotations) was very low. 

 
  
 
 
Figure S6: Comparing responses of the food component to diverse subsets of food and non-food stimuli. 
Subsets of food and non-food stimuli that maximally span the embedding space of different layers of an 
ImageNet-trained AlexNet are selected based on a greedy sampling procedure described in the Methods. 
These subsets are indiscriminable by the corresponding layer, as also suggested by the RSA plot for one 
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subject (left). Examples of food and non-food stimuli from each subset are shown above the responses of 
the food component to the corresponding subsets. Error bars show the 95% confidence interval around the 
estimated mean. Response to the subset of food stimuli is significantly greater than the response to the 
subset of non-food stimuli in all cases.   
 
 

 
Figure S7 Predictive accuracy of a Resnet50-CLIP based encoding model. Scatterplot between the 
predicted response on the x-axis (based on model trained on data from Phase 2 subjects) and the observed 
response on the y-axis (based on observed data from Phase 1 subjects). Each dot is a given image and 
the predictions were always estimated on images not used in the model training procedure.  
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Figure S8 - Top 200 images (among the ImageNet stimuli) predicted by the Resnet50-CLIP encoding model 
to activate each of the 5 components  
 

 
Figure S9: Weight maps for the faces, scenes, text and bodies weight maps agree with the corresponding 
contrast maps from the fMRI localizer scan.  The correlation across voxels of the weight map for each 
component with the t value of the contrast from the fMRI localizer scan between words versus all other 
stimuli (blue), faces versus all other stimuli (green), places versus all other stimuli (yellow), and bodies 
versus all other stimuli (red). Stimulus categories in the floc experiment include words (characters), faces, 
places, bodies and objects.  
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Figure S10: Quantitative measures of voxel weight distributions for each component. Upper Left: 
Correlation of the weight map for each component between each participant and the average weight map 
across the other 7 participants (averaged across all 8 folds) when co-registered into a common anatomical 
space (MNI). Upper right: Lateralization of components is computed as the difference between the average 
voxel weights in the left and right hemisphere divided by the sum of the two. A value of 1 indicates perfect 
left lateralization whereas negative values indicate right lateralization. Lower Left: A sparseness measure 
for the voxel weights of each component is computed based on the relationship between L1 and L2 norms 
following Hoyer et al. (2004); higher values above 0 indicate higher sparseness. Lower Middle and Lower 
Right depict the kurtosis and skewness of the voxel weight distributions of each component. The 
corresponding values for a Gaussian distribution (skew=0, excess kurtosis=0) are marked as dashed 
horizontal lines. All components have voxel weights that are positively skewed and kurtotic, relative to a 
Gaussian, indicating a peakier, heavy-tailed distribution skewed towards higher values. Each scatter point 
corresponds to a single subject.   
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Figure S11: A color-bias (saturation-responsive) map in the VVC is computed for each subject by measuring 
the correlation of voxel responses to non-food stimuli with the saturation index of corresponding images. 
Relationship between food selectivity and color bias in the ventral visual pathway is assessed by correlating 
the color-bias map (computed on non-food stimuli) with the voxel weight map for each of 5 components. 
Each scatter point is an individual subject. These correlations were transformed to z-scores using Fisher's 
z-transformation for statistical comparisons. The food component weight map exhibited a significantly 
higher correlation with the color bias map than any other component (p < 0.01 for all 4 comparisons using 
a paired t-test).  
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Figure S12: Perceptual heterogeneity of different categories in NSD is estimated by computing the average 
pairwise correlation distance (1-r) between the top 10% images (among the 5,445-10,000 images viewed 
by each participant) producing the highest response in each component in the embedding space of the last 
convolutional layer of AlexNet (‘conv5’). Dashed black line depicts the mean pairwise distance between the 
same number of randomly selected images. Error bars indicate the 95% confidence interval around the 
estimated mean distance across subjects.  
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