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Abstract  1 

 2 

Sugar porters represent the largest group of secondary-active transporters. Some 3 

members, such as the glucose (GLUT) transporters, are well-known for their role 4 

in maintaining blood glucose homeostasis in mammals, with their expression 5 

upregulated in many types of cancers. Because only a few sugar porter structures 6 

have been determined, mechanistic models have been constructed by piecing 7 

together structural states of distantly-related proteins. Current GLUT transport 8 

models are predominantly descriptive, and oversimplified. Here, we have 9 

combined coevolution analysis and comparative modeling, to predict structures of 10 

the entire sugar porter superfamily in each state of the transport cycle. We have 11 

analysed the state-specific contacts inferred from coevolving residue pairs, and 12 

shown how this information can be used to rapidly generate free-energy 13 

landscapes consistent with experimental estimates, as illustrated here for the 14 

mammalian fructose transporter GLUT5. By comparing many different sugar 15 

porter models and scrutinizing their sequence, we have been able to define the 16 

molecular determinants of the transport cycle, which are conserved throughout 17 

the sugar porter superfamily. We have also been able to highlight differences 18 

leading to the emergence of proton-coupling, validating and extending the 19 

previously proposed latch mechanism. Our computational approach is 20 

transferable to any transporter, and to other protein families in general. 21 

  22 
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Introduction 1 

Due to the importance of glucose and other monosaccharides for cell metabolism1, 2 

sugar porters are the largest and widest-spread family of small molecule transporters 3 

across all Kingdoms of life2,3. In mammals, the sugar porters are referred to as glucose 4 

(GLUT) transporters belonging to the Solute Carrier Family 2A4-6. Human has 14 5 

different GLUT isoforms, and each isoform has a distinct pattern of tissue distribution, 6 

gene regulation, substrate preference and kinetic properties6-8. GLUT1, for example, is 7 

distributed in a wide range of tissues, including the blood–brain barrier, and is essential 8 

for glucose transport into the brain1,6, whereas GLUT4 is mostly localized in skeletal 9 

muscle and adipose tissue, and is the major insulin-stimulated glucose transporter8. 10 

GLUT5 is the only member specific to fructose and is the major route for its intestinal 11 

absoprtion9,10. In plants, fungi, bacteria and parasites the sugar porter family has 12 

likewise expanded into a large number of different isoforms, providing essential and 13 

niche roles in the uptake of D-glucose and other monosaccharides. Plants, for example, 14 

express specific sugar porter isoforms for seed, fruit and pollen production11 and yeast 15 

have 20 different hexose transporters with various kinetics12, which are targeted for 16 

biofuel production13. Parasites, such as Plasmodium Falciparum rely on sugar transport 17 

to infect their host and reproduce14,15, resorting to a promiscuous sugar porter, which 18 

can take up a variety of sugars16.  Understanding the molecular basis for sugar transport 19 

is thus a fundamental question in biology, with important medical and biotechnological 20 

applications. 21 

Sugar porters belong to the Major Facilitator Superfamily (MFS)2,3 and are defined by 22 

an N-and C-terminal bundle of 6 TMs, which are connected by a cytosolic loop that is 23 

made up of three to four intracellular helices (ICH)2,17. The sugar porters can be 24 

subclassified by a sequence motif18, which structures have shown corresponds to an 25 

intracellular salt-bridge network that selectively stabilizes the outward-facing state17,19-26 
21. Constructing a transport cycle requires assembling five different conformational 27 

states along the transport cycle: outward-open, outward-occluded, occluded, inward-28 

occluded and inward-open (Fig. 1A,B)2,17. Globally, sugar porters operate according to 29 

the rocker-switch alternating-access mechanism2,17. Although the two bundle are 30 

structurally similar, D-glucose is not coordinated evenly, but almost entirely by 31 

residues located in the C-terminal bundle16,22,23. As a consequence, half helices TM7b 32 

and TM10b in the C-terminal bundle are thought to undergo local rearrangements to 33 

control access to the sugar binding site from the outside and inside, respectively2,17,20,24. 34 
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Whilst the sugar porter family is structurally the best characterized out of all MFS 1 

transporters2, there is still not a single sugar porter that has structures determined in all 2 

of these different states. Indeed, some conformations, such as the occluded and inward-3 

occluded states16,25,26, have only been experimentally resolved in one isoform. Due to 4 

the paucity of structural information, transport models are currently descriptive, lacking 5 

rigorous validation. Consequently, it is still unclear if the single snapshots represent 6 

physiologically relevant conformations along the transport cycle, and if unique 7 

structural features are transferable to more distantly-related members. 8 

Despite low sequence identity, structures of distantly-related sugar porters show a high 9 

degree of structural conservation as compared to many other types of MFS 10 

transporters2,16. Using the 20 available experimental structures spread across all major 11 

conformations2, we hypothesized that we should be able to pinpoint co-evolving 12 

residues pairs specific to each state, and then use these contacts for structure prediction. 13 

Notably, we reasoned that this approach would be superior to either i) homology 14 

modeling, which is intrinsically biased towards the captured structure, regardless of 15 

whether the features of the template are actually transferable across isoforms or not, or 16 

ii) structures generated by coevolution only, which may settle on a conformational state 17 

that satisfies the contacts from each of the multiple states, yet fails to capture a 18 

physiological conformation.  19 

 20 

Here, we present a novel approach for state-specific structure prediction. In essence, 21 

we have used experimental structures determined in each of the different conformations 22 

to train a neural network to identify state-specific contacts. After filtering these contacts 23 

using coevolution information, we have then used them to apply biases to Alphafold2 24 

models27 and driven them towards the various conformational states along the 25 

functional cycle. Next, we have combined these contacts into collective variables to use 26 

in enhanced sampling molecular dynamics (MD) simulations 28,29, and computed the 27 

free-energy landscape of the fructose transporter GLUT521. Finally, with a set of 28 

conserved state-specific contacts defined, we were able to pinpoint both contacts that 29 

govern the conformational cycle across the sugar porter family, and a series of 30 

transporter-specific interactions that control conformational cycling of each of the sugar 31 

porter subfamilies. In particular, we concentrate on deciphering the molecular and 32 

evolutionary determinants of sugar-proton-coupled symport. 33 

 34 
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Results  1 

 2 

Inferring co-evolving conserved residue pairs across all sugar porters 3 

AlphaFold2 structural models of the various sugar porters are thought to collectively 4 

capture all major conformational states30. However, deterministic prediction of a given 5 

state is not possible. Therefore, as expected, principal component analysis (PCA) based 6 

on pair-wise interactions reveals that sugar porters cluster within their individual 7 

subfamilies rather than according to the conformational state that happens to be 8 

predicted by the structure-prediction method (Fig. 1C, D). To be able to rationally build 9 

models of individual SPs in each of the states in the transport cycle, we thus need to 10 

steer AlphaFold2 generated models, or experimentally captured structures, when 11 

applicable, into alternative states. We achieve this by using state-specific contacts 12 

derived from coevolution analysis.  13 

To do so, we first generated a representative sequence alignment by aligning ~1000 14 

sequences from each of the evolutionarily-distant sugar porter relatives belonging to 15 

mammalian sugar transporters (GLUTs), the bacterial and parasitic transporters 16 

(PfHT1, XylE), the plant sugar transporters (STPs), and the fungal hexose transporters 17 

(HXT), separately (Figure 1A). These sugar porter family members were selected 18 

because they are either part of a major evolutionary branch of the sugar porter family 19 

or are functionally distinct and structurally characterized (as is the case for PfHT1 or 20 

XylE). We then used the resulting multiple sequence alignments (MSA) as input for 21 

Direct Coupling Analysis (DCA) to generate coevolution maps31. The coevolution 22 

maps generated from separately aligned MSAs were subsequently combined into a 23 

global coevolution map, filtering out contacts that were predominantly species-specific 24 

(see Methods). As illustrated for the proton-coupled xylose transporter XylE (Figure 25 

2A), there is an extensive overlap between the MSA-derived coevolution contact maps 26 

and experimental inward-facing structural contacts.  Nevertheless, several coevolving 27 

pairs do not correspond to interactions found in the structure. Overall, we estimate that 28 

~10% of the top 500 co-evolving pairs represent contacts not formed in available crystal 29 

structures, presumably representing contacts forming in other conformational states 30 

(see Methods).  31 

 32 
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Extracting state-dependent coevolving residue pairs from experimental structures 1 

To determine which coevolving pairs, correspond to contacts that are formed or broken 2 

in the 20 structures of different functional states, we trained a convolutional neural 3 

network (CNN) to classify the main five conformational states using as input contact 4 

maps from experimentally determined structures filtered by coevolution scores (Figure 5 

2B). The CNN architecture was designed to avoid redundancy of contacts between 6 

neighboring residue while allowing residue pairs to be in contact in several functional 7 

states (Methods, Figure 2B). Layer-wise relevance backpropagation (LRP) was then 8 

performed32 on all five output classes separately, leading to the assignment of 9 

encouraged and discouraged contacts for each conformation (Figure 2C).  10 

Interestingly, encouraged and discouraged contacts were not confined to inter-bundle 11 

contacts and are instead spread throughout the entire structure (Table S1). They also 12 

displayed strong state-dependency (Figure 3). Because of the low number of 13 

experimental structures available, training of the neural network carried a substantial 14 

risk of overfitting. We thus sought to validate the results by making sure that the state-15 

specific contacts identified were indeed in the expected regions. Starting from the 16 

outward-facing conformation, we observe the expected encouraged contacts of inter-17 

bundle salt-bridges formed between TM3-TM10b and TM5-TM8 helices. In contrast, 18 

we observe a strong signal for the discouraged contacts between TM1 and the 19 

extracellular gate TM7b, which are known to come together during rocker-switch 20 

transition into the inward-facing states2,21. In the occluded structure of PfHT116, the 21 

extracellular gate TM7b was had moved fully inwards and transition into a broken helix 22 

at the point closest to TM1. Furthermore, mutations in TM1 were found to be just as 23 

critical for transport as those in TM7b16, indicating that TM1 and TM7b interactions 24 

might be important in driving formation of the occluded state. Indeed, we observe a 25 

robust signal for encouraged contacts between TM1 and TM7b, which is present as 26 

early as the occluded state, confirming that TM7b and the interactions with TM1 are 27 

co-evolving to enable attainment of the occluded conformation. As expected for an 28 

intermediate state, the occluded state has the maximal number of encouraged contacts. 29 

One additional set of encouraged contacts in the occluded state are located between the 30 

intracellular gating helix TM10b and TM4, which are required to drive formation of the 31 

occluded state from the inward-facing conformation2,25.   32 
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Interestingly, we observe the formation of less well-known inter-bundle contacts 1 

between TM1 and TM5, and between TM3 and TM6 when transitioning from an 2 

outward-open to an outward-occluded state, possibly modulating the conformational 3 

change of TM1. In transition between outward-facing and inward-facing states, 4 

additional contacts are also seen between TM3 and TM11, both at the extracellular 5 

region, in which case they are encouraged in the inward-facing states, and at the 6 

intracellular region, in which case they are encouraged in the outward-facing ones. 7 

These previously unreported contacts appear particularly important for transporter 8 

function as they are at the basis of the rocker switch motion passing through the 9 

occluded state. Taken together, the state-specific coevolution analysis is able to 10 

replicate the main structural transitions expected from comparing individual static 11 

structures, as well uncovering new contacts to be evaluated (Table S2).  12 

 13 

Generating sugar porter structures for each major conformation  14 

To expand the available structural information for sugar porters, AlphaFold2 models 15 

were driven into all five conformational states in RosettaMP33 using the derived 16 

encouraged and discouraged state-dependent contacts as attractive and repulsive biases, 17 

respectively (Figure 2C, Methods). A straightforward assessment of the quality of the 18 

models obtained was difficult to perform, however, as few experimental structures are 19 

available. Nevertheless, for an overall approximation, we calculated the Ca root mean 20 

squared deviation (RMSD) to the phylogenetically closest available experimental 21 

structure. As shown in Figure 4, the mean RMSD difference has an acceptable value of 22 

~2.5 Å, with the RMSD distribution spanning a 95% confidence interval of 1.5 to 3.2 23 

Å. In addition, to evaluate the stability of these models, 10 ns molecular dynamics 24 

simulations of these models embedded in a model membrane bilayer were then 25 

performed, which further relaxed the structures, bringing their overall RMSD to the 26 

closest homolog to ~2.1 Å with the RMSD distribution spanning a 95% confidence 27 

interval of 1.1 to 2.7 Å. The RosettaMP modeling pipeline thus seems to bring the 28 

models close to their local free energy minimum, but relaxation by MD simulations 29 

further improves the quality of the models by relaxing them even more. To evaluate the 30 

cause of the RMSD reduction, we compared the GLUT5 outward-open state model 31 

before and after MD relaxation to the crystal structure of the same transporter solved in 32 

the same state (PDB ID 4YBQ), which showed that the model quality was improved 33 
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from a 2.15 Å Ca RMSD to a 1.49 Å Ca RMSD, mainly via the relaxation of TM1 1 

(Figure 4C). It seems that, in this case, flexible helices require an explicit solvent model 2 

to attain a more physiological conformation.  3 

As a next assessment of quality, we re-analyzed the STP10 model against the inward-4 

open STP10 crystal structure (PDB ID 7AAR)34, whose structure was not present in our 5 

initial training set as its structure was released after training of our model. The inward-6 

open state model of STP10 previously had a calculated Ca RMSD of 4.3 Å away from 7 

its closest homologue with known structure, XylE (PDB 4QIQ)25. However, the actual 8 

Ca RMSD to the experimental STP10 inward-facing structure difference is only 2.2 Å, 9 

which was further reduced to 1.8 Å after MD simulations. Inspection of the STP10 10 

structure reveals a unique helical kink in TM10, which is not present in XylE (Figure 11 

4B). An additional structure for inward-open GLUT435 was further determined after 12 

our initial model training was finalized. Our inward-open GLIUT4 model has a RMSD 13 

of 2.3 Å and 1.8 Å before and after MD relaxation, respectively. Reassuringly, our 14 

method is thus able to model new structural features absent from the training set. 15 

Indeed, the Ca RMSD estimated for HXT and STP members, as well as for models of 16 

the inward occluded states, which have fewer structures available to properly assess 17 

their accuracy, is generally higher (Figure 4A). Overall, we conclude that the generated 18 

sugar porter models are of sufficient quality for linking conformational states of sugar 19 

porters.  20 

 21 

A free-energy landscape for the fructose transporter GLUT5 22 

Characterizing robust free energy landscapes of conformational cycles of sugar 23 

transporters will enable us to better understand the mechanistic basis for sugar transport. 24 

Although free energy landscapes for GLUT transporters have been reported 25 

previously36-39, these were generated from a few structures only, and lacked the most 26 

recent structure in the occluded conformation2,16. Indeed, as co-evolution analysis 27 

confirms, the occluded state is an intermediate that has a number of important and 28 

specific co-evolved pairs that are critical for linking the outward and inward-facing 29 

conformations. In addition, the methods used to generate these landscapes did not 30 

consider whether structural features captured in specific structures were transferable to 31 

other family members. Here, we decided to generate a free energy landscape for the 32 
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fructose transporter GLUT5 using family-wide information in the form of coevolving 1 

contacts. We chose GLUT5 because it is the only transporter with experimental 2 

structures in both fully outward- and inward-facing conformations21 and because our 3 

recently determined free energy landscape using a more traditional enhanced sampling 4 

method can serve as a comparison40. 5 

The most efficient enhanced sampling techniques require the choice of a low-6 

dimensional collective variable (CVs) set that encompass all degrees of freedom 7 

implicated in a conformational transition28,41. Given that state-dependent contacts 8 

constitute the driving force for a conformational transition, CVs based on those are well 9 

suited to distinguish conformational states and to enhance transitions between them. 10 

We thus trained a support vector machine (SVM) to distinguish the modelled structures 11 

of adjacent states (Figure S2) and extracted therefrom top coevolving contacts, as 12 

inferred from their high SVM coefficients. We then designed state-specific CVs as 13 

weighted sums of distances between top state-specific coevolving pairs, using as 14 

weights the SVM coefficients (See Methods). Finally, we ran accelerated weighted 15 

histogram (AWH), an efficient enhanced sampling method natively available in 16 

GROMACS, using these CVs as input. Accumulating 250-650 ns of MD simulations 17 

enabled an extensive sampling of the conformational space and the estimation of the 18 

corresponding free energy landscapes (Figure 5A-C) with satisfactory accuracy (Figure 19 

S1). Extracting the free energy along the minimum free energy path linking adjacent 20 

states made it possible to estimate a continuous 1d landscape that follows the minimum 21 

free energy path linking the outward-facing and the inward-facing states via the three 22 

occluded intermediates (Figure 5D, see Methods). 23 

In the absence of substrate, the most favorable conformation for GLUT5 is the outward-24 

facing state, which is consistent with biochemical analysis and the salt-bridge network 25 

on the intracellular side stabilizing this state20,21,42. The outward-open and outward-26 

occluded states appear to be of comparable free energies, and the barriers between the 27 

outward-open and outward-occluded states are fairly low at 4 to 8 kJ/mol, respectively 28 

(Figure 5D). This observation is consistent with the fact that the structure of GLUT3 29 

has been determined in both outward-open and outward-occluded states, even in the 30 

presence of a bound maltose23. The largest energetic barrier of ~34 kJ/mol is located 31 

between the outward occluded and the inward-occluded state (Figure 5D). This barrier, 32 

presumably arises in part from the breakage of the strictly-conserved salt-bridge 33 
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network, and is consistent with the activation barrier of 10 kcal/mol as estimated by 1 

GLUT1 kinetics (43 kJ/mol) 43,44(Figure 6E). Notably, the relaxed GLUT5 occluded 2 

state does not fall on the largest energetic barrier corresponding to the transition state 3 

(Figure 5). However, in the presence of a substrate sugar, GLUT5 passes through a 4 

transition state that closely matches the occluded state of PfHT140. Our analysis 5 

indicates that coevolution-driven MD simulations are detecting an energetic minimum 6 

for an occluded state prior to the transition state which has not been experimentally 7 

observed (Figure S3). It is possible that the co-evolution analysis is detecting a pre-8 

transition state, which is likely to be lowly populated in the presence of a substrate 9 

sugar. Taken together, we conclude that using evolutionary-based collective variables 10 

enables us to obtain sugar porter conformational free energy landscapes using AWH 11 

using simulations of the order of hundreds of nanoseconds. This represents an increase 12 

in performance by at least an order of magnitude compared to all of previous 13 

attempts38,45,46. 14 

 15 

Family-wide state-dependent interactions 16 

Having validated that the top co-evolving pairs can be combined into collective 17 

variables able to connect the different conformational states and describe the energetics 18 

of transitions between them appropriately, we scrutinize the interactions that went into 19 

the construction of these CVs by projecting them onto the models of GLUT5 states 20 

(Figure 6). Notably, these interactions are more robustly defined than in the previous 21 

analysis shown in Figure 3, since those were based on the analysis of a reduced set of 22 

experimentally resolved structures. In addition, we track the functional diversity across 23 

the SP family by extracting the types of residue interactions found at these sites (Figure 24 

6). 25 

Starting from the outward-open state, as expected, salt-bridge forming residues appear 26 

to stabilize the outward-facing conformations, a network that is maintained through to 27 

the occluded state (Figure 6A). In addition, the residue Ser306 located at the back of 28 

TM7b has co-evolved to form an interaction to Gln366 interaction in TM9, an 29 

interaction seen as Thr/Arg or Lys in the STP members and as between small and/or 30 

polar residues in the rest of the superfamily (Figure 6B).  31 
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The outward-occluded state is characterized by a bend in the TM7b helix, which 1 

occludes sugar exit2,47. The contact analysis shows that this state appears to be stabilized 2 

by co-evolving pairs between Tyr297 in TM7b and Asn325 and His387 in TM10a, 3 

which are peripheral to the sugar binding-site and could therefore be connected to sugar 4 

binding (Figure 6C). This interaction remains formed through to the inward occluded 5 

open state. In most other GLUT members and in the HXT proteins, Tyr297 and His387 6 

are replaced by Phe residues that are expected to interact with TM10a residues via 7 

hydrophobic or pi-pi interactions.  8 

In the occluded state, TM7b transitions from a bent to broken helix, which occludes the 9 

sugar-binding site and moves TM7b closer to TM1. Interestingly, Asn40 of TM1 forms 10 

a hydrogen bond with the backbone residues at the break-point in TM7b, an interaction 11 

that remains formed through to the inward open states (Figure 6D). The Asn40 is 12 

conserved in PfHT1 and mutation to alanine was shown to severely impair transport16. 13 

In most other family members, a hydrogen bond is made possible by the presence of a 14 

small polar residue in TM1, highlighting that stabilized TM7b closure is generally 15 

connected to interactions in TM1 as early as in the occluded state.  16 

In addition to the most outward-facing salt bridge network (Figure 6A) breaking, 17 

rearrangements of TM10a helix and formation of the Tyr374 (TM10)-Thr318 (TM8) 18 

hydrogen bond characterizes entry into the inward facing states (Figure 6F). These 19 

positions often feature residue pairs capable of interaction either via hydrophobic 20 

interactions or H-bonding (Leu/Val-Ala in STPs, Asn/Tyr-Thr/Ser in the rest of the 21 

family). The formation of this contact in the inward occluded state is critical 22 

determinant for the rocker switch motion, as the resulting rearrangement of TM10a 23 

promotes the tilting of the peripheral helices, which ultimately rocks the helical bundles 24 

into an inward facing state. 25 

For the intracellular gate to open, the residual Glu401-Arg159 salt bridge (Figure 6E) 26 

must completely break. Inspection of the distribution of the minimum distance between 27 

Glu401-Arg159 contact across reveals that it increases from an average of 1.4Å in the 28 

occluded state, to 3.4Å in the inward occluded state. The weakening of Glu401-Arg159 29 

presumably contributes to releasing TM10b. Entry into the inward-open state, 30 

stabilizing the tilted TM10b, features the full breakage of the Glu401-Arg159 31 

interaction, and Glu401 forming a salt bridge with a different partner, namely Arg341 32 
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(Figure 6G). The rotation of TM10b shifts the occluding Leu397 residue away from 1 

intracellular pathway to the sugar binding site, opening the intracellular gate fully. This 2 

state is also stabilized by additional strictly conserved hydrophobic contacts in the 3 

TM10-TM7 interface (positions 397-400 in GLUT5, which rearrange from an 4 

interaction with TM4 in the outward-facing and occluded state) (Figure 6G and S5).  5 

 6 

Coevolving residues support proton-coupling in sugar porters 7 

Having characterized the aspects of the sugar porter transport cycle that are likely 8 

conserved across the family, we turn to family-specific features, with a focus on the 9 

differences between passive and proton-coupled transporters, such as XylE. The current 10 

working model is that an aspartic acid reside in TM1 (Asp27 in XylE) is allosterically 11 

coupled to the sugar transport, but does not participate directly in sugar binding2,36,48,49. 12 

Indeed, the aspartic acid to asparagine mutant has the same sugar-binding affinity as 13 

wildtype50. Rather, it is thought that the protonation of the TM1 aspartic acid is required 14 

for transport as its breaks the outward-facing-specific salt-bridge interaction to an 15 

arginine residue Arg133 on TM4. Based on the occluded PfHT1 structure2, highlighting 16 

the coupling between TM1 and TM7b, a latch mechanism for proton-coupling was 17 

proposed2. Simplistically, breakage of the Asp27-Arg133 salt-bridge enables TM1 to 18 

come closer to TM7b and TM7b only comes close enough to TM1 when sugar is 19 

present. Formation of the occluded state is catalyzed by sugar binding, but in proton 20 

coupled transporters, this is only enabled by the release of the latch (Figure 7A and S4).  21 

The co-evolution analysis is consistent with TM1 and TM7 interactions driving 22 

formation of the occluded state. More specifically, we indeed see that the equivalent 23 

TM1 Asp and TM4 Arg salt-bridge is broken in occluded states of all known proton-24 

coupled symporters, such as STP10. The details of the conformational rearrangement 25 

differ, however. After breaking of the latch, in the occluded state of XylE, Arg133 26 

forms a salt bridge with the neighboring TM6 Glu206 residue (Figure 7A). In STP10, 27 

on the other hand, Glu206 is replaced by an alanine, and R133 rearranges by adopting 28 

a different rotameric state facing towards TM11, where it appears to be stabilized by an 29 

interaction with the phospholipid headgroups (Figure 7B and S4).  30 

Most GLUTs are thought to be passive transporters and do not possess an acidic residue 31 

at position 27, consistent with its purported role as proton carrier (Figure 7D). 32 
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Intriguingly, however HXTs, which are generally not proton-coupled, do carry an 1 

acidic residue in this position. Our analysis reveals that this is explained by the fact that 2 

these transporters contain a latch interaction that is maintained throughout the 3 

conformational cycle thanks to a large-scale pivot of the first helical bundle (Figure 7C 4 

and S4). This conformational change unique to HXTs is enabled by helix breaking 5 

residues at position 202 (Pro/Gly), which are replaced by mostly hydrophobic residues 6 

in the rest of the family (Figure 7D). GLUT2, a passive transporter that nevertheless 7 

possesses an acidic residue at position 27, has a Serine in position 205 which interacts 8 

with D27, which appears to help the salt bridge remain formed in the occluded state 9 

(Figure S4D).  10 

 11 

Discussion 12 

Alphafold2 has made it possible to produce high-quality models of structures associated 13 

with any amino acid sequence27. Nevertheless, these structures represent an arbitrary 14 

conformational state, and do not capture the conformational heterogeneity that enables 15 

protein function. Modifying the MSA depth enables to make models of alternate states, 16 

though in a non-deterministic manner30. In this work, we have used i. AlphaFold 17 

models, ii. coevolution analysis encoded by family-wide multiple sequence alignments 18 

and iii. state-specific contacts extracted from the ~20 structures to guide enhanced MD 19 

simulations. Our work goes beyond the analysis of static structures and enables the 20 

separation of state-specific and transporter-specific features, thus firmly establishing 21 

the family-wide determinants of the conformational cycle as well as establishing 22 

specificities of GLUT5 and of proton-coupled sugar transporters. By introducing 23 

coevolution as a measure of predicted interaction, we are able to develop models that 24 

go beyond the comparison of structures only. We also minimize information that may 25 

be lost during dimensionality reduction, as demonstrated by our validation on newly 26 

reported structures. 27 

Using state-dependent coevolution-based contacts, we show that we can create a low-28 

dimensional projection that describes the transition between adjacent states. When 29 

derived into a set of collective variables used in enhanced sampling molecular dynamics 30 

simulations, we can construct weighted conformational ensembles, or in other words 31 

free energy landscapes of the process. Comparing our convergence times (to less than 32 
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0.01 kJ/mol within 250-650ns per walker and system) to previous works on similar 1 

systems38,45,46 and given the agreement between the activation barrier estimate from 2 

kinetic measurements43,44 we conclude that the introduction of coevolution data is a 3 

powerful approach in obtaining accurate free-energy landscapes efficiently.  4 

The conformational ensembles reveal an overall functional cycle that is largely 5 

consistent with the evaluation of experimentally resolved structures, yet also provides 6 

details that were previously unknown. Across the larger MFS family of transporters, 7 

cavity-closing contacts are predominantly formed between TM1-2 and TM7-8 on the 8 

outside and between TM4-5 and TM10-11 on the inside2,17. However, the sugar porters, 9 

as exemplified by GLUT transporters, coordinate the sugars very asymmetrically with 10 

only a single residue in the N-terminal bundle coordinating the sugar. As such, local 11 

rearrangements during the transport cycle are assumed to be primarily established by 12 

local changes in TM7b and TM10b half-helices, which coordinate the sugar in the C-13 

terminal bundle. Although sugar porters are made up two structurally similar bundles, 14 

the asymmetrical rearrangements are more akin to the conformational changes 15 

described by rocking-bundle proteins2,17, which are made up from structurally distinct 16 

bundles. Consistently, co-evolution analysis is able to detect the importance of the 17 

substrate gating regions for driving conformational changes. In particular, the co-18 

evolution analysis shows that TM7b and its interaction with TM1 have evolved to come 19 

together already in the occluded state, i.e,, rather than only interacting in the inward-20 

facing conformatios. This conclusion is in agreement with the occluded structure seen 21 

for PfHT116, wherein TM7b had moved completely inwards to break over the sugar-22 

binding site.  23 

The requirement for TM1 to interact with TM7b in formation of the occluded state 24 

further explains how sugar porters can evolve to be proton-coupled, even if the proton-25 

accepting residue itself does not directly coordinate the sugar, i.e., unlike in other sugar 26 

transporters, such as LacY. Simplistically, an aspartic acid residue in TM1 forms a salt-27 

bridge with an arginine residue in TM4, restricting its movement. Protonation of the 28 

aspartic acid residue removes this constraint and TM1 can come closer to TM7b, which 29 

itself is stabilized inwards when it binds a substrate sugar. Interestingly, an acidic 30 

residue in TM6 (Asp206, XylE numbering) is further required to provide a favorable 31 

alternative conformation for the unpaired arginine. In the passive GLUT transporter 32 

GLUT2 and the yeast hexose transporters, for example, this additional acidic residue is 33 
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missing and the salt-bridge is still retained due to the assistance of a nearby serine 1 

residue (Ser205, XylE numbering). Nevertheless, STP members are proton-coupled and 2 

yet they do not possess an additional acidic residue in TM6. Rather, the arginine residue 3 

is able to snorkel to the membrane interface in the unpaired state. Notably, although 4 

TM7b and TM1 are important, they are part of a larger interaction network that also 5 

includes, for example, how TM7b interacts with TM8 in the outward-open state.  6 

 7 

Consistent with the orchestrating role of TM7b in substrate translocation, the co-8 

evolved interaction with TM1 is retained across the entire second half of the transport 9 

cycle. In contrast, the inward-facing gating helix TM10b is likely to have a more 10 

passive role and a co-evolved interaction with TM4 is only formed in the occluded state. 11 

Nevertheless, TM10b dynamics are likely to be important and its possible that TM10b 12 

movement is facilitated by the stabilization of TM10a with TM8 on the extracellular 13 

side (Figure 6F). The bottom of TM10a harbors a strictly-conserved acidic residue, 14 

which is part of the intracellular salt-bridge network. The contact maps initially 15 

generated for all sugar porters indicated mostly discouraged contacts between TM4 and 16 

TM10b residues in the inward-occluded state (bundle 5 contact in Figure 3). In addition,  17 

the GLUT5 models show that whilst most contacts are indeed broken, there is still an 18 

encouraged contact between TM4 and TM10b residues in the inward-occluded state 19 

(Figure 6F, S5B). It thus appears that, at least in GLUT5, only one of the salt-bridge 20 

pairs are fully broken between the occluded to inward-occluded states. Such a result is 21 

intriguing, and implies that even the rocker-switch bundle movement might utilize 22 

asymmetric rearrangements. 23 

Lastly, GLUT transporters are shown as textbook examples of how small molecule 24 

transporters are functional equivalents to enzymes2. Key to understanding catalysis is 25 

to understand how the transition state is formed during substrate translocation. The 26 

transition state, however, is only transiently occupied and therefore difficult to 27 

experimentally capture. Nevertheless, the parasite transporter PfHT1 has an unusually 28 

very polar TM7b gate, which has made it possible to capture an occluded state with 29 

sugar present16,26 i.e., notably this state is unlikely to represent a transition state for 30 

PfHT1. Nonetheless, out of the models we built, PfHT1 has highest number of state-31 

specific contacts in both gates. We speculate that the PfHT1 could represent a pre-32 
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transition state (Figure 5), with further dynamics between the bundles required to access 1 

the transition state. In summary, although many questions remain unanswered, our 2 

novel approach provides a rational framework for understanding how sugar porters 3 

function at the molecular level, and provides the information to re-engineer sugar 4 

porters with different characteristics, which might be otherwise inaccessible by 5 

traditional forward-evolution approaches. At a conceptual level, our work highlights 6 

how even the most simplistic type of transporters have evolved fine-tuned and intricate 7 

interactions to achieve substrate translocation. 8 

 9 

Methods 10 

Coevolution analysis 11 

To construct the sequence alignment at the basis of coevolution analysis, a 12 

representative sequence from each member of the sugar transporter family was taken 13 

as a seed for a sequence search against the Uniref90 database51 using PSIBLAST52. In 14 

this way, a sufficient number of diverse sequences was consistently found around each 15 

member (Meff>1000, where Meff denotes the number of sequences with less than 80% 16 

identity). The sequence libraries were then aligned within each subfamily using a stair-17 

shaped guide tree53 in the MUSCLE alignment algorithm54. The resulting MSAs were 18 

then used as input for Direct Coupling Analysis (DCA), where the aim is to fit a Potts 19 

model with functional form31: 20 

𝑃(𝑥!"|𝑥#!" ) =
$
%!
exp	(𝑣!(𝑥!") + ∑ 𝑤!,'(

')$ /𝑥!", 𝑥'"1) (1) 21 

where the conditional probability represents the information from the entire MSA given 22 

the model parameters 𝑣! (representing position-wise information) and 𝑤!,' (representing 23 

pair-wise information). The notation 𝑥#!"  denotes the MSA without accounting for the 24 

i:th sequence. Thus, for every sequence, all other sequences are used to estimate the 25 

probability of observing the parameters. Parameters were fitted using maximizing the 26 

pseudolikelihood of observing a set of N sequences of length L55: 27 

ℒ/𝑣, 𝑤3(𝑥**, … , 𝑥(*)… (𝑥*+ , … , 𝑥(+)1 = ∑ ∑ ln𝑃(𝑥!"|𝑥#!" , 𝑣, 𝑤)(
,)*

+
")$  (2) 28 

Since the information about the pairwise information is contained within the w 29 

parameter, the evolutionary couplings Ci,j in a coevolution matrix C were calculated 30 

according to equation 3, and afterwards standardized to the N(0,1) distribution. 31 
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𝐶!,' = ∑ ∑ 𝑤!,'(𝐴, 𝐵)-*
.)*

-*
/)*  (3) 1 

The resulting coevolution maps had an average false positive rate (FPR) of 8.4% for 2 

the top 500 coevolving pairs, which corresponds to an average of 42 contacts. The 3 

coevolution maps from each sequence cluster were combined into a global coevolution 4 

map by calculating the average coevolution score at each position. Since members of 5 

the family were picked roughly equidistantly in sequence space (a sequence identity of 6 

around 50%, where possible), coevolution maps were weighted equally. In general, this 7 

procedure ensures that family-wide features are upweighted, whereas features present 8 

in only a few coevolution maps are down-weighted.  9 

Importantly, we did not choose to include all contacts, but merely the top t ones that 10 

were determined to be sufficient for distinguishing conformational states. t was 11 

determined using a procedure based on the available experimental structures.  First, 12 

experimental contact maps were calculated, where contacts were estimated from 13 

distances between pairs of residues filtered by a sigmoid function: 14 

𝑀(𝐴, 𝐵) = $
$0123(-5",$#6)

 (4) 15 

where rA,B is the minimum distance between residues A and B.  16 

Second, similarity between contact maps were defined as  17 

𝑑(𝑥, 𝑦) = 〈𝐶898⨂𝑀: , 𝐶898⨂𝑀;	〉 (5) 18 

, which was used to calculate a distance matrix between all experimental structures. 19 

Third, UMAP56 was used to obtain a 1D embedding of all experimental structures from 20 

the distance matrix, for which the pair-wise symmetrical KL-divergence57 between the 21 

five distributions was calculated. This KL-divergence was minimized with respect to 22 

the parameter t. The described procedure yielded a t of 183.  23 

  24 

State-specific structure prediction 25 

A Convolutional Neural Network (CNN) was trained to classify the 5 functional states 26 

using contact maps from experimentally determined structures.  27 

The input layer was of the size N2xC, where N is the number of total number of MSA 28 

columns, and C the number of experimentally determined contact maps. The output 29 
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layer was a simple vector with 5 nodes, each corresponding to an experimentally 1 

characterized state. 2 

The network architecture was designed to filter experimental contact maps by 3 

coevolution scores, and to avoid redundancy between adjacent residues involved in 4 

contacts. To implement these criteria, the input layer was followed by a filtering layer 5 

based on the optimized coevolution maps and by a pooling layer that gathered contacts 6 

formed by adjacent residue pairs. Lastly, two convolutions with sigmoid activation 7 

were applied to yield the output layer through an intermediate hidden layer. The 30-8 

dimensional hidden layer was included to ensure that one contact could appear 9 

combinatorically in different states. 10 

The loss function (equation 6) contained L2-regularization to prevent explosion of the 11 

weights. 12 

𝐿(𝑒, 𝑑) = 	∑ (𝑒! − 𝑑!)-"
!)* + ∑ 𝑒!-"

!)*  (6) 13 

, where e is the value of the output nodes during training and d the target values of the 14 

same nodes. Training involved thorough regularization and constriction e.g. by the 15 

aforementioned pooling but as the training set only contained contact maps from 36 16 

individual chains, many of which originating from the same deposition, overfitting the 17 

network was unavoidable58. The resulting model should thus not be used to make 18 

predictions. 19 

To identify encouraged and discouraged contacts for each state, we performed layer-20 

wise relevance backpropagation (LRP)32 on all 5 output classes separately. Moreover, 21 

these scores are visualized for each feature contact pair with >0.1 relevance in figure 3, 22 

where highly scoring pairs in the pooling layer are highlighted with thick bands. 23 

The contacts that scored more than 0.1 through LRP were used to apply attractive and 24 

repulsive biases to guide starting models towards the desired functional state. 25 

Specifically, initial structures for each family member were downloaded from the 26 

AlphaFold2 database website. Then, MultiConstraint (repulsive) and 27 

AmbiguousConstraint (attractive) bias functions were applied to all heavy atom 28 

distance pairs in the RosettaMP minimization scheme with implicit solvent and 29 

membrane33. For repulsive MultiConstraint, the built-in Rosetta fade function was 30 

applied. For attractive AmbiguousConstraint, simple flat harmonics were applied. The 31 
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force constants were deliberately chosen as weak (< 20 Rosetta standard units) in 1 

relation to the native forces of the all atom energy function called 2 

membrane_highres_Menv_smooth59. The weight of the added constraints was 0.1 as 3 

not to overshadow the natural energetics of the protein system. The protein-membrane 4 

topology was predicted using TOPCONS60, which was accounted for using the 5 

AddMembraneMover. To fold the protein with the modified energy function, energy 6 

minimization with a Monte-Carlo component was applied using the provided fastrelax 7 

algorithm with 5 repeats. The optimization was conducted in cartesian space (using a 8 

pro_close weight of 0. and cart_bonded weight of 0.5 as recommended for cartesian 9 

minimization), rather than in Z-matrix form such that the constraints could be applied 10 

correctly.  11 

Additionally, to assess the quality of the predicted structures, the RMSD towards the 12 

structure of the closest available relative in the same conformational state was 13 

calculated. The closest available relative was determined by the BLOSUM62 distance61 14 

matrix, after filtering for the appropriate conformational state. 15 

 16 

 17 

Molecular Dynamics simulations 18 

All Molecular Dynamics (MD) simulations were carried out in GROMACS202162. The 19 

simulation systems containing the predicted structures of GLUT5 in the outward open, 20 

outward occluded, inward occluded and inward open states were prepared using the 21 

CHARMM-GUI membrane builder63. The systems contained the protein, embedded in 22 

a POPC bilayer plunged in a 0.1M KCl solution. The initial PBC box was 85x85x94 23 

Å3, ensuring at least 12.5 Å of water molecules between the protein and the PBC box 24 

end at least 10 lipid molecules between each PBC copy of the protein. The force field 25 

used was CHARMM36m for protein and lipids64, and TIP3P65 for water.  The models 26 

were equilibrated using the default CHARMM-GUI scheme with one minimization 27 

step, and 6 100ps restraint cycles with gradually released restraints in the NPT 28 

ensemble, followed by a production simulation of 10ns. The simulations were carried 29 

out using a 2-fs time step. The target temperature and pressure were set to 303.15K and 30 

1 bar respectively and maintained by a Nose-Hoover thermostat66 (coupling separately 31 

protein, lipids and solvent) and a Parrinello-Rahman barostat67 with semi-isotropic 32 
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coupling (p=5.0, compressibility 4.5*10-5). Hydrogen bonds were constrained using 1 

the linear constraint solver (LINCS)68, and long-range electrostatics were accounted for 2 

using the particle mesh Ewald (PME) method beyond the 12Å electrostatic cutoff69.  A 3 

neighbor-list cutoff was used for vdw interactions with rvdw=12Å and a switching 4 

function starting at 10Å. 5 

 6 

Collective variable determination 7 

A support vector machine (SVM)70 was trained on all predicted structures to separate 8 

adjacent states (outward occluded and outward open, outward occluded and inward 9 

occluded, and inward occluded and inward open). We avoided training on the occluded 10 

state given that only one sugar porter, pfHT1, was resolved in that state, possibly 11 

representing a functional outlier. To also keep track of the species-specific features of 12 

each model, we performed PCA71 on the same training set (represented in the y-axis of 13 

figure S2, supplementary information). Indeed, the same procedure on the alphafold27 14 

input structures showed that the highest variance was in species-specifity, not 15 

conformational states. Ideally, we sought to preserve the species-specific features while 16 

only switching conformational states. 17 

The highest SVM coefficients (> 0.193, as determined by the first gap in the histogram 18 

of coefficients) were divided into two separate components based on their sign. This 19 

yielded two collective variables, with CV1 describing contacts specific to state 1 and 20 

CV2 describing contacts specific to state 2:  21 

𝐶𝑉$ =
$

∑ =>2(*,?!)%
!&'

∑ max(0, 𝑐!) ∗ 𝑥!+
!)*  (7) 22 

𝐶𝑉- =
$

∑ =@A(*,?!)%
!&'

∑ −min(0, 𝑐!) ∗ 𝑥!+
!)*  (8) 23 

where xi is the minimum distance between the two residues, and ci  the value of the 24 

coefficient from the SVM of contact i. The normalization factor was included to 25 

facilitate interpretability and to avoid assertion failures within the molecular dynamics 26 

code used. Given CV construction, a high value of CVj thus corresponds to a low 27 

amount contacts specific to state j.  28 

 29 
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Accelerated Weight Histogram simulations 1 

To reconstruct the complete conformational cycle of GLUT5, enhanced sampling 2 

simulations were run using the accelerated weighted histogram (AWH) method as 3 

implemented in GROMACS202162.  4 

Three distinct AWH simulations were run to model each transition, using as CVs the 5 

relationships between distances described in eq. 7 and 8. These CVs were coupled to a 6 

reference coordinate ξ(x) using a harmonic restraint function, using different force 7 

constants for each process (Table 1). The target distribution was chosen as uniform with 8 

a free-energy cutoff of 40-60 kJ/mol (Table 1) to avoid sampling of regions of high free 9 

energies. The free energy estimate was updated each 100 steps, gathering data from 10 

every previous tenth step.  11 

During the initial phase, the update bias size is first held constant (using a diffusion 12 

constant, as specified in Table 1, and an initial error of 10 kJ/mol), and then divided by 13 

three each time the CVs covers the entire target region. After the number of visits at 14 

each point grows larger than the histogram size at that point, the initial phase is exited, 15 

after which the update size is continuously and exponentially decreased according to 16 

an exp-linear setting. All AWH simulations were run with 4 walkers in parallel with 2 17 

starting in each conformational state at the extremes of each process. 18 

Convergence of the AWH calculations was determined according to three criteria: the 19 

free energy landscape was stable over time, the coordinate distribution along the 20 

minimum free energy path reached a standard deviation of less than 0.1 from the mean 21 

coordinate distribution, and the changes in free energy estimate were below 0.5kJ/mol. 22 

The simulations were extended by 25 ns after these three criteria were met to ensure 23 

that these properties held true over time. The regions of high free energy (above the 24 

process-specific cutoff, see table 1) of the free energy landscape were excluded from 25 

the convergence analysis. To assess the convergence graphically, the 2-norm every 26 

100ps was calculated (Figure S1).  27 

Since four independent walkers were used a coverage diameter of 4Å was introduced, 28 

which forces each walker to explore an area of 4Å around every point before sharing 29 

the bias with all other walkers. In practice, this results in walkers overlapping in phase 30 

space, which provides each point with a free energy estimate based on multiple walkers.	31 
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Effectively, this provides an inherent CV quality control for the method as different 1 

walkers should produce consistent free energy estimates. 2 

Seeing as all three processes (outward opening, rocker switch and inward opening) were 3 

run independently, we needed a method to combine the results into one free energy 4 

landscape. To this end, we calculated the minimum free energy paths between the 5 

deepest basins in the free energy landscapes by the following procedure. First, placing 6 

60 points along a random path in the landscapes and relaxing the points by steepest 7 

decent on the landscape. Second, the position of the points was updated by forcing 8 

equidistance. The procedure was repeated until reaching convergence with a tolerance 9 

of 0.01Å. Due to the randomness in choosing the initial path and risk of ending up in a 10 

local minimum this procedure was repeated 100 times, where the minimum energy path 11 

was determined as the one with the lowest barrier. With the minimum free energy paths 12 

for each landscape calculated, the 2D free energy landscape was projected onto the path 13 

by Boltzmann averaging all the closest points to each point along the path. The 1D free 14 

energy landscapes where then stitched together by cutting the paths off where the 15 

minimum RMSD between to adjacent processes was found, yielding one concatenated 16 

free energy landscape for all three processes.  17 

 18 

  19 
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 4 

 5 

Table 1. Input parameters used for the AWH simulations. The force constant 6 
determines the resolution of the free energy surface and the bias towards the reference 7 
coordinate. The cover diameter determines the radius in CV space that has to be covered 8 
before a walker shares the bias at that point. The free-energy cutoff determined at which 9 
level sampling is deemed uninteresting. The convergence time is the simulation time 10 
per walker that was needed to achieve convergence according to the stated criteria. 11 

 12  
Diffusion 
Constant 

nm2ps-1 
 

Force constant kJ	
mol-1nm-2 
 

Cover 
diameter 

nm 
 

Free-energy 
cutoff kJ	
mol-1 

Convergence 

time 

 ns/walker 
 CV1 CV2 CV1 CV2 CV1 CV2 

Outward 
Opening 

0.0005 0.001 10000 50000 0.4 0.4 60 374 

Rocker 
switch 

0.001 0.001 50000 50000 0.4 0.4 60 653 

Inward 
Opening 

0.0005 0.0005 30000 30000 0.4 0.4 40 86 
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 17 
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 1 

 2 
Figure 1. Available structural and evolutionary information A. The phylogenetic 3 
tree of the sugar transporter family, based on an multiple sequence alignment calculated 4 
by the MUSCLE algorithm. Tree generated using iTOL. The available experimental 5 
structures for each branch are highlighted as colored circles in the proportions that they 6 
appear in. The subfamilies represented in this tree are the mammalian sugar transporters 7 
(GLUTs), the bacterial and parasitic outliers (pfHT1, XylE and GlcPse), the plant sugar 8 
transporters (STPs), and the fungal hexose transporters (HXTs). Sequences were 9 
retrieved from UniProtKB B. Clipped surfaces of representative structures of each 10 
functional state arranged according to the conformational cycle of sugar transporters. 11 
Note the alternating access to the intracellular and extracellular solvents throughout the 12 
cycle. C. A 2D embedding of the sugar transporter family in sequence space, using as 13 
similarity measure scores from the BLOSUM62-derived distance matrix. The 14 
embedding displays the phylogenetic distance between different branches of the family 15 
and SP are labeled as dots, colored according to their phylogenetic proximity. D. PCA 16 
projection of the available AlphaFold2 models in the sugar transporter family using as 17 
features residue-residue distances. SPs cluster according to phylogenetic proximity 18 
rather than conformational state 19 
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 1 
 2 

Figure 2. The state-specific structure prediction method. A. An overlay of the top 3 
200 coevolving residue pairs (blue) and the experimental contact map of the bacterial 4 
XylE structure 4ja3 in an inward occluded state (orange). The secondary structure 5 
contacts from the coevolutionary analysis were omitted B. The architecture of the 6 
neural network used to train to predict conformational states from contacts between 7 
residue pairs. The first step consists in filtering out the low-coevolving contacts by the 8 
coevolution-based filtering, after which a restricted convolutional layer works to pool 9 
together close contacts in 4x4 grids, to account for the fact that contacts between 10 
adjacent positions often serve similar functions. Then, two unrestrained convolutions 11 
connect the aforementioned layer to the hidden layer and to the 5-dimensional output 12 
layer, each node representing a single conformational state. C. The bias application. 13 
The highly encouraged and discouraged contacts are translated into Ambiguous 14 
Constraint and Multi Constraint type biases in the RosettaMP fastrelax module, with 15 
the functional forms displayed in the middle panel. Using as input Alphafold2 models 16 
of each member in the family, the biases are applied and the energy is minimized in a 17 
Monte-Carlo fashion, repeated to generate 100 models. The final structure is chosen as 18 
the model with the lowest energy score value. 19 
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 1 

 2 

 3 

 4 

 5 

Figure 3. Network representations of the state-specific contact maps from the LRP 6 
analysis of the trained neural network. Nodes are labelled by the helix they are a part 7 
of, and the edges are colored by their sign in the LRP - blue represents discouraged 8 
contacts, and red represents encouraged contacts. Consensus contact maps of all states 9 
are shown in light grey in the background. Residue bundles that are encouraged or 10 
discouraged in a concerted manner (as revealed by their high importance in the pooling 11 
hidden layer of the neural network, Table S2) are highlighted with thick lines.   12 
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 1 
 2 
 3 
 4 
 5 
 6 
Figure 4. Quality of structure prediction of state-specific models of SPs  A. 7 
Histogram of RMSD of the structural models (Rosetta, blue and MD-relaxed, orange) 8 
from their closest relative in the same conformational state. The distributions of the 9 
MD-relaxed structures colored according to state and phylogeny (see color definition 10 
in figure 1C) are shown above the histogram. Additionally, the targets with available 11 
experimental structures are indicated with black dots. B. Alignment between STP10 12 
inward open model and the newly solved 7AAR STP10 structure in the same 13 
conformational state. A helical kink not present in any experimentally determined 14 
structure so far is shown as an example of a species-specific feature that is captured by 15 
our structure-prediction protocol. C. (left) Alignment between the GLUT5 outward-16 
open model and an experimental structure of the same isoform in the same state (PDB 17 
ID 4YBQ). (right) Alignment between the MD-relaxed GLUT5 outward-open model 18 
and PDB 4YBQ.  19 
  20 
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 1 
 2 
 3 
 4 
 5 
Figure 5. The entire conformational cycle is captured by accelerated weight 6 
histogram simulations. A. Free energy landscape of the outward opening process. The 7 
most populated free energy basins are labeled according to annotation based on visual 8 
inspection and RMSD calculations of snapshots from the basins to the available 9 
experimentally determined structures. Projections of models of the outward open and 10 
outward occluded models of the various SPs are shown as symbols colored according 11 
to figure 1C. The minimum free energy path connecting the outward open and occluded 12 
states is highlighted in black. Note that many outward occluded models fall in the basin 13 
representing the occluded state, most likely because of the small structural difference 14 
between a bent and broken TM7b helix. B. Free Energy landscape of the rocker switch 15 
process. Representation as in A. Note that although not trained on the occluded models, 16 
models mostly either fall in the barrier region or in the GLUT5 occluded basin. C.  Free 17 
Energy landscape of the inward opening process. Representation as in A. D.  1-D free 18 
energy landscape of the full conformational change, determined by stitching together 19 
minimum free energy paths in panels A-C. The concatenation points were found by 20 
determining where along the respective minimum energy surfaces the maximum 21 
structural overlap (according to the RMSD metric) was found. Representative structural 22 
models of each of the most populated basins for are found at the top of the panel, and 23 
the projected positions of the experimental structures are shown along the dashed red 24 
line. 25 
 26 
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 1 

 2 
 3 
Figure 6. Summary of the structural determinants responsible for the cycling 4 
between adjacent conformational states. Contacts are characteristic of the first 5 
conformation they appear in, but they can be maintained more or less throughout the 6 
cycle depending on the family members. The snapshots are of the GLUT5 models used 7 
as a representative member. The bottom right of every panel contains information about 8 
which states the contacts are present in. (Outward Open/closed (OO/OC), occluded (O) 9 
or Inward Open/Closed (IO/IC)) A. Salt bridge network at the intracellular side. This 10 
network is intact in all outward facing states, but breaks during the rocker switch motion 11 
(except for the E401/R159 contact, see panel E). B. TM7b-TM9 interface responsible 12 
for stabilizing the outward-open conformation of TM7b, of which the hydrophobic 13 
contacts are only present in the outward open state. C. TM7b contact network 14 
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responsible for promoting both the bent and broken conformation of TM7b. The 1 
position of N325 and H387 necessitates the rotation of TM7b which occludes the 2 
extracellular gate. D. Backbone contact formed between TM7b and TM1, which is only 3 
possible when TM7b is completely broken. E. TM10b-TM4 interactions that are the 4 
last occluding contacts to break before the intracellular gate opens. F. TM10a-TM8 5 
contacts responsible for stabilizing the new inter-bundle angle present in the inward 6 
facing states. G. Salt bridge and hydrophobic nexus responsible for stabilizing the 7 
inward-open conformation of TM10b, which fully unblocks the binding site from the 8 
intracellular side. H. MSA of some representative members at positions shown 9 
throughout panels A-G. Since model training was performed on all predicted models 10 
using highly coevolving residue pairs as features, the type of interaction present in 11 
different subfamilies can be tracked in this MSA. 12 
  13 
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 1 
Figure 7. Structural and Evolutionary basis for proton coupling in the sugar 2 
transporter family. A. Proposed cartoon model for proton coupling in XylE, showing 3 
the highlighted salt bridge network rearrangements between the outward open (orange) 4 
and occluded (green) conformational states. Note how these rearrangements facilitate 5 
the closure of the extracellular gate. B. Proposed cartoon model for proton coupling in 6 
the STPs, showing the highlighted salt bridge network rearrangements between the 7 
outward open (orange) and occluded (green) conformational states. Note how these 8 
rearrangements facilitate the closure of the extracellular gate, and how R133 interacts 9 
with another latent salt bridge partner than in XylE.  C. Proposed cartoon model 10 
explaining why HXTs generally lack proton coupling, showing the highlighted salt 11 
bridge network rearrangements between the outward open (orange) and occluded 12 
(green) conformational states. Note how the crucial R133-D27 contact can stay formed 13 
even in the occluded state due to a tilt of the entire helical bundle. D. MSA of a selected 14 
subset of proton-coupled and non-proton coupled sugar transporters, with residues 15 
labeled according to the XylE numbering.  16 

 17 
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