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Abstract

Analysis of single-cell transcriptomes can identify cell populations more abundant
in one sample or condition than another. However, existing methods to discover them
suffer from either low discovery rates or high rates of false positives. We introduce
Dawnn, a deep neural network able to find differential abundance with higher accuracy
than current tools, both on simulated and biological datasets. Further, we demonstrate
that Dawnn recovers published findings, promising novel biological insights at single-cell
resolution.

1 Introduction
Single-cell RNA sequencing allows the comparison of samples using the transcriptomes
of individual cells. A common task is to identify cell populations that exhibit differ-
ential abundance (DA) across samples or conditions in a study, for example enriched
or depleted cell populations between treated and control conditions in a drug trial, or
differences between patients under the same treatment or treatment time points.

Despite its importance, DA analysis remains a challenge. A naïve approach to
identifying regions exhibiting DA is to create clusters and identify those dominated
by just one cell population, sample, or condition. However, this method can perform
poorly if DA is split across multiple clusters, since the signal of enrichment or depletion
is split and therefore becomes challenging to detect (Figure 1).

To address this problem, recent methods such as Milo [1], DA-seq [2], and MELD [3]
attempt to identify DA without performing clustering whilst moderating the false dis-
covery rate (FDR) [1].

In this paper, we present Dawnn (differential abundance with neural networks),
which improves DA identification over existing methods whilst matching their low
FDR. Dawnn uses a deep neural network model that has been trained to estimate
the relative abundance of cells from each sample or condition in a cell’s neighbourhood.
Our approach differs from existing ones since, instead of fitting traditional statistical
models to a nearest-neighbour graph of cell labels, we have instead trained our algo-
rithm to predict the probability with which each cell was drawn from a given sample
or condition using simulated training datasets.

We evaluate Dawnn’s performance using the benchmarking procedures and datasets
introduced by Dann et al. to assess Milo [1]. These comprise simulated and biological
datasets of varying complexity. We also evaluate our approach on three additional
published real-world datasets. We find that Dawnn yields higher true positive rates
than existing methods whilst maintaining low rates of false discovery (the proportion
of cells incorrectly claimed to be in populations with differential abundance). We also
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(a) DA regions correlated with clus-
ters.

(b) DA regions uncorrelated with
clusters.

Figure 1: Successful DA identification using clustering requires DA regions to correlate
with assigned clusters. The fill and outline colours of a cell indicate condition and cluster,
respectively. Regions of DA are outlined in yellow (in this figure, a cell is defined as in a
DA region if it and all immediate neighbours are from the same sample). a If regions of DA
correlate with clusters, then they can be detected using clustering. b If regions of DA do
not correlate with clusters, then they may not be detected using clustering.

demonstrate that, as shown by Dann et al. for Milo, Dawnn is capable of recovering
and extending published findings of differential abundance [4], implying that its good
benchmarking performance generalises to real data.

In conclusion, Dawnn better identifies DA between cell populations, samples or
conditions than existing state-of-the-art algorithms and has a similarly low FDR. It can
thus lead to novel biological insights by highlighting which populations are perturbed
and thus worthy of further analysis. Dawnn is available as an R package1.

2 Results

2.1 Dawnn detects differential abundance using neural net-
works
Dawnn is designed to identify regions of differential abundance in cell populations com-
prising two samples or conditions. It differs from existing algorithms in its methodology
but employs the same basic assumptions, namely that each cell is assigned one of two
labels (Sa or Sb) and is associated with an individual unknown probability p of having
the label Sa (in effect, of being drawn from the sample or condition associated with
label Sa). We denote as ~p the vector of all probabilities p associated with a dataset. A
given single-cell transcriptomic dataset is thus an instantiation of labellings generated
according to ~p. Under this model, the task of detecting DA regions is equivalent to
that of identifying cells for which p differs substantially from the null distribution.

In general, differential abundance detection methods estimate ~p from a distribu-
tion of sample labels on a K-nearest neighbour graph. Batch effects can be mitigated
by generating the KNN from a batch-corrected dimensionality reduction (e.g. Har-
mony [5]). Existing DA detection algorithms estimate ~p by fitting a model (e.g. Milo’s
generalised linear or DA-seq’s logistic regression models) to this distribution. Dawnn,
on the other hand, is a neural network (Section 6.1) that has been taught to estimate
~p using simulated training data. Dawnn first estimates ~p from the sample labels of
the 1,000 nearest neighbours of each cell, then generates a null distribution of labels to
represent a dataset with no differential abundance by reassigning labels from a distri-
bution where both are equally prevalent. It then estimates ~p for this null distribution

1https://github.com/george-hall-ucl/dawnn
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dataset. For each cell, Dawnn tests the null hypothesis that it is in a region with no dif-
ferential abundance, calculating a p-value by fitting a beta distribution to the estimates
of ~p from the null distribution data and calculating the probability of observing at least
such an extreme a p under this distribution. Dawnn controls the false discovery rate
(FDR), the proportion of cells incorrectly classified as belonging to regions exhibiting
DA, using the Benjamini–Yekutieli procedure [6], a variant of the Benjamini-Hochberg
procedure [7] that does not assume independence between hypotheses. This more con-
servative FDR-controlling mechanism is necessary since the hypotheses associated with
neighbouring cells will be correlated. Pseudocode for Dawnn is given in Algorithm 1.

Algorithm 1: Dawnn (differential abundance with neural networks)
Input Vector ` containing each cell’s associated label
Input Matrix M containing labels from ` for 1,000 nearest neighbours of each cell
Input Neural network model NN trained to estimate ~p from M

1 ~q ← NN (M) // use NN to estimate ~p from M
2 `′ ← uniform distribution of the two unique labels in `
3 M ′ ← matrix of labels from `′ for 1,000 nearest neighbours of each cell
4 ~q ′ ← NN (M ′) // use NN to estimate ~p from M ′

5 (α′, β′) ← parameters of beta distribution fitted to ~q ′
6 ρ← p-values of observed ~p according to Beta (α′, β′)
7 Determine DA cells using ρ and Benjamini–Yekutieli procedure

We selected the architecture of Dawnn’s neural network from a pool of candidates
assessed using K-fold cross validation (Section 6.2). Our algorithm training and se-
lection procedures were designed to yield an unbiased model capable of estimating ~p
across many real-world datasets. To maximise generalisation and avoid bias during
benchmarking, we designed Dawnn’s training set to make no assumptions about the
overall structure of cell populations and only weak assumptions about the relationship
between the labels of cells within each neighbourhood (Section 4.1.1).

2.2 Dawnn detects differentially abundant regions with higher
accuracy than existing methods
We benchmarked Dawnn against Milo and DA-seq, since these were the two best-
performing approaches in Dann et al. [1]. We follow their benchmarking methodology
(Section 4.2.2), creating simulated and real datasets using their described approach [1].
We further assessed real-world performance using three additional biological datasets:
one from a publication of ours examining the effects of accelerating skin sheet growth [8];
another from a publication characterising organoids of bile ducts [9]; and a large dataset
comprising cells from the heart in a study of congenital heart disease [10]. Table 1
summarises our benchmarking datasets.

The simulated and experimental datasets provide the structure of cell populations
to which simulated labels can be assigned, providing the ground truth necessary to
measure algorithm performance.

For each simulated dataset, six cell populations were created. For each population,
multiple distributions of sample labels were simulated. Each label distribution was
defined by the subpopulation exhibiting differential abundance and the extent of dif-
ferential abundance in this subpopulation. For each choice of differentially abundant
subpopulation, three sets of sample labels were simulated for each maximum log2-fold
change in the set {1.22, 1.58, 2, 2.5, 3.17, 4.25}. These are the same log2-fold changes
employed by Dann et al.

A similar methodology was used to simulate sample labels for datasets from real
experiments. For these, eight subpopulations were chosen to be differentially abundant.
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Dataset Source Number of cells Number of cell types

Discrete clusters Simulation [1] 2,700 NA
Linear trajectory Simulation [1] 10,000 NA

Branching trajectory Simulation [1] 7,500 NA

Mouse gastrulation Experiment [11] 64,018 37
Accelerated keratinocytes Experiment [8] 18,787 3

Bile duct organoids Experiment [9] 72,803 1
Congenital heart disease Experiment [10] 157,293 14

Table 1: Test datasets used to assess true positive and false discovery rates.

These subpopulations corresponded to annotated cell types in the mouse gastrulation
dataset and to clusters in the keratinocyte, organoid, and heart datasets. The maximum
log-fold changes were identical to those in the simulated datasets.

We assessed algorithm performance by calculating the true positive rate (TPR), the
proportion of cells correctly identified as being in a DA region, and false discovery rate
(FDR), the proportion of cells incorrectly classified as belonging to a DA region. Dawnn
and Milo allow a maximum acceptable FDR to be specified. We set this threshold to
10%, as in Dann et al.

2.2.1 Simulated discrete clusters

In the simulated discrete clusters dataset, Dawnn achieved higher TPRs than Milo and
DA-seq (Figure 2a). The FDRs of Dawnn were comparable to those of DA-seq (in
most cases being almost indistinguishable from 0), whilst Milo yielded higher FDRs
(often above the desired 10% maximum). Both DA-seq and Milo did not identify a
high proportion of DA regions when the simulated fold change in these regions was
small. Dawnn, on the other hand, exhibited good performance for all simulated fold
changes.

2.2.2 Simulated linear trajectory

On the simulated linear trajectory dataset, Dawnn once more yielded higher TPRs than
those from DA-seq and Milo whilst maintaining FDRs close to 0 (Figure 2b). However,
the TPRs of all three algorithms were substantially lower than in the simulated discrete
cluster case, indicating a more complex scenario.

2.2.3 Simulated branching trajectory

For the simulated branching trajectory dataset, Dawnn again exhibited higher TPRs
than Milo and DA-seq, albeit with larger variation than for the other two simulated
datasets (Figure 2c). Dawnn again maintained an FDR predominantly below 10%,
unlike Milo, which often exceeded this threshold.

2.2.4 Mouse gastrulation

On the mouse gastrulation dataset [11], Dawnn exhibited considerably higher TPRs
than both Milo and DA-seq, incurring only a marginal increase in FDR (Figure 3a).
On average, Dawnn’s FDR remained below the 10% threshold. Whilst Dawnn’s FDR
was generally slightly higher than that of Milo, it exceeded 10% less often. DA-seq
exhibited the lowest FDR.
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(a) Discrete clusters (b) Linear trajectory

(c) Branching trajectory

Figure 2: True positive and false discovery rates of DA-seq, Milo, and Dawnn on simulated
datasets. Dawnn consistently identifies a larger proportion of DA cell populations whilst
maintaining a FDR below the 10% threshold.
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2.2.5 Growth-accelerated keratinocytes

On the keratinocyte dataset [8], we again found that Dawnn identified a larger propor-
tion of DA regions than Milo and DA-seq (Figure 3b). Dawnn maintained a far lower
FDR than Milo, which was often over the 10% desired threshold. DA-seq again had
the lowest FDR.

2.2.6 Bile duct organoids

On the dataset derived from organoids of bile ducts [9], Dawnn identified a higher pro-
portion of DA populations than Milo and DA-seq (Figure 3c). It once again maintained
an FDR below the specified 10%. The lowest FDR was that of DA-seq.

2.2.7 Heart cells

Finally, in the single-nucleus heart cell dataset, we again observed that Dawnn exhibited
a higher TPR than Milo and DA-seq. However, the TPRs of each method were more
variable than for smaller test datasets (Figure 3d). All three methods maintained FDRs
predominantly below 10%.

(a) Mouse gastrulation (b) Keratinocytes

(c) Bile duct organoids (d) Heart

Figure 3: True positive and false discovery rates of DA-seq, Milo, and Dawnn on real
biological datasets. As with the simulated cell population structures, for the real-world
data, Dawnn is capable of identifying higher proportions of differential abundance than
Milo and DA-seq whilst maintaining a low FDR (below 10%).
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2.2.8 Results summary

Overall, we found that Dawnn was able to identify a larger proportion of DA regions
than both Milo and DA-seq. With higher TPRs than existing methods, Dawnn was
still able to maintain low FDRs (generally below the specified 10% threshold). DA-
seq maintained FDRs close to 0 throughout, but suffered from TPRs generally far
lower than those in the other two methods. The TPRs of Milo were generally between
those of DA-seq and Dawnn, however it sometimes suffered from FDRs exceeding the
10% threshold. We validated these conclusions with statistical analyses (Section 5 in
supplementary materials)

2.3 Dawnn estimates the local distribution of fold changes
more accurately than existing methods
Since MELD cannot automatically classify cells as DA, we followed Dann et al. and
benchmarked against it by comparing the estimated ~p vectors against the ground truth
(i.e. the ~p used to simulate the sample labels). Figure 4 shows this relationship for
nine simulations of sample labels on the mouse gastrulation dataset. In the case of an
algorithm with perfect performance, all points would be on the red line indicating y = x
(i.e. for each cell, the predicted p matches the ground truth). Each plot also shows the
mean squared error (MSE), the mean squared difference between each estimated p and
its associated ground truth.

For all test instances, the MSE of Dawnn’s ~p estimates is at most 0.00171 (i.e. on
average Dawnn’s estimated ~p is within 0.042 of the ground truth). On the other hand,
the maximum MSEs of MELD and DA-seq are 0.00357 and 0.00466, respectively. The
MSEs of Dawnn’s estimates are less variable than those of MELD and DA-seq. MELD
has the smallest MSE for five of the benchmarking instances, whilst Dawnn has the
smallest on the remaining four. Dawnn has a smaller MSE than DA-seq in all but one
test instance. MELD provides more accurate estimates of ~p in the best case, whilst
Dawnn has the best performance in the worst case. In particular, MELD and DA-seq
underestimate ~p for cells in regions with high DA (i.e. with high p), whereas Dawnn
overestimates ~p for these cells.

2.4 Dawnn recovers published claims of differential abun-
dance
Dann et al. demonstrate that Milo is capable of recovering findings from Ramachandran
et al., who compared samples of healthy and cirrhotic livers [4]. We found that both
Dawnn and DA-seq are able to recover these findings at the single-cell level rather than
the neighbourhoods operated on by Milo. Figure 5 compares the outputs of these three
methods for this dataset.

For cell types labelled as differentially abundant by Ramachandran et al., the
outputs of all three methods report largely similar extents of differential abundance.
Within these groups of cells, as Dann et al. reported for Milo, both Dawnn and DA-seq
identify sub-populations differentially abundant in the opposite direction to the larger
population. In some cases, the cell-level nature of Dawnn and DA-seq allows them
to identify populations that are missed by Milo, such as T Cells (5) and PDCs. For
all cell types, Dawnn labels more cells as belonging to regions exhibiting differential
abundance than other approaches, using a log-fold change cutoff of approximately ±0.5
rather than the approximately ±1.5 and ±2 in DA-seq and Milo, respectively.
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(a) Dawnn

(b) MELD (c) DA-seq

Figure 4: Estimates of ~p vs. ground truth for Dawnn (a), MELD (b), and DA-seq (c). Within
each plot, rows correspond to different maximum upregulation in the differentially abundant
subpopulation (i.e. max ~p) and columns to different cell types chosen to exhibit differential
abundance. Mean squared errors are shown in the bottom right of each plot.
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Figure 5: Log-fold changes estimated by Milo (L), DA-seq (C), and Dawnn (R) on the liver
cirrhosis dataset of Ramachandran et al. [4].
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2.5 Dawnn and DA-seq have similar runtimes but are slower
than Milo
We compared the runtime of Dawnn against that of DA-seq and Milo on different sizes
of datasets (Figure 9). Importantly, for datasets up to 60,000 cells, the runtime of
all methods was below 16 minutes on a standard laptop, making them practical for
most studies. We found the fastest method to be Milo (which tests for DA within
neighbourhoods rather than at the single-cell level), with a runtime approximately
50% smaller than that of DA-seq and Dawnn (which both test for DA at the single-cell
level). Dawnn was approximately 10% slower than DA-seq. Crucially, the runtime of
Dawnn scales linearly with the number of cells in the dataset, allowing it to be used on
large datasets without becoming prohibitively slow.

3 Discussion
In single-cell transcriptomics, the identification of cell populations more abundant in
one sample or condition than another is a common and important task. However,
current methods are unable to do so with high rates of discovery whilst avoiding false
positives. Here we present Dawnn, an algorithm that identifies a higher proportion of
differential abundance than existing state-of-the-art methods whilst maintaining a low
rate of false discovery.

One explanation for why Dawnn achieves higher rates of discovery than current
approaches is due to how it determines statistical significance. Whilst DA-seq, for
example, only classifies as DA those cells with a more extreme estimate of p than any of
those in the dataset with shuffled labels, Dawnn calculates the probability of observing
at least such an extreme score with respect to a null distribution of shuffled sample
labels generated according to a uniform distribution. When designing Dawnn, we found
that applying the approach used by DA-seq made Dawnn unnecessarily conservative:
far fewer cells were classified as DA (i.e. the TPR was decreased for a only minimal
decrease in FDR). This finding suggests that employing Dawnn’s approach in other
methods may improve their performance.

Dawnn’s model inputs (sample labels rather than the label proportions used by DA-
seq) may also have contributed to its good performance. This approach allows a flexible
model, such as a neural network, to use the most useful data representation since it can
internally convert to a proportion-based representation if that yields greater accuracy.
Using sample labels as input loses no information, whereas using label proportions does
(Section 7). We thus recommend that, in future DA detection algorithms, label-based
representations be favoured over proportion-based ones.

Dawnn’s improved performance over Milo might be explained by its cell-level res-
olution. Its more consistent control of the false discovery rate may be partially due
to its use of the Benjamini–Yekutieli procedure, which does not assume independence
between the extent of DA expressed by neighbouring cells.

Testing the ability of DA detection algorithms to recover published findings for a
cirrhotic liver dataset (Section 2.4) reveals further advantages of Dawnn over existing
methods. First, the threshold for the point at which the fold change between sample
label proportions is statistically significant is considerably smaller in Dawnn than Milo
and DA-seq, despite both Dawnn and Milo attempting to be as conservative as one
another (i.e. to stay under an FDR of 10%). Therefore, Dawnn can identify more DA
populations of interest whilst preserving a low false discovery rate (as demonstrated in
Section 2.2). Second, the single-cell resolution of Dawnn and DA-seq allows them to
detect more sub-populations exhibiting DA than is possible with the neighbourhood-
resolution Milo, since neighbourhood-level averaging of fold change estimates leads to
signal from small populations being lost.

We found in Section 2.5 that, unsurprisingly, DA detection methods operating at
the single-cell level are slower than their neighbourhood-resolution counterparts due to
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the larger number of data points on which they operate. Despite this, we believe that
the ∼50% larger runtime is justified since it allows the single-cell resolution of the data
to be exploited fully. Since it remains possible to run the single-cell-resolution methods
on a matter of minutes on a standard laptop, we believe this slowdown to be irrelevant
in practice.

The pre-trained nature of Dawnn comes at the expense of flexibility in terms of
experimental design. Unlike Milo, Dawnn can only be used to assess differential abun-
dance in studies involving two samples or conditions (a limitation shared by DA-seq).
Further, Milo can control for batch effects by incorporating covariates related to the
experimental design in its statistical model. Dawnn’s pre-trained model again prevents
this, although a batch-corrected dimensionality reduction could be used when con-
structing the KNN graph (in fact, one is used for the growth-accelerated keratinocyte
dataset). Similarly, Dawnn’s pre-trained model requires a nearest neighbour graph of
1,000 neighbours for each cell, making the choice of the K parameter hard-coded, un-
like in other methods. We chose a large neighbourhood size as this allows differential
abundance to be detected at a range of scales (as in DA-seq). Dawnn’s performance
may be improved by allowing this parameter to be optimised by the user for their
dataset. Despite these decreases in flexibility in terms of experimental design and pa-
rameter choice, we believe that Dawnn’s ability to identify DA with higher accuracy
than existing methods means that it will prove invaluable in the typical assessment
of two samples or experimental conditions. Further, since Dawnn’s training code is
open-source2, its neural network can be retrained with K 6= 1000 if desired.

Whilst we have shown Dawnn to outperform existing methods following benchmark-
ing procedures established by Dann et al., there is a risk that its good performance arises
simply because it has been trained to estimate ~p using a training dataset generated in a
similar manner to the benchmarking datasets, thereby biasing the process in its favour.
Clearly, an algorithm trained on a dataset similar to the one used for benchmarking
may yield good performance as a result of biased training. For this reason, we removed
as many assumptions as possible from the training set generation (Section 4.2.2), thus
minimising bias towards the benchmarking one. Further, we assessed Dawnn’s perfor-
mance on a range representation of single-cell datasets (Table 1) to ensure that its good
performance generalises to unseen data.

When designing Dawnn, we investigated whether one-dimensional convolutional
neural networks or graph neural networks [12] could reduce the error when estimating
~p by exploiting local neighbourhood structure. However, we found that this was not
the case, at least in our hands. One explanation for this is that this was caused by the
lack of structure in the training data, meaning that performance could not be improved
by attempting to exploit it.

When training neural networks, it is common to use a technique called dropout
to improve generalisation of the learned model. This approach randomly disregards
some elements of the model during training, which slows improvement but prevents
overfitting to the training data. However, we found dropout to have a negative effect
when training Dawnn (Table 2), possibly because there is little opportunity to overfit
the training data due to its lack of structure. We therefore believe that the negative
effect of dropout indicates, as with the poor performance of convolutional and graph
neural networks, that we have succeeded in our aim to create training data with little
structure and removed benchmarking bias in Dawnn’s favour.

We are thus confident that Dawnn’s strong benchmarking performance is not be-
cause its training dataset was similar to that used for assessing its performance, but
rather because it performs well on real-world datasets, as shown on the liver cirrho-
sis dataset (Section 2.4). We believe that the benchmarking methodology devised by
Dann et al. and used here captures the underlying structure that must be approxi-
mated by any DA detection algorithm, and therefore there is no alternative approach
that maintains the power of this benchmarking methodology. By expanding the num-

2https://doi.org/10.5522/04/22633606
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ber of biological datasets, we have further measured the real-world performance of
these methods beyond the insights from Dann et al. We believe that this expanded
benchmarking dataset3 will allow other DA detection methods to be robustly assessed.

In conclusion, Dawnn provides increased resolution in the identification of differen-
tial abundance in single-cell experiments without additional false discoveries. This will
allow a more fine-grained investigation of the subtle biology of individual cells and cell
populations.

Supplementary information Supplementary materials are contained in the ap-
pendix. Resources to reproduce all results in this paper are available online4.
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4 Methods

4.1 Dawnn
In contrast to earlier differential abundance detection algorithms, Dawnn has been
trained to quantify ~p from simulated datasets. We created simulated training data and
learned the relationship between each p and the labels of the 1,000 nearest neighbours
of each cell using a deep neural network. This trained model can subsequently be
applied to any single-cell RNAseq dataset, for example our test datasets in Table 1.

We tested a number of neural network models in order to identify the best per-
forming architecture. Neural network architectures and the means by which we chose
the final one are discussed in the supplementary information (Sections 6.1 and 6.2,
respectively).

13

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2023. ; https://doi.org/10.1101/2023.05.05.539427doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dawnn: single-cell differential abundance with neural networks

We assessed six neural network architectures, the effect of dropout layers between
each hidden layer and the impact of two learning rates (the amount by which edge
weights are updated in each training epoch). The results of the model selection pro-
cess are shown in Table 2, in which a lower score indicates better performance during
training.

Number of nodes
per hidden layer

LR = 0.0001
with dropout

LR = 0.0001
no dropout

LR = 0.00001
with dropout

LR = 0.00001
no dropout

[1000] 0.001055 0.001001 0.001855 0.001991
[1000,1000] 0.070437 0.000939 0.071612 0.001094
[250,50,10] 0.008458 0.001107 0.007028 0.001809

[1000,250,50,10] 0.006757 0.000683 0.005723 0.001000
[1000,2000,
1000,250,10] 0.006159 0.00066 0.00787* 0.000654

[1000,2000,4000,
2000,1000,250,10] 0.00676* 0.000708 0.01076* 0.000617

Table 2: Results of five-fold cross validation of different neural network architectures, learn-
ing rate (LR), and whether dropout. The best-performing algorithm (lowest MSE) is shown
in bold. Asterisks indicate incomplete cross validation runs, terminated due to runtime
constraints.

We also investigated whether other statistical models – support vector machines [13]
and random forests [14] – provide a better basis to estimate ~p (Table 3). The cross-
validated mean squared errors for each model exceed those of the better-performing
neural networks, indicating worse performance.

Model Mean squared error

Support vector machine 0.00214
Random forest (100 trees, 50 features) 0.00346
Random forest (500 trees, 50 features) 0.00332
Random forest (100 trees, 250 features) 0.00339
Random forest (500 trees, 250 features) 0.00324

Table 3: Results of five-fold cross validation of different statistical models.

The model selection process identified a neural network with seven hidden lay-
ers (containing [1000 2000 4000 2000 1000 250 10] nodes) as having the best
performance. This model was trained with a learning rate of 0.00001 and without em-
ploying dropout. We then trained this model on the whole training set and incorporated
it as the model used by Dawnn.

A more detailed description of neural networks and overview of implementation
details of the practical implementations of Dawnn .

4.1.1 Training set generation

Since Dawnn requires training data to learn to estimate ~p, there is a risk that good
benchmarking performance may only be indicative of similarity between the training
and test datasets. If the same assumptions made during training are also satisfied
during benchmarking, then good benchmarking performance may not generalise to real
data. It is therefore crucial to minimise bias in the training set in order to learn a gener-
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alisable model and enable rigorous, objective, and biologically relevant benchmarking.
To this end, we ensured that:

1. There is no underlying structure to the cell population of the training set;

2. There is no strong relationship between the labels of neighbouring cells.

If these conditions are satisfied, then we are confident that Dawnn will learn how to
estimate ~p in a generalisable manner since the assumptions used when generating the
training dataset are so weak.

To satisfy the first condition, we generated each training instance as an independent
1000-cell dataset, rather than by simulating labels on an larger single-cell dataset (which
would have introduced assumptions about the dataset’s structure).

To satisfy the second condition, we constructed each training instance in a stochastic
manner, whereby the p associated with a cell is generated from the p associated with a
neighbouring cell by adding a number randomly chosen from a given range, the bounds
of which are also randomly chosen for each training instance. The values generated by
this process can be thought of as representing the ps of cells along a one-dimensional
differentiation trajectory. The pseudocode for the training set generation is given in
Algorithm 2. The ~p vectors corresponding to the first ten members of the training set
are shown in Figure 6.

Algorithm 2: Training set generation.
1 for j ∈ {1, 2, . . . , 250000} do
2 Draw p1 from Unif(0, 1) // Starting point
3 Draw ŝ from Unif(0.001, 0.05) // Maximum step size
4 for i ∈ {2, 3, . . . , 1001} do
5 Draw s from Unif(−ŝ, ŝ)
6 pi ← pi−1 + s

7 if any pi not in [0, 1] then go to line 2
8 for i ∈ {1, 2, . . . , 1001} do
9 with probability pi

10 Assign cell i label Sa

11 otherwise Assign cell i label Sb

0.00
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-500 -250 0 250 500
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Figure 6: The first ten ~p in the training set. The parameters of the random walk dictate
the variation in the distribution across each ~p.

Finally, we tested Dawnn in a wide variety of simulated and real-word datasets
(Table 1) with different underlying structures to ensure wide applicability to biological
problems.
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4.2 Benchmarking
4.2.1 DA detection methods

Milo Milo [1] creates overlapping neighbourhoods on a K-nearest neighbour graph
and tests each neighbourhood for differential abundance by fitting a negative binomial
generalised linear model to its associated counts of different labels. It computes p-values
using an F-test. Milo does not natively test for differential abundance at single-cell
resolution. We follow Dann et al. in converting Milo’s neighbourhood level estimates
to single-cell resolution by considering “the average outcome in neighborhoods to which
a cell belongs” [1].

DA-seq For each cell, DA-seq [2] computes the proportion of cells with a given label
within neighbourhoods of different sizes. It fits a logistic regression model to these
proportions and uses this model to estimate the probability that the cell belongs to the
given sample (i.e. p). It classifies as DA all cells with a more extreme estimated p than
the estimates obtained after shuffling labels.

MELD MELD [3] uses a K-nearest neighbour graph to estimate the probability
density of each label for each cell (i.e. ~p). It does not perform any statistical tests to
classify cells as belonging to regions of differential abundance.

Dawnn The algorithm of Dawnn is described in Section 2.1.

4.2.2 Generating Benchmarking Datasets

We employed the benchmarking methodology used by Dann et al. when assessing
Milo [1], using their code5 wherever possible. We followed them in using the mouse
gastrulation benchmarking dataset and employed their approach to simulate cells in
both discrete clusters and in linear and branching trajectories. We used the same
approach as for the mouse gastrulation dataset when assigning simulated labels to the
keratinocyte, organoid, and heart datasets.

The benchmarking data was simulated under similar statistical assumptions to those
made by Dawnn, i.e. that each cell has a probability of being assigned a given label and
labels are sampled according to these probabilities. Different benchmarking instances
were simulated by first choosing a cluster (corresponding to cell types in the mouse
gastrulation dataset) in which the label Sa is maximally up-regulated and then choosing
the maximum p (i.e. bias towards Sa) within this cluster. The p each cell is calculated
proportionally to its distance from the centre of the chosen up-regulated cluster. Each
cell is then assigned the label Sa with probability p and the label Sb otherwise. We
made the same choices as Dann et al. when selecting both which clusters to exhibit
maximal differential abundance and the maximum p in each datasets.

In the ground truth, all cells with p greater than a given threshold are defined
as DA and all other cells are not. A threshold of 0.5 was used for the simulated
clusters datasets, whilst thresholds of 0.55 where employed everywhere else. Similar
thresholds (within 0.005) were used by Dann et al. when simulating labels for the
mouse gastrulation and simulated linear trajectory datasets.

5https://github.com/MarioniLab/milo_analysis_2020
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Supplementary materials
5 Statistical analyses
Figures 7 and 8 indicate in which benchmarking scenarios there are statistically sig-
nificant differences between the true positive or false positive rates of Dawnn, Milo,
and DA-seq. Results were compared using a paired Wilcoxon signed-rank test with the
Bonferroni correction employed to control for multiple comparisons. We measured the
effect sizes of the differences as a Z-statistic divided by the square root of the sample
size.

(a) Discrete clusters (b) Linear trajectory

(c) Branching trajectory

Figure 7: Statistical comparisons of true positive and false discovery rates of DA-seq, Milo,
and Dawnn on simulated datasets. The true positive rates of Dawnn are higher than those
of Dawnn by a statistically significant extent, which in turn are significantly higher than
those of DA-seq. The false discovery rates of Dawnn either do not exhibit a statistically
significant difference from those of Milo (b), or are generally significantly smaller (a and c).
The FDRs of DA-seq are mostly significantly smaller than those of Dawnn and Milo. For
the statistically significant differences, the number of inequality signs show the effect size
and the direction of the difference.
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(a) Mouse gastrulation (b) Keratinocytes

(c) Bile duct organoids (d) Heart

Figure 8: Statistical comparisons of true positive and false discovery rates of DA-seq, Milo,
and Dawnn on biological datasets. As with the simulated datasets, the true positive rates of
Dawnn are higher than those of Dawnn by a statistically significant extent, and the TPRs
of Milo are significantly higher than those of DA-seq. The false discovery rates of Dawnn
either do not exhibit a statistically significant difference to or are significantly larger than
those of Milo. The FDRs of DA-seq are mostly significantly smaller than those of Dawnn
and Milo. For the statistically significant differences, the number of inequality signs show
the effect size and the direction of the difference.
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6 Machine learning details

6.1 Neural Networks
Neural networks are machine learning models [15, 16] capable of approximating any
function [17]. They have been shown to be highly effective in a range of both classifi-
cation and regression problems [18].

A basic feed-forward neural network consists of a sequence of layers, each of which
contains a collection of nodes. Commonly (and as is the case with Dawnn), every node
in a layer is connected to every node in the layer following it by an edge. Two layers each
consisting of 1,000 nodes will therefore have 1,000,000 edges connecting them. Each
edge is associated with a numerical weight, which approximately signifies its importance
within the model. The input (in our case, the labels of the 1,000 nearest neighbours of
the cell) is passed layer-by-layer through this network, with each node in a layer taking
as input the values at all nodes connected to it in the previous layer. The sum of a
node’s inputs is then passed through a non-linear function (in our case, the function
ReLU(x) = max(0, x)) and is finally passed along its outgoing edges, with each edge’s
value being multiplied by its associated weight. A specific neural network architecture
is defined by the number of layers, number of nodes in each layer, and configuration of
edges connecting the nodes.

6.2 Training a neural network
It is common to train a neural network using the backpropagation algorithm [15]. This
approach optimises the edge weights of a model to minimise the difference between its
current output and the desired values. A neural network has a number of hyperparam-
eters that can affect performance, such as its architecture, learning rate (amount by
which weights are updated during training), and whether to employ dropout (where
edges are deactivated at random during training to prevent overfitting the training
data). For five network architectures, we assessed the performance of two learning
rates (0.0001 and 0.00001) and the presence of dropout using five-fold cross validation.
Cross validation estimates which neural network architectures will best predict ~p in un-
seen data by training it five times (folds), each time on a different 80% of the training
data with the remaining 20% used to assess the learned model. Early stopping [19]
was employed in each fold. This reduces the risk of overfitting to the training data by
halting training once the performance of the model has not improved for some number
of training iterations a separate dataset. We terminated the training process after 25
iterations with no improvement.

6.3 Neural network implementation
The neural network at the heart of Dawnn was implemented in the Python libraries
Keras [20] and Tensorflow [21]. The architecture selection process resulted in a choice
of 1,000 input notes followed by seven dense layers (i.e. where each node in a layer
is connected to every node in the preceding one), with these hidden layers containing
2,000, 4,000, 2,000, 1,000, 250, and 10 nodes. We used the ReLU activation function
in each layer except the final one (consisting of a single output node), where we use
the sigmoid function to constrain the probabilities to (0, 1). Mean squared error was
used as the performance metric and Adam was used as the optimiser [22]. To improve
generalisation and training efficiency, we used early stopping with a patience of 25
epochs (i.e. training was halted after 25 epochs in which the mean squared error did
not decrease). The code used for training Dawnn’s neural network is available online6.

6https://doi.org/10.5522/04/22633606

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2023. ; https://doi.org/10.1101/2023.05.05.539427doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.05.539427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dawnn: single-cell differential abundance with neural networks

7 Label-based representation loses no information
To observe that a label-based representation of a dataset loses no information compared
with a proportion-based one, consider the vectors [Sa Sb Sa Sb] and [Sb Sa Sb Sa].
Note that both vectors of the proportions of the label Sa ([1 0.5 0.667 0.5] and
[0 0.5 0.333 0.5], respectively) are identical at distances 2 and 4. Thus the model
inputs at these distances would be identical under a proportion-based representation,
whereas they differ under a label-based one. Information can thus be lost when using
a proportion-based representation.

8 Parameter values in benchmarking
The tables below contain the values of the parameters used by each algorithm in the
benchmarking procedures. The parameter values used by Dann et al. for the mouse
dataset were used for the other biological datasets since they are of comparable com-
plexity.

Dataset K d prop

Simulated discrete clusters 15 30 0.1
Simulated linear trajectory 20 30 0.1

Simulated branching trajectory 20 30 0.1
Mouse 50 30 0.1
Skin 50 30 0.1

Organoid 50 30 0.1
Heart 50 30 0.1

Table 4: Parameter values of Milo during benchmarking.

Dataset K vector

Simulated discrete clusters 15, 65, 115, . . . , 465
Simulated linear trajectory 20, 70, 120, . . . , 470

Simulated branching trajectory 50, 100, 150, . . . , 500
Mouse 50, 100, 150, . . . , 500
Skin 50, 100, 150, . . . , 500

Organoid 50, 100, 150, . . . , 500
Heart 50, 100, 150, . . . , 500

Table 5: Parameter values of DA-seq during benchmarking.

Dataset k d

Mouse 50 30

Table 6: Parameter values of MELD dur-
ing benchmarking.

Dataset alpha k

All 0.1 1,000

Table 7: Parameter values of Dawnn dur-
ing benchmarking.

9 Runtime benchmarking results
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Figure 9: Comparison of runtimes of Dawnn, DA-seq, and Milo on mouse gastrulation
dataset. Dataset size (number of cells) is shown on the x axis, runtime (in seconds) is shown
on the y axis.
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