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Bzdokd, Jörn Diedrichsena,b,c,∗

aWestern Institute for Neuroscience, Western University, London, Ontario, Canada
bDepartment of Computer Science, Western University, London, Ontario, Canada

cDepartment of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
dBiological & Biomedical Engineering, McGill University, Montreal, QC, Canada

Abstract

One important barrier in the development of complex models of human brain orga-
nization is the lack of a large and comprehensive task-based neuro-imaging dataset.
Therefore, current atlases of functional brain organization are mainly based on sin-
gle and homogeneous resting-state datasets. Here, we propose a hierarchical Bayesian
framework that can learn a probabilistically defined brain parcellation across numer-
ous task-based and resting-state datasets, exploiting their combined strengths. The
framework is partitioned into a spatial arrangement model that defines the probability
of a specific individual brain parcellation, and a set of dataset-specific emission models
that defines the probability of the observed data given the individual brain organi-
zation. We show that the framework optimally combines information from different
datasets to achieve a new population-based atlas of the human cerebellum. Further-
more, we demonstrate that, using only 10 min of individual data, the framework is
able to generate individual brain parcellations that outperform group atlases.
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1. Introduction

The application of machine learning to functional Magnetic Resonance Imaging (fMRI)

data promises better models of brain organization. Brain parcellations, which subdivide the

brain into a discrete set of functionally distinct regions, are one important type of model with

many practical applications. A number of such parcellation schemes have been derived from5

large resting-state fMRI datasets (Yeo et al., 2011, Buckner et al., 2011, Power et al., 2011,

Schaefer et al., 2018, Ji et al., 2019). Previous studies have shown that functional bound-

aries detected during resting-state are indeed predictive of functional boundaries during task

performance (Cole et al., 2014, Laumann et al., 2015, Tavor et al., 2016). However, there is

also increasing evidence for systematic differences in the functional organization measured10

during the task and rest setting (Hasson et al., 2009, Cole et al., 2014, Greene et al., 2020). It

is therefore important to consider task-based datasets in deriving brain parcellations (King

et al., 2019), foreshadowing a comprehensive understanding of the dynamic nature of the

brain’s functional organization.

In recent years, an increasing number of high-quality task-based fMRI datasets that15

sample a broad range of tasks have become available (King et al., 2019, Nakai and Nishimoto,

2020, Pinho et al., 2018, 2020). Nonetheless, compared to the large and homogeneous resting-

state datasets (Van Essen et al., 2013), task-based datasets usually only contain a small to

medium number of individuals and are always limited in the tasks that they cover. It would

be therefore highly desirable to have a principled way of combining evidence across many20

datasets into a single model. This is especially important as functional brain organization

may not only differ between task and rest, but also between different task sets.

A second important practical problem is that functional brain organization shows consid-

erable inter-individual variations even after anatomical variability is accounted for (Mueller

et al., 2013), limiting the usefulness of functional group atlases. This problem could be25

potentially addressed by including individual resting-state (Wang et al., 2015) or task-based

data (King et al., 2019, Pinho et al., 2018, 2020) as a functional localizer to derive individual

brain parcellation maps. But a reliable characterization of brain organization requires an

extensive amount of individual functional data (Marek et al., 2018), which in practice is

often too costly to acquire.30

In this paper, we addressed both of these problems by developing a hierarchical Bayesian

parcellation framework (Fig. 1), which could be efficiently trained on a range of fMRI

datasets, Ys,n, recorded in different sessions (n) from different subjects (s). The model

assigns each of the possible brain locations in each individual to one of K functional regions

(here referred to as parcels). The parcel assignments are collected in the matrices Us, with35

Us
k,i = 1 if the ith brain location is assigned to the kth parcel. The model estimates the

expected value of these latent variables, ⟨Us⟩, which provides a probabilistic parcellation for
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Figure 1: A hierarchical Bayesian parcellation framework for data fusion. Three datasets are shown.
Data from each participant are indicated as a gray box. The height of the box indicates the amount of data
per participant. Dataset 2 contains two sessions from the same set of participants (s ∈ S2). The central
quantity of the model is the estimated individual brain organization Us. The spatial arrangement model
provides the population-wide probability of observing a specific brain organization.

that individual (see Methods 4.1.1 for details). The model consists of a spatial arrangement

model, p(U|θA), the probability of how likely a parcel assignment is within the studied

population, and a collection of dataset-specific emission models, p(Ys,n|θEn), the probability40

of each observed dataset given the individual brain parcellation. This distributed structure

allows the parameters of the model, (θA,θE1, ..) to be estimated using a message-passing

algorithm between the different model components (Methods 4.1.4).

We applied the new framework to a collection of seven task-based fMRI datasets (Table

1), with four of them containing a wide range of task conditions and three others related45

to specific functional domains, including executive function and motor movements. Starting

within a single dataset, we show that our framework optimally integrates data from a single

individual subject with the group-based arrangement model, resulting in substantially im-

proved individual brain parcellations. Then, we compare different approaches to estimate

a unified group-based arrangement model across datasets, using both simulations and real50

data. We show that both group and individual parcellations learned by datasets fusion using
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our proposed framework outperform the parcellations trained on each single dataset alone.

2. Results

2.1. Individual parcellations in the scarce data setting

Given the substantial inter-individual functional variability, it is often desirable to derive55

parcellations for single subjects. An important limitation, however, is that obtaining a re-

liable individual parcellation requires a substantial amount of data (Marek et al., 2018). A

central feature of our model is that we do not only obtain a parcellation based on the indi-

vidual data, p(Us|Y s), and a parcellation based on the learned group parameters, p(Us|θA),

but also an optimal integration of individual and the group-level probability map (Meth-60

ods 4.1.5). We first sought to determine how much improvement this integrated individual

parcellation offers. For this purpose, we first trained a group parcellation (17 parcels) on

the first task set of the multi-domain task battery dataset (MDTB, (King et al., 2019)).

Individual parcellations were derived using between 1-16 imaging runs (10-160 min) of indi-

vidual training data only. We compared the performance of these ”data-only” parcellations65

with the group parcellation, and with individual parcellations learned in our framework by

Bayesian integration of individual data and group map. All probabilistic parcellations were

first converted into hard parcellations using a winner-take-all approach. We then evaluated

how well the parcel boundaries corresponded to functional boundaries on the second task set

(also 16 runs) acquired on the same subject. For this, we computed the distance-controlled70

boundary coefficient (DCBC, Zhi et al. (2022), the difference of the within-parcel and the

between-parcel correlation of the functional profiles for each spatial distance (see Methods

4.5).

The individual parcellations based on 10 min of imaging data (without using the group

probability map, Fig. 2a) performed generally poorly, with an average DCBC of 0.088 (Stan-75

dard Error of the Mean, SEM = 0.009). Indeed, the individual parcellation performed worse

than the group map t23 = −7.786, p = 6.815 × 10−8 (Fig. 2d, dashed line in Fig. 2e). The

individual parcellation improved continuously when using more data (Fig. 2b), reaching an

average DCBC value of 0.175 (SEM = 0.016) for 160 min of data, ultimately outperforming

the group map (t23 = 3.286, p = 0.003). This indicates that there are replicable differences80

in brain organization across individuals. Individual parcellations can capture these differ-

ences, leading to significantly better prediction performance than a group probability map

on independent test data.

Although individual parcellations were superior to the group map using more data (blue

line in Fig. 2e), our results suggest that more than 110 min of individual imaging data is85

required to obtain a brain parcellation that is significantly better than the group probability

map (t23 = 2.190, p = 0.039). At 60 min of imaging, an individual parcellation map is only
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Figure 2: Individual parcellations from the parcellation framework outperform group map. (a)
An estimated individual parcellation based on 10 min (1 run) of imaging data, using only the individual
data. (b) An estimated individual parcellation of the same subject based on 160 min (16 runs), using only
the individual data. (c) The estimated individual parcellation using 10 min of individual data and the group
probability map learned by the arrangement model. (d) The group probability map from the arrangement
model. (e) The DCBC value (higher = better) of the parcellations tested on the independent second session
of the MDTB data set. Each individual parcellation was estimated using only the individual data (blue
curve) or using the individual data and the learned group probability map (red curve). The x-axis indicates
the length of the imaging time series (10 min = 1 run) used to estimate the individual parcellations. The
error bars represent the standard error of the mean across all 24 subjects.

just about as predictive as the group probability map. Acquiring this amount of individual

data for functional localization is rarely feasible in basic and clinical functional imaging

studies.90

Our framework, however, automatically integrates the individual data with the group

probability map, leading to dramatically improved performance of individual parcellations.

For only 10 min of individual data, the DCBC was now significantly higher than the group

probability map alone (t23 = 3.123, p = 0.005). Using 10 min of imaging data and our model

led to individual parcellation performance that was roughly equivalent to using 100 min of95

individual imaging data without the model.

The resultant individual parcellation map (Fig. 2c) constitutes an optimal fusion of

the individual data and the knowledge learned from the entire group. Even when there

was a large amount of individual data available, such as 160 minutes, the integration with
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the group map led to a significant improvement relative to using only the individual data100

(t23 = 5.562, p = 1.171×10−5). Another advantage of the integration of group and individual

data is that it naturally deals with missing individual brain data. For brain locations (voxels)

where the individual data is missing, the group probability map will dictate the parcel

assignment.

2.2. Dataset-specific emission models optimally capture differences in measurement noise105
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Figure 3: Simulations of data fusion using two synthetic imaging sessions with similar task
activation. (a) The reliability map of two imaging sessions from the IBC dataset with similar task sets
(hcp1 and archi). (b) Type 1 model: sessions are concatenated and will be learned in a single emission
model. (c) Type 2 model: sessions are separated and modeled using two separate emission models. (d)
Reconstruction of the true parcellation map using synthetic data, using Session 1 or 2 alone vs. the fusion of
both sessions using either model type 1 or 2. (e) The mean DCBC value of the group map (using model type
1 or type 2) learned from Session 1 or 2 alone or from the fusion of both sessions. (f) The mean DCBC value
of individual parcellations. Error bars indicate SEM (standard error of the mean) across 100 simulations.

Different imaging datasets, or even sessions within a single dataset, often show different

signal-to-noise ratios. For instance, two different imaging sessions of the IBC data set (Fig.

3a, Methods 4.2) show quite different levels of within-subject reliability, indicative of different

levels of measurement noise. A simple approach to modeling different sessions from a single

individual is to concatenate the data and model the two sessions with a single emission model110

(Type 1 model, Fig. 3b). In this scenario, however, it is possible that the second, noisier

session will make the integrated model worse than the first session alone. Therefore, in a

different version of the model (Type 2), each imaging session was modeled with a separate

emission model. This allows differences in variability to be captured by a session-specific

concentration parameter (e.g. κ1 for session 1 and κ2 for session 2 in Fig. 3c). As long as115
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the κs are estimated accurately, the subsequent Bayesian integration will ensure the optimal

weighting across the different sessions. Therefore, even the addition of a low-quality dataset

should never lead to decreases in the quality of the integrated model.

To test for this behavior of the dataset-specific (Type 2) model, we generated two syn-

thetic datasets (sessions) sampled from the same set of subjects with similar task activation120

but different overall noise variances, σ2
k (Methods 4.4). The measurement noise was set to

σ2
k = 0.5 for synthetic session 1 and to σ2

k = 0.8 for session 2. We then learned group and

individual parcellations using Type 1 or Type 2 models, either using each session alone or

fusing both sessions. We tested the performance of all models on an independent simulated

test set (Methods 4.4), repeating the simulation 100 times.125

The visual inspection of the group parcellations (Fig. 3d) suggests that the group map

trained on session 1 alone approximates the true map more accurately than using session 2.

The fusion of both sessions improved the group reconstruction, especially when using sepa-

rate emission models (Type 2). We evaluated the parcellation performances quantitatively

using the DCBC measure on the test set (Fig. 3e, 3f). Indeed, both group and individ-130

ual maps learned from session 1 (DCBC group=0.029, DCBC individual=0.064) showed

better performance averaged across 100 simulations than the one using session 2 (DCBC

group=0.016, DCBC individual=0.054). When we evaluated the fusion parcellations, the

DCBC value of the group and individual map learned by the Type 1 fusion model improved

by 0.004 (SD=3.752 × 10−3) and 0.005 (SD=3.781 × 10−3) compared to dataset 1 alone,135

respectively. The parcellation performance of Type 2 fusion further improves compared to

Type 1 by 0.005 (SD=4.006× 10−3) for the group DCBC and 0.004 (SD=4.666× 10−3) for

the individual DCBC. These simulations demonstrate that session-specific emission models

allow for better fusion when the signal-to-noise level differs across sessions or datasets.

2.3. Region-specific concentration parameters further improve fusion parcellation140

In empirically observed task-based fMRI data, the signal-to-noise level does not only differ

between sessions or datasets, but also between different regions within the same session or

dataset. Some sessions or datasets provide a better signal-to-noise ratio for some functional

regions and a lower signal-to-noise ratio for others. For example (Fig. 4a), the ‘Preference’

session of the IBC dataset provided high within-subject reliability in the motor areas, whereas145

the perspective taking (‘TOM ’) session had high reliability in language-related areas. Ideally,

a probabilistic framework should account for these differences and optimally combine the

region-specific strengths of each dataset. To this end, we introduced a third variant of our

emission model (Type 3), which has a separate concentration parameter for each region and

session (e.g. κ11,2,...,k for session 1 and κ21,2,...,k for session 2 in Fig. 4b).150

To test the ability of this model to pool information across distinct datasets with different

types of information, we conducted a second simulation by randomly dividing all functional
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Figure 4: Simulation on two synthetic sessions fusion with different task activation. (a) The
reliability map of two imaging sessions from the IBC dataset with different tasks (Preference and TOM ).
(b) Type 3 model: different sessions are modeled using different emission models, and furthermore the con-
centration parameters κ1,2,...k are estimated separately for each parcel. (c) The comparison of reconstruction
performance when leaned on synthetic session 1 or 2 alone vs. learned by data fusion using type 1, 2, or
3 models. (e) The mean DCBC value of the group map across sessions and model types. (f) The mean
DCBC value of individual maps across sessions and model types. Error bars indicate SEM across 100 times
simulation.

regions into two groups. Instead of a common signal-to-noise level for all regions, we first

created synthetic data in which one session had good signal-to-noise in the first group and

poorer signal-to-noise in the other (Methods 4.4). We reversed the assignment for the second155

synthetic session. When we trained the model on Session 1 or 2 alone, there was high

uncertainty of the cluster assignment in the area with low signal-to-noise level (Fig. 4c –

Individual training). This is no surprise, as the activation here was too weak to detect the

boundaries reliably.

Importantly, when combining the two sessions, the functional boundaries that were not160

detected based on single sessions became visible (Fig. 4c – Fusion). However, both Type 1

and Type 2 models needed to compromise: when using session 1 to achieve parcellation of

the lower right corner, the same weighting was applied to the upper left regions, decreasing

the quality of the parcellation here. In contrast, model Type 3 allowed different weightings

in different parcels, using mostly information from session 1 for the lower right parcels and165

mostly information from session 2 for the upper left regions. The quantitative evaluation

(Fig. 4d, 4e) suggests a clear advantage of model Type 3 for both the group (improved

0.002, SD=3.324 × 10−3) and individual parcellation (improved 0.004, SD=3.831 × 10−3).
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We also verified the Type 3 model did not perform worse than Type 2 when two sessions

had the same signal-to-noise level across all functional regions (see Supplementary Fig. S3).170

Overall, the model with region-specific concentration parameters showed clear advantages

when aggregating across sessions that differ not only in their overall signal-to-noise level, but

also in what regions they specifically provide information for.

2.4. Model performance on real data and the choice of atlas resolution K

We then attempted to validate the performance of the models on real imaging data.175

Here, we first used the IBC dataset. This dataset is ideal to test the integration of data from

different sessions across the same participants, as it consists of 14 sessions some of which have

similar tasks while others do not (Pinho et al., 2018, 2020). We tested the different model

types, each time fusing two IBC sessions (C2
14 = 91 combinations) to learn a probabilistic

parcellation model with 17 parcels. The learned models were then evaluated on the six other180

functional task-based fMRI datasets (see Tabel 1) in terms of their group and individual

parcellations. To evaluate the ability of the model to provide individual parcellations, we

split each evaluation dataset into two halves. The first half was used to infer the individual

parcellations Us for the participants of the test set. The other half was used to calculate the

DCBC value. We then reversed the role of the two halves and averaged performance across185

the two cross-validation folds.
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to the parcellation learned by fusion. (a) Mean DCBC value of the group map across all 91 two-session
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We first confirmed that our probabilistic parcellation framework optimally learns group

parcellation across sessions when comparing the performance to the parcellation learned from

a single session. Specifically, all fusion parcellations showed substantial improvement (Fig. 5)

over the best one learned on a single session (Type 1: t98 = 12.282, p = 1.513×10−21, Type 2:190
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t98 = 18.749, p = 3.485× 10−34, Type 3: t98 = 15.594, p = 2.698× 10−28). This improvement

also held for individual parcellations (Fig. 5b, Type 1: t98 = 15.283, p = 1.100×10−27, Type

2: t98 = 14.198, p = 1.624× 10−25, Type 3: t98 = 9.353, p = 3.079× 10−15). Additionally, we

found the group parcellations learned using session-specific emission models (Type 2) showed

significantly better performance than the ones learned by concatenating the data (Type 1)195

(t98 = 13.287, p = 1.196× 10−23).

Against our expectations, however, model Type 3 performed substantially worse on real

data when compared to model Type 2 for both group (t98 = −16.765, p = 1.521×10−30) and

individual (t98 = −6.269, p = 9.807 × 10−9) parcellations. This behavior differed markedly

from our simulation results (Fig. 4), where model Type 3 performed consistently better.200

Further simulations suggested that this behavior can be explained by the choice of the

number of parcels (K): when K was close to or higher than the true number of parcels,

model Type 3 outperformed model Type 2. If, however, K was chosen to be smaller than

the true K, model Type 3 started to yield inferior performance (Supplementary Fig. S4).

In such cases, one parcel in model Type 3 typically had a very low concentration parameter,205

effectively capturing all voxels that are unexplained by the model. Model Type 2 constrains

all functional regions to have the same concentration parameter, preventing the model from

developing a ’residual’ parcel.

This idea suggests that model Type 3 should improve or even outperform model Type

2 when K increases and approaches the true number of parcels. Unlike the simulation, the210

true number of parcels in real data is unknown. We therefore estimated the fusion models

on every pair of two IBC sessions using K = (10, 17, 20, 34, 40, 68, 100). The evaluation

results (Fig. 5c,d) indicated that the performance of the model Type 3 indeed improved

with increasing K. This improvement was also clearly observed in individual parcellations

(Fig. 5d), where the DCBC evaluation of the model Type 3 became as good as model215

Type 2 around K = 60 and showed a significant advantage at K = 100 (t98 = 4.115, p =

8.059 × 10−5). A similar pattern exists in the group map evaluation where the averaged

DCBC value of 100 parcels substantially improved compared to the ones with only 10 parcels

(t98 = 28.191, p = 8.215× 10−49). For up to 100 parcels, the fusion parcellation from model

Type 3 did not appear to be superior to the one from model Type 2 in group evaluation,220

however, we found this to be the case when considering more datasets (see Fig. 6e).

Overall, across analysis scenarios, we confirm that estimating separate concentration

parameters for each session (Type 2) leads to better data fusion on real fMRI data. Ad-

ditionally allowing a region-specific concentration parameter (Type 3) has both advantages

and disadvantages: If the model assumes a large number of parcels, parcellations can im-225

prove. If, however, the assumed number of parcels is low, performance appears to be better

when constraining the concentration parameter to be the same across regions.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.24.542121doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542121
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.5. The fusion atlas shows combined strengths across different task-based fMRI datasets
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Figure 6: Comparison of cerebellar parcellations learned by type 2 and 3 fusion models using
6 functional task-based datasets. (a) The group parcellation maps learned on each individual dataset
alone or datasets fusion with 34 parcels using the type 2 model. (b) Same as (a), but using the type 3
model. (c) Mean DCBC value of the group parcellation maps across subjects in the test dataset. (d) Mean
DCBC value of the individual parcellation maps across subjects in the test dataset. (e) Mean DCBC value
of the group map for K = 10 to K = 100. (f) Mean DCBC value of the individual map across for K = 10
to K = 100.

Finally, we trained our fusion model on 6 of the 7 task-based fMRI datasets (Table 1).

We reserved the MDTB dataset as a test set. The resultant group maps of both models230

Type 2 and 3 showed the combined strength of the maps trained on individual datasets.

For example, only the group map derived from the Somatotopic dataset delineated the foot

region of the cerebellum (hemispheric lobule IV), while the ones derived from other datasets

did not. The Fusion maps (Fig. 6a,b) veridically retained this region. In contrast, the

parcellation based on the Somatotopic dataset did not show a good parcellation of lobules235

Crus I and II, but here the fusion map used information from other datasets.

To evaluate the parcellations quantitatively, we calculated the DCBC on the left-out
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MDTB dataset (Fig. 6c,d). Averaged across all Ks, all parcellations showed positive DCBC

values, which means that the functional boundaries learned from any of the datasets gener-

alized to some degree to the MDTB dataset. The best DCBC among parcellations trained240

on a single dataset was for the WMFS dataset for model Type 2 and for the Demand

dataset for model Type 3. When we evaluated the fusion parcellations, we found con-

siderable improvements for both models Type 2 and 3 compared to the best individual

parcellation. For the fused parcellation using the model Type 2, both the group DCBC

(t23 = 2.339, p = 2.840 × 10−2) and the individual DCBC (t23 = 3.173, p = 4.248 × 10−3)245

were considerably better than for WMFS. Similar improvement could be observed for model

Type 3, where the fused parcellation significantly outperformed the best single-dataset par-

cellation (Demand) both in terms of the group (t23 = 7.049, p = 3.503×10−7) and individual

(t23 = 3.219, p = 3.800× 10−3) DCBC value.

Finally, we compared the fusion across the six task-based fMRI datasets directly between250

models Type 2 and 3. For K = 10, both averaged group and individual DCBC (Fig.

6e,f) were higher for model Type 2 than for model Type 3 (group: t23 = 0.726, p = 0.475;

individual: t23 = 1.842, p = 0.078). But when K increased to 100, the fusion parcellation

for model Type 3 became substantially better than model Type 2 (group: t23 = 4.551, p =

1.426× 10−4; individual: t23 = 2.468, p = 2.144× 10−2). The cross-over occurred somewhere255

around K = 34, where models performed equivalently (group: t23 = 0.210, p = 0.835;

individual: t23 = −0.009, p = 0.993).

2.6. Integrating resting-state data into the task-based parcellation

Lastly, we investigated the fusion of resting-state and task-based data into a single par-

cellation atlas. To do so, we used the cortical connectivity profile for each cerebellar voxel260

derived for 50 participants from the HCPUnrelated 100 dataset (see Method 4.2). As we

wanted to evaluate performance on a large range of task-based datasets, we trained the model

on 6 out of 7 task datasets and evaluated the performance on the left-out task dataset. We

then repeated this scheme for all 7 task datasets. The combined and resting-state parcella-

tions were also trained and evaluated in a similar approach (for the resting-state parcellation,265

no dataset had to be left out).

Averaging the DCBC evaluations across models Type 2 and 3, the models trained on

the combination of resting-state and task-based datasets outperformed the ones trained on

resting-state or task-based datasets alone. For the group parcellation (Fig. 7a), the combined

model was significantly better than the one trained on resting-state (t110 = 6.349, p = 4.983×270

10−9), and task-based datasets (t110 = 3.886, p = 1.745 × 10−4). Similar results were found

for individual parcellations (Fig. 7b, vs. resting state alone: t110 = 7.625, p = 9.287× 10−12,

vs. task-based alone t110 = 7.254, p = 6.027× 10−11.
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Figure 7: Performance comparison of the cerebellar parcellations using resting-state data only,
task-based data only, or the combination of both. Probabilistic parcellations were learned using Type
2 (orange) or 3 (green) models. The gray bar indicates the averaged performance across the two models.
(a) Mean group DCBC, and (b) mean individual DCBC evaluated on the task-based datasets in a leave-
one-dataset out fashion. Error bar indicates the SEM across all 111 subjects of the 7 task datasets

3. Discussion

We developed a hierarchical Bayesian framework to learn probabilistic brain parcella-275

tion by fusing data from both functional task-based and resting-state fMRI datasets. Our

work introduces two main innovations: First, by dividing the problem into a common spa-

tial arrangement model and a set of dataset-specific emission models, we are able to opti-

mally integrate information across many, quite heterogeneous, datasets. Second, because the

framework directly models individual differences in brain organization, it provides not only280

a probabilistic group atlas, but also allows the user to obtain an optimal estimate of brain

organization for new individuals.

Learning functional brain parcellations across datasets. While most of the current

brain parcellations are generated using functional resting-state fMRI data, a number of

studies (King et al., 2019, Cole et al., 2014) suggest that boundaries derived using resting-285

state data can differ systematically from those measured during task performance. One

possible interpretation of this finding is that the boundaries of functional regions truly shift

depending on the task the person performs (Salehi et al., 2020). However, given that there

is a basic common organization that is stable across rest and different tasks (King et al.,

2019, Tavor et al., 2016), an alternative interpretation is that the boundaries stay the same,290

but are more or less visible depending on the task sets or mental states (such as rest) during

which they are measured. This is obviously true for task sets that emphasize one specific

aspect of mental function (See Fig. 4a), but also applies to resting-state data. For example,
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in resting-state data, the left and right-hand regions are usually highly correlated and often

end up in the same parcel. However, when using a task set that contains both left and right295

unimanual movements, the two regions are readily dissociated (King et al., 2019). Therefore,

the integration of data from a large array of tasks promises a more representative map of

brain organization.

Because there is no single, large task-based dataset that would cover all of the mental

functions, we developed here a framework that allows us to fuse data from a growing number300

of deep-phenotyping task-based datasets with fewer participants (King et al., 2019, Pinho

et al., 2018, 2020, Nakai and Nishimoto, 2020, Assem et al., 2022). To make data fusion

feasible in a Bayesian framework, we deployed a series of emission models, each one learns

the specific characteristics of the corresponding dataset, including the expected response for

each brain region and their variability. The integration across datasets is achieved through305

a common spatial arrangement model, which characterizes the variability of the functional

organization across individuals. As shown in the simulations (Results 2.2 and 2.3), this allows

us to integrate the strength of different datasets without inheriting their weaknesses. We

can now deploy this framework to an increasing number of real datasets, namely the “wide”

datasets with many participants (King et al., 2019), and “deep” datasets with only a few310

participants but a detailed characterization of each studied individual (Nakai and Nishimoto,

2020, Pinho et al., 2018, 2020). Given the message-passing algorithm (Methods 4.1.4), the

individual datasets do not necessarily need to be hosted on the same server, but each dataset

and emission model can be housed separately. This architecture will promote the scaling

of the approach as it allows for distributed computing across many sites, which will be315

necessary to finally approach a “big-data” regime for learning complex models of functional

brain organization. The distributed nature of data storage also makes the framework more

suitable for clinical data, which for data privacy reasons often needs to remain within a

dedicated server infrastructure.

Individual vs. group parcellation maps. Group parcellation maps identify pat-320

terns of functional organizations that are common and consistent across individuals. Group

parcellations are in common use, as they provide a consistent framework to analyze and

report functional imaging data, and can be applied using only the anatomical image from

the individual. However, the boundaries between functional regions vary substantially across

individual brains (Braga and Buckner, 2017, Gordon et al., 2017, Kong et al., 2021), pos-325

sibly biasing subsequent analysis (Bijsterbosch et al., 2018, 2019). Recent studies suggest

that the inter-individual difference may be even more pronounced in the human cerebellum

(Marek et al., 2018). Therefore, using individual brain parcellations has the potential to

improve the precision and quality of subsequent analyses. A major limitation, however, is

that a substantial amount of individual data is necessary to derive an individualized map of330
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sufficient quality (Marek et al., 2018). In our study, we found that 60 minutes of individual

data were required to reach the same performance as the group map, and more than 110

minutes were necessary to substantially outperform it (see Results 2.1). For most studies,

acquiring this amount of data for an individual functional localizer would be prohibitive,

explaining the persistent popularity of group maps.335

Different from previous approaches to leverage the group and individual parcellations

(Salehi et al., 2018, Zhang et al., 2021), our approach performs the combination in a prin-

cipled (Bayesian) way, weighting each part according to the respective uncertainty. Even

when using a very short functional localizer (10min), the resultant individual parcellation

outperforms the group map. Relative to parcellation built on individual data only, we found340

that the integrated estimate had a performance equivalent to using 100 min. Finally, the

Bayesian approach also automatically deals with missing data from individuals due to lack

of coverage or signal dropout.

While we derived and tested the individual parcellations for participants included in our

training set, the model can also be used to derive individual parcellations on completely new345

participants. This would only require researchers to estimate a new emission model for the

specific task set used for the functional localization data. In this process, the parameters

of the arrangement model, which was trained across datasets, can be frozen. Therefore,

an efficient estimation can be achieved even for small groups of participants, and results

can be interpreted in the framework of established atlases. This approach makes individual350

functional localization in larger studies feasible, which is important for practical and clinical

applications.

Comparing dataset-specific and regions-specific uncertainty parameters. The

concentration parameter (κ) in each emission model dictates how strongly the respective

dataset is weighted, both when learning to determine the group parcellation map, and when355

deriving an individual parcellation. In this paper, we tested three ways of estimating this

concentration parameter: (a) we simply concatenated all sessions for each subject, giving the

entire dataset a single concentration parameter (Type 1); (b) we used a separate emission

model and, therefore, a separate concentration parameter for each session (Type 2); and (c)

we used a separate concentration parameter for each session and region (Type 3).360

We first showed that the model Type 2 performed better than model Type 1 in capturing

different levels of measurement noise from different sessions in both simulation and real

data (Results 2.2, 2.4). However, when we compared Type 2 (dataset-specific) and Type 3

(region-specific) models, we found that each had specific advantages, which is also dependent

on the choice K, the number of parcels (Results 2.4). When allowing separate concentration365

parameters for each session and region (Type 3), we can account for the fact that some

sessions may contain tasks that provide signals in some areas, while other sessions may
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highlight other areas. This example clearly the case in the IBC dataset (Fig. 3a). While in

simulation, model Type 3 led to superior performance, on real data it often performed worse

than model Type 2. In model Type 3, we found that when the assumed number of parcels370

(K) was smaller than the true number of parcels, one region would be estimated to have a

very low concentration parameter, such that it could model all the residual, non-explained

regions. Such a residual region led to a more fragmented group parcellation (Fig. 6b) and

an impaired evaluation of the independent data.

However, the constraint of equal concentration parameters across all regions (model Type375

2) prevented this from happening. This led to compact clusters regardless of the choice of

K (Fig. 6a). Nonetheless, for large K, model Type 3 could outperform model Type 2. The

choice of emission model (Type 2 or Type 3) therefore will depend on desired granularity of

the parcellation and likely also the amount and quality of data available. Our framework

offers both implementations, allowing the user to choose the correct algorithm in a context-380

specific manner.

Choice of datasets: task-based vs. resting-state fMRI. Our evaluation of task-

based and resting-state parcellations (Fig. 6) shows that both can predict the functional

boundaries measured in a left-out task set well above chance. A visual inspection of the two

parcellations (Supplementary Fig. S5a,b), however, also reveals some systematic differences385

(King et al., 2019, Cole et al., 2014). One important decision when applying our framework is

therefore which datasets to include. Our Bayesian framework weights each dataset according

to its reliability. Because different datasets will emphasize different sets of functional bound-

aries, and because the true number of functional regions is likely larger than the number of

assumed parcels, each dataset will bias the final parcellation in a specific direction. A single390

large dataset could dominate the group map, possibly reducing the predictive performance

for other datasets. It is therefore important to achieve a good balance between resting-state

and task-based datasets highlighting different cognitive domains (Salehi et al., 2020). Where

this balance lies, or whether it is preferable to have different brain parcellations for different

functional states, remains a research question that demands further attention.395

Limitations and further developments. Being able to leverage an increasing number

of datasets will hopefully also allow the development of models that can learn regularities

in the spatial arrangement of functional regions in the human brain. In this paper, we have

used only the independent spatial arrangement model, which in essence learns a probabilis-

tic group atlas. In our framework, however, we can also use models that make assumptions400

about the intrinsic smoothness of individual functional parcellations, such as a Markov Ran-

dom Field (MRF) spatial prior (Ryali et al., 2013, Schaefer et al., 2018, Kong et al., 2019)

with coupling parameters. As a further extension, deep generative models, such as a deep

Boltzmann machine (Salakhutdinov and Hinton, 2009), provide a promising avenue to actu-
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ally learn the complex short- and long-range dependencies in functional brain organization.405

While the emission models would remain the same, both the E-step and M-step for the spa-

tial arrangement model would rely on an approximation through sampling. Training such

models will require a large amount of data, and our framework takes a critical step in this

direction by enabling the integration of a wide range of varied datasets.

Another direction for possible improvements is to explore other forms of emission models.410

Here, we used a mixture of vMF distributions (Methods 4.1.2), which for both resting-

state and task-based data has been shown to perform considerably better than a mixture of

multivariate Gaussians (Røge et al. (2017), Supplementary Fig. S1). In contrast to resting-

state data, task-based data provide not only a direction of the functional profile, but also a

signal amplitude, as the experimental paradigm allows for separate estimation of signal and415

noise. The signal amplitude could be potentially used to distinguish between reliable and

noisy brain locations: we found that the functional profile at brain locations with larger signal

magnitudes tended to be closer to the mean response vector for that region. Nonetheless, the

vMF model ignores this information as each profile is standardized to unit length. During

the development of the model, we therefore experimented with weighted vMF models, in420

which the emission log-likelihood from each brain location was weighted by its respective

signal-to-noise level. In practice, however, we found the final performance of the model did

not improve enough to outweigh the possible instabilities in the estimation of the weights.

We then decided to stay with the standard vMF mixture model for this paper. But, an

emission model with voxel-, region-, and subject-specific signal-to-noise parameters might425

be useful for certain applications.

Conclusion. This article designs and evaluates a hierarchical Bayesian parcellation

framework for data fusion across heterogeneous data sources. In conjunction with a collection

of task-based and resting-state datasets which were preprocessed and stored in a consistent

manner, the framework enables optimal estimation of functional brain organization across a430

range of diverse datasets. Here, we have applied the framework to derive new functional maps

of the human cerebellum - however, the same process could be repeated nearly effortlessly

for any other brain structure.

We anticipate that this framework will be useful for two reasons. First, the model can

provide individual functional parcellations for new subjects using very limited individual435

data. While normally individual parcellations require an extensive amount of data (Marek

et al., 2018), our framework makes it feasible to derive an individual region definition of

considerably better quality than a group map with 10 min of functional localizer data.

Secondly, the framework allows the optimal fusion of functional insights using a range of

different task-based datasets, thereby overcoming the limitation that current task-based440

datasets are restricted both in terms of the breadth of their task battery and the number
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of subjects. The framework accurately quantifies the different signal-to-noise levels across

sessions and datasets, thereby providing an optimal weighting for each. The resultant maps

possess a combined strength in detecting the detailed functional boundaries, outperforming

the parcellations trained by single datasets.445
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4. Methods

4.1. A hierarchical Bayesian parcellation framework for data fusion

We introduce here a hierarchical Bayesian framework that can be used to learn a prob-

abilistic brain parcellation across multiple fMRI datasets. The framework (Fig. 1) consists

of a group-based brain parcellation model (the spatial arrangement model), and a series450

of dataset-specific emission models. The two parts of the framework are connected by a

message-passing and collaborative-learning process, making learning and inference compu-

tationally efficient.

The framework is able to learn parcellations from a collection of data Ys,n recorded from

different subjects (s) during different experiments or sessions (n). Sn is the set of subjects for455

the n-th experiment or session, and S := {S1∪S2∪...∪Sn} is the entire set of unique subjects.
The parcellation model assigns each of the P possible brain locations in each individual s to

one of K functional regions (here referred to as parcels). The parcel assignment for the i-th

brain location is denoted in the one-hot encoded vector us
i , and collected into the K × P

matrix Us. This individual brain organization is the central latent variable in the model.460

The model estimates the expected value, ⟨Us⟩, which provides a probabilistic parcellation

for that individual - specifically ⟨us
i,k⟩ is the probability that brain location i is part of the

functional region k. Note that we use ⟨·⟩ to denote the expected value throughout.

The arrangement model provides a probabilistic group model of how likely a certain parcel

assignment to brain locations is across individuals, p(U;θA). This probability depends465

on a set of (to-be-estimated) parameters of arrangement model (θA). In this paper, we

use a spatial arrangement model that estimates these probabilities for each brain location

independently (Methods 4.1.3), and therefore effectively learns a group-based probabilistic

brain atlas (see discussion for further extensions).

Each emission model specifies the likelihood of observed data given the individual brain470

parcellation, p(Ys,n|Us;θE). For each dataset/session, we introduce a separate emission

model with a separate set of emission-model parameters (θE). This allows us to model the

different task sets with different signal-to-noise levels inherent in each experiment/session.

4.1.1. EM algorithm for Probabilistic parcellation with data fusion

We used an Expectation Maximization (EM) algorithm to optimize the parameters (θ)475

of the hierarchical Bayesian model. For such models, the computation of the log-likelihood

of the data, log p(Ys;θ), is unfeasible given a large number of latent variables in the model

(here, these are the individual brain parcellations Us).

The key idea in EM is to introduce a proposal distribution over the latent variables q(U),

and then to optimize the Evidence Lower Bound (ELBO) of the model (Wainwright et al.,

2008, Blei et al., 2017). The ELBO provides a lower bound to the full likelihood (over all
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datasets and subjects) that we want to optimize:∑
s,n

log p(Ys,n;θ) ⩾
∑
s,n

⟨log p(Ys,n,Us;θ)⟩q − ⟨log q(Us)⟩q (1)

The first term of the ELBO is the expected complete log-likelihood L. Given the model

structure, this quantity can be further split into the expected emission log-likelihoods LEn

for each experiment or session and the expected arrangement log-likelihood LA as:

L =
∑
s,n

⟨log p(Ys,n,Us;θ)⟩q =
∑
s∈S1

⟨log p(Ys,1|Us;θE1)⟩q +
∑
s∈S2

⟨log p(Ys,2|Us;θE2)⟩q

+ ...+
∑
s

⟨log p(Us;θA)⟩q ≜ LE1 + LE2 + ...+ LA (2)

where the parameters are subdivided into those for the arrangement model, θA, and those

for each of the emission models {θE1,θE2, ...}. This division makes the parameter updates480

that can be performed independently for the arrangement and emission models.

In the expectation step, the ELBO is increased by updating the proposal distribution

q(Us) to the approximate posterior distribution, given the current set of parameters as

q(Us) = p(Us|Ys,1,Ys,2, ...;θ)

∝ p(Ys,1|Us;θE1)× p(Ys,2|Us;θE2)× ...× p(Us;θA). (3)

This step also allows us to calculate the expectation of the latent variables, resulting in

an estimate of the individual brain parcellations ⟨Us⟩q. In the maximization step, we update

these parameters using these estimated individual brain parcellations.

4.1.2. Dataset-specific emission models485

One commonly-used choice for a model of fMRI data across regions is the Gaussian

Mixture Model (GMM) (Golland et al., 2008). However, the amplitude of fMRI brain signals

yi (whether or not they are normalized by the measurement noise) vary greatly between

datasets, participants, and brain locations. That is, two voxels in the same region may

have highly correlated signals, but the amplitude of one may be twice as large as the other.490

Therefore, an increasing number of modeling approaches for resting-state fMRI data use a

mixture of von Mises-Fisher (vMF) distributions (Banerjee et al., 2005, Ryali et al., 2013,

Schaefer et al., 2018, Lashkari et al., 2010, Yeo et al., 2011). It has been demonstrated that

such a directional distribution outperforms the GMM in modeling resting-state fMRI data

(Røge et al., 2017). Here, we confirmed this is also the case for task-based fMRI data: the495

vMF mixture model performed better in model evaluation than the GMM (Supplementary

Fig. S1). We thus used the vMF mixture as our primary emission model.
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The probability density function of a N -dimensional (N ⩾ 2) vMF distribution for a

data point yi (∥yi∥ = 1) is defined as:

pN(yi|v, κ) = cN(κ) · exp(κv⊺yi) (4)

where v denotes the mean direction (∥v∥ = 1), κ indicates the concentration parameter

(κ ⩾ 0). The normalizing constant cN(κ) is given by:

cN(κ) =
κ

N
2
−1

(2π)
N
2 IN

2
−1(κ)

(5)

where Ir(·) refers to the modified Bessel function of the r order. In a k-classes vMF mixture,

each of the 1 ⩽ k ⩽ K parcels is specified with the parameters {vk, κk}, where κk is the con-

centration parameter and vk is the mean direction vector. Because any spatial dependency

in the data is modeled through the arrangement model, these emission log-likelihoods can

be computed separately for each brain location i. For each subject s and emission model n,

we can calculate the data log-likelihood for each i brain location as:

ℓs,ni,k = log p(ys,n
i |us

i (k) = 1;θEn) = log cN(κk) + κkvk
⊺ys

i (6)

We explored three variants of this model: (a) Type 1 model assumes that all sessions

of a single subject are concatenated and modeled with a single emission model; (b) Type 2

model uses different emission models for different sessions from the same participant (Fig.500

1, Dataset 2). Evidence from different sessions of the same subject is combined during

the message passing (eq. 3). Different sessions have different concentration parameters κ,

providing the possibility of adaptive weighting across sessions. The concentration parameter,

however, is assumed to be the same across all parcels; (c) Type 3 model is identical to the

Type 2 model, but employs a different concentration parameter, κk, for each of the parcels.505

In the maximization step, the emission model parameters θE := {vk, κk} are updated by

maximizing the expected emission log-likelihood LE (Supplementary materials S2).

4.1.3. The spatial arrangement model

The arrangement model aims to provide a (possibly not normalized, see discussion) prob-

ability measure p(U;θA) for each unique individual s (s ∈ S) in the studied population over

a set of latent variables us
i , which indicates the affiliation of a certain brain location i to a

specific functional region k. We considered here the most basic architecture for the spatial

arrangement model, namely the independent arrangement model, where different brain

locations are considered to be mutually independent. In this case, the spatial arrangement

model learns the group probability at each location i across all subjects belonging to a parcel
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k, denoted as p(ui(k)). We parameterize this model using a group log-probability parameter

ηi,k for each brain location i and parcel k:

p(ui(k)) =
exp(ηi,k)∑
j exp(ηi,j)

(7)

This arrangement model can be estimated using the EM algorithm for inference. In the E-

step, we calculate the posterior ⟨us
i (k)⟩q for each individual by integrating the log evidence

from the data and the group prior parameter ηi,k:

⟨us
i (k)⟩q = p(us

i = k|ys
i ;θA,θE)

=
exp(log p(ys

i |us
i = k;θE) + ηi,k)∑

j exp(log p(y
s
i |us

i = j;θE) + ηi,j)
. (8)

The arrangement model parameters θA := {ηi,k} are then updated in the M-step (Supple-

mentary materials S6).510

4.1.4. Message passing and collaborative learning

Since the full model breaks into different parts (Fig. 1), the learning algorithm can be

partitioned into separate E-steps and M-steps for arrangement and emission models (Algo-

rithm 1). The two parts then communicate through a message-passing process. Specifically,

if there are multiple emission models in the framework, each of the n emission models cal-515

culates ℓs,ni,k (eq. 6) for each individual s.

During message-passing, the evidence for a single subject s is integrated across any ex-

periment/session that is available for this subject (e.g. Dataset 2 in Fig. 1),

ℓsi,k =
∑
n

ℓs,ni,k . (9)

These combined emission log-likelihoods ℓsi,k are then collected and passed to the arrangement

model. The arrangement model then computes the posterior expectation ⟨us
i (k)⟩q (eq. 8)

of the parcel assignment in each subject s, which are collected into a K × P matrix ⟨Us⟩q.
These quantities are then used to calculate the expected emission log-likelihoods LEn and

the expected arrangement log-likelihood LA. In case of an independent arrangement model,

the expected arrangement log-likelihood LA can be computed in closed form:

LA =
∑
s∈S
⟨log p(Us;θA)⟩q =

∑
s∈S

∑
i

∑
k

⟨us
i (k)⟩q · ηi,k. (10)

Similarly, the expected emission log-likelihood is calculated by multiplying the data log-

likelihood in eq. 6 with the posterior expectation (eq. 8) and summing these quantities over
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Algorithm 1: EM algorithm of the fusion framework
Input: K, fMRI data for subject s and experiment/session n {Ys,n, ...}, initial

emission model parameters θE
(0), initial arrangement model parameters η

(0)
i,k

Output: the final estimated parameters η
(t)
i,k and ⟨us

i (k)⟩
(t)
q

1 Initialize: t = 0, tmax = 200, ∆ = 0.01

2 while t ⩽ tmax do

3 calculate emission log-likelihoods eq.6 for each experiment/session:

4 for n = 1 to N do

5 emission E-step for each available subject s in Ys,n using eq.S2:

6 ℓs,ni,k
(t)

= log p(ys,n
i |us

i (k) = 1;θ
(t)
En)

7 end

8 sum emission log-likelihoods across experiments/session for each subject:

9 ℓsi,k
(t)

=
∑

n ℓ
s,n
i,k

(t)

10 arrangement E-step using Supplementary eq.S4:

11 ⟨us
i (k)⟩(t)q =

exp(ℓsi,k
(t)

+ η
(t)
i,k)∑

j exp(ℓ
s
i,j

(t)
+ η

(t)
i,j )

12 calculate expected complete log-likelihood by summing up eq.10 and eq.11:

13 L(t) = L(t)
A +

∑
n

L(t)
En

=
∑
s∈S

∑
i

∑
k

⟨us
i (k)⟩q(t) · ηi,k(t) +

∑
s∈Sn

∑
i

∑
k

⟨us
i (k)⟩q(t) · ℓs,ni,k

(t)

14 check converge criterion:

15 if t ⩾ 1 and L(t) − L(t−1) < ∆ then

16 return η(t), ⟨us
i (k)⟩

(t)
q

17 end

18 arrangement M-step using Supplementary eq.S6:

19 ηi,k
(t+1) ← log

∑
s

⟨us
i (k)⟩(t)q

20 for n = 1 to N do

21 emission M-step by eq.S7, and eq.S8 (Type 1, 2) or S10 (Type 3)

22 θ
(t+1)
En ← argmaxθEn

L(t)
En(θEn)

23 end

24 t← t+ 1

25 end

subjects, brain locations, and parcels:

LEn =
∑
s∈Sn

⟨log p(Ys,n|Us;θEn)⟩q =
∑
s∈Sn

∑
i

∑
k

⟨us
i (k)⟩q · ℓs,ni,k . (11)
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The sum of these expected log-likelihoods L (in eq. 2) is then used as an objective

function to check the convergence.

In the implementation, the algorithm takes inputs of the fMRI datasets Ys,n (n =

1, 2, ..., N and s ∈ S) with the initial arrangement and emission model parameters, η
(0)
i,k520

and θ
(0)
E . The parameters η

(0)
i,k were initiated randomly from a normal distribution. For the

initial emission model parameters, the mean direction vectors v
(0)
k were also drawn from a

normal distribution and normalized to be unit vectors. The initial concentration parameters

κ
(0)
k were randomly drawn from a uniform distribution between 10 to 150, as we wanted

to start with a ‘medium-sized’ directional variance. After convergence, the algorithm re-525

turns the estimated group parameters for arrangement and emission models, as well as the

posterior expectation ⟨us
i (k)⟩(t)q from the last iteration (t).

4.1.5. Individual and group parcellations

Once the model is trained, the group probability map can be derived from the estimated

parameters of the spatial arrangement model. For the independent arrangement model, the530

k-long vector of probabilities at each brain location is ⟨ui⟩ = softmax(η
(t)
i ). To obtain a

hard parcellation for later evaluation (Methods 2.5), we applied a winner-takes-all approach

assigning each brain location i to the parcel with the highest probability (argmaxk⟨ui(k)⟩).
Individual parcellations can be obtained even for the individuals that were not part of

the model training by applying a single E-step, using the trained parameters and their data.

This procedure effectively integrates the individual data likelihood with the group probability

map. Since we assume an independent spatial arrangement model, the posterior expectation

for a location i of subject s can be exactly computed as,

⟨us
i ⟩ = softmax(log p(ys

i |us
i ;θE) + ηi). (12)

Similarly, a hard individual parcellation was then again obtained by assigning i to the region

with the highest probability, argmaxk⟨us
i (k)⟩. For the comparison reported in section 3.1, we

also derived a parcellation only based on data likelihood without taking the group probability

into account:

⟨us
i ⟩ = softmax(log p(ys

i |us
i ;θE)). (13)

4.1.6. Initialization and convergence

As for most other complex non-convex optimization problems, local minima and slow535

convergence also constitute a problem during learning in our framework. While each emission

model quickly learns a set of mean vectors vk that reasonably approximates the respective

dataset, the different parcels are not necessarily aligned across the datasets. This is especially
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the case when the emission models are randomly and independently initialized. As the

arrangement model receives conflicting information from different emission models, it can540

take a long time to bring the different emission models into alignment.

To solve this problem, it is sufficient to start the algorithm with a single down-pass

of information from the (randomly initialized) arrangement model to all emission models.

That is, during the first iteration of the loop, we skipped the calculation of the emission log-

likelihood (line 3-9) of the Algorithm 1, setting all ℓsi,k to zeros. This “pre-training” helps to545

align the corresponding parcel assignments across all datasets.

A further technique to address the slow convergence is to initialize the model from many

different random starting points, and only perform a few learning iterations. After this initial

phase of learning, we picked the model with the highest expected log-likelihood, and only

completed the training until the likelihood increased less than (∆ = 0.01) in a single step.550

We used 50 initializations, each trained for an initial 30 steps.

Finally, we repeated this entire process a minimum number of 50 times and then continued

until the solution with the highest likelihood was found at least 10 times in independent

learning runs. This increased our confidence that we indeed had found a solution that could

constitute a global maximum.555

4.2. fMRI Datasets

In this project, we considered seven task-based and one resting-state fMRI datasets (see

Table 1). The task-fMRI datasets refer to: (1) the Multi-Domain Task Battery (MDTB,

King et al. (2019)); (2) a high-resolution version of the MDTB (High-res MDTB ; not yet

published); (3) the Nakai & Nishimoto dataset (Nakai and Nishimoto, 2020); (4) a subset of560

the Individual Brain Charting (IBC) dataset (Pinho et al., 2018, 2020); (5) the Shahshahni

dataset (Shahshahani et al., 2023); (6) the Multi-Demand dataset (Assem et al., 2022); and

(7) the Somatotopic dataset (Saadon-Grosman et al., 2022). The first four datasets of the

list include a broad range of task conditions from the perceptual, cognitive, motor, and social

domains. In the first three datasets, tasks were randomly intermixed in each imaging session.565

In the IBC dataset, individual runs comprised only one task or a few tasks pertaining to

a specific cognitive domain. The three last datasets of the list probe a more circumscribed

array of functions: the Shahshahni dataset includes verbal working memory tasks (with

forward and backward recall) and finger tapping tasks; the Multi-Demand dataset includes

three executive function tasks (n-back, task-switch, a no-go); and the Somatotopic dataset570

probes foot, hand, glutes, and tongue movements. Lastly, as a resting-state fMRI dataset, we

used the Unrelated 100 subjects, which made publicly available in the Human Connectome

Project (HCP) S1200 release (Van Essen et al., 2013).

The task-based datasets were pre-processed using either the SPM12 software package

(Wellcome Department of Imaging Neuroscience, London, UK) or the FSL library (Anal-575
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Name Subjects
Unique
task con-
ditions

Functional
scan time
(min)

Voxel
size
(mm)

Description DOI Reference

MDTB 24 62 240
3T,
3mm

Cognitive, motor,
perceptual, social

10.18112/openneuro.

ds002105.v1.1.0

King et al.
(2019)

Highres-
MDTB

7 9 120
7T,

1.5mm
Cognitive, motor,
perceptual, social

not openly available
not openly
available

Nishimoto 6 103 162
3T,
2mm

Cognitive, motor,
perceptual, social

10.18112/openneuro.

ds002306.v1.0.3

Nakai and
Nishimoto
(2020)

IBC 12 208 822
3T,

1.5mm
Broad Battery

10.18112/openneuro.

ds002685.v1.3.1

Pinho et al.
(2018);

Pinho et al.
(2020)

WMFS 16 5 + 12 5̃
3T,
3mm

Motor and
working memory

task
not openly available

Shahshahani
et al. (2023)

Multi-
Demand

37 12 100
3T,
2mm

Executive Tasks not openly available
Assem et al.

(2022)

Somatotopic 8 6 96 1.8/2.4 Motor
10.1152/jn.00165.

2022

Saadon-
Grosman

et al. (2022)

HCP-
Unrelated

100
100 none 60

3T,
2mm

Resting-state

https://www.

humanconnectome.

org/study/

hcp-young-adult/

data-releases

(Van Essen
et al., 2013)

Table 1: FMRI datasets used for the functional fusion. All datasets listed but the last one are
task-based, all of them together covering a wide range of psychological domains. The last one refers to
resting-state data from a subset of the HCP dataset.

ysis Group, FMRIB, Oxford, UK). For every participant, an anatomical MRI image (T1-

weighted MPRAGE, 1mm isotropic resolution) was acquired in one scanning session. FMRI

data (time series acquired with Echo-Planar Imaging, T2*-weighted sequence using Blood-

Oxygenation-Level-Dependent contrast) were realigned for head motion within each session,

and for different head positions across sessions using the six-parameter rigid body trans-580

formation (Friston et al., 1995, Jenkinson et al., 2002). The mean functional image was

then co-registered onto the anatomical image and this transformation was applied to all

functional images (Ashburner and Friston, 1997, Greve and Fischl, 2009). No smoothing or

group normalization was applied.

In parallel, the individual anatomical volumes were segmented into different tissue types585

(Ashburner and Friston, 2005), and the whole-brain plus gray-matter masks were derived

from this segmentation. Each anatomical image was submitted to the standard recon-all

pipeline from the FreeSurfer software (Fischl, 2012) to obtain a reconstruction of the individ-
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ual cortical surfaces. Similarly, each anatomical image was processed using SUIT (Diedrich-

sen, 2006), which provided cerebellar segmentation and normalization. The cerebellar mask590

was derived from this segmentation and hand-corrected, whenever necessary, to ensure that

voxels from occipital and inferior temporal cortices were not included.

A mass-univariate General Linear Model (GLM) was then fitted to the realigned func-

tional data to estimate brain activation per imaging run. Each task condition was modeled

as a boxcar function according to the onsets and duration of the given task condition. The595

corresponding boxcar function was then convolved with the canonical Hemodynamic Re-

sponse Function (HRF) (Friston et al., 1998a,b). The whole-brain mask was applied to the

realigned functional volumes to restrict the GLM to voxels inside the brain. Coefficients

of the GLM were divided by the root-mean-square error (RMSE) for each voxel, resulting

in individual volume-based maps of normalized activity estimates. These functional deriva-600

tives, obtained for each task condition and imaging run served as input to the fMRI dataset

integration framework (see Section 4.3).

The resting-state data were pre-processed using the HCP minimal processing pipeline

(Glasser et al., 2013), including structural registration, correction for spatial distortion, head

motion, cortical surface mapping, and functional artifact removal (Smith et al., 2013, Glasser605

et al., 2013). For each imaging run, this resulted in 1200 time points of processed time series

for each voxel of the standard MNI152 template (Van Essen et al., 2012) in the cerebellum.

To generate the resting-state functional connectivity (rs-FC) fingerprint of the cerebellar

voxels from the HCP data set, a group Independent Component Analysis (ICA) was applied.

We first concatenated the preprocessed functional data temporally across subjects, sessions,610

and runs to create a single matrix. Then we used the group-ICA implemented in FSL’s

MELODIC (Jenkinson et al., 2012) with automatic dimensionality estimation, resulting in

1072 group-level components. Sixty-nine signal components were identified from the first 300

ICA components as resting-state networks. Lastly, we regressed the 69 group network spatial

maps into the subject-and-run-specific cortical time series, resulting in 69 cortical network615

time courses. The cerebellar rs-FC fingerprints were calculated as Pearson’s correlations of

the cerebellar voxel time series with each cortical network time course.

4.3. Data structure and anatomical normalization

One important barrier to integrating task contrasts across different fMRI datasets is that

these derivative measures are often stored in different atlas spaces (e.g. MNI, fsLR) and with620

different naming conventions, requiring specialized code for each dataset. To address this

problem, we specified a data structure for fMRI derivatives using BIDS-derivative naming

convention and file standards (Gorgolewski et al., 2016). For each dataset, we imported the

task contrasts (estimates) for each subject, run, and condition that were estimated from

minimally pre-processed, non-normalized, and un-smoothed, fMRI data (see Method 4.2).625
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We then developed a toolbox that allowed the automatic and fast extraction of this data in

any desired atlas space (surface- or volume-based), at any desired level of smoothing and

aggregation across runs.

After extraction the resulting functional files are stored using the CIFTI format, result-

ing in fast and efficient loading times. For the current project, we extracted the cerebellar630

data in 3mm resolution, aligned to the MNI152NLin2009cSym template (Ciric et al., 2022),

resulting in 5446 voxel locations in group space. The sampled functional data of all datasets

were smoothed using a Gaussian kernel of 2mm standard deviation, except the Somatotopic

dataset that used a 3mm smoothing kernel. The proposed file structure and code are avail-

able in a public repository (https://github.com/DiedrichsenLab/Functional_Fusion).635

The parcellations were visualized using a surface-based representation of the cerebellum

(Diedrichsen and Zotow, 2015).

4.4. Synthetic datasets for simulation

To validate the proposed framework, we ran several simulations (Results 2.2, 2.3) on

synthetic datasets. To generate individual brain organization maps (Us), we used a Markov

random field of rectangular 50 × 50 grid with a 4-neighbor connectivity scheme. Each grid

point represented a brain location and could take one of K values (a.k.a Potts Model (Wu,

1982)). We first generated an artificial smooth group probability map (Fig. S2a) by select-

ing K centroids µk at random locations, and assigning the bias parameters of the spatial

arrangement model ηi,k for the node a location xi to be:

ηi,k = −
|xi − µk|22

2σ2
µ

(14)

where σ2
µ controls the smoothness of the group map (see Supplementary Fig. S2b).

The individual maps Us were then sampled from the Potts model where the local prob-

ability ψi,j between two vertices i and j was set to

ψi,j = exp(θw · u⊺
iuj · wi,j), where u⊺

iuj =

1; if ui = uj

0; otherwise.
(15)

The pairwise weight of two vertices wi,j (wi,j = wj,i) indicates whether i and j are neigh-640

bouring vertices (wi,j = 1 if i and j are neighbours; wi,j = 0 otherwise). The temperature

parameter θw controls how strong the spatial co-dependence between neighbouring vertices

is. A higher θw encourages that the two neighbouring nodes are more likely to be assigned

to the same parcel, enforcing the overall local smoothness of the map (Supplementary Fig.

S2c). Ultimately, the individual maps were generated using vertex-wise Gibbs sampling after645
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a burn-in of 20 iterations across all vertices.

We then generated synthetic functional data Ys for each participant based on their

individual parcellation maps. Rather than using a von Mises-Fisher distribution, we wanted

to generate data that had both an amplitude and direction. Additionally to the region-

specific mean direction of the response vk, we therefore introduced a non-negative region-

specific signal strength parameter, λk. The data for each voxel was generated from:

yp = λkvk + ϵ (16)

where ϵ was a normal random vector with variance I · σ2
k. These parameters allowed us

to control the signal and noise levels in each region separately. After normalization of the

data to unit length, the generated data conformed approximately to a von Mises-Fisher

distribution with mean vk and concentration κk = λ2k/σ
2
k. Ultimately, a synthetic dataset650

consisting of N task observations was generated for P brain locations and S subjects.

For the simulation in Results 4.2 and 4.3, the bias terms for the Potts model were

generated with σ2
µ = 120, while the true number of parcels in the group map and fitting

model were both set to K = 20. Then, we sampled 10 individual maps Us from the group

map with local connection weights wi,j = 1.5. These individual maps are further used to655

sample synthetic data from two sessions Ys,1 (session 1, N = 40 tasks), Ys,2 (session 2,

N = 20 tasks) and a test set Ys
test (N = 120 tasks) with equal signal strength λk = 1.1

for all functional regions. The λk might be changed depending on specific simulations (see

Results 4.2 and 4.3).

4.5. Evaluation measures for probabilistic atlas660

The distance-controlled boundary coefficient (DCBC, Zhi et al. (2022)) is an unbiased

evaluation criterion for brain parcellation, which allows the direct comparison of brain maps

generated from different modalities (i.e resting-state, task-based, and anatomical) and dif-

ferent number of parcels. The coefficient controls for the intrinsic smoothness of brain

data, which is biased in other evaluation metrics (Gordon et al., 2016, Rousseeuw, 1987).665

The DCBC method solves this problem by binning all vertex pairs based on their spatial

distance and only comparing the Pearson’s correlation for within-parcel pairs and between-

parcel pairs for the same distance. Then, the DCBC value is calculated as the average

correlation differences, weighted by reliability across distances. The spatial distance is cal-

culated as the Euclidean distance between the center of each voxel pair in the atlas volume670

space. The underlying functional profiles for calculating the correlations of voxel pairs are

the associated betas weights in a task-based dataset. A higher DCBC value of a parcellation

indicates that this parcellation predicts the functional boundaries well on the tasks of the

dataset being used.
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4.6. Computational setup675

Model training and evaluations were performed on either an NVIDIA 1080Ti GPU with

Python 3, CUDA 11.3, and PyTorch 1.10.2 or on NVIDIA GRID A100-10C GPU with

Python 3, CUDA 11.6, and PyTorch 1.13.1. For the fMRI datasets, all data were prepro-

cessed and extracted on an Intel i7-8700 CPU with NumPy 1.24.0, NiBabel 4.0.2, neuroimag-

ingtools 0.5.0. Other detailed requirements and parameters used for the data processing680

pipeline are available in the respective repositories (see Code availability).

5. Data availability

The raw data for the fMRI studies used in this project are publicly available on https:

//openneuro.org/ for the studies listed in Table 1.

6. Code availability685

The code for the hierarchical Bayesian parcellation framework is publicly available as the

GitHub repository https://github.com/DiedrichsenLab/HierarchBayesParcel. The or-

ganization, file system, and code for managing the diverse set of datasets is available in

a separate repository https://github.com/DiedrichsenLab/Functional_Fusion. The

paper-specific code for generating the functional probabilistic parcellations for the cere-690

bellum, as well as running the simulation presented in this paper is available at https:

//github.com/DiedrichsenLab/FusionModel.
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Supplementary Materials and Figures

Parameter estimation of full model

In this section, we provide details of model parameter estimation for the full EM algo-870

rithm. The complete expected log-likelihood
∑

s⟨log p(Ys,Us;θ)⟩q can be decomposed into
expected emission log-likelihood LE and expected arrangement log-likelihood LA, where ⟨·⟩q
denotes the expectation with respect to distribution q. Similarly, the model parameter θ
can be subdivided into θE and θA and can be estimated within their corresponding models
(Methods 4.1). This unique model structure yields the following learning EM process:875

Emission model E step. Suppose for a single dataset Yn is a S × N × P tensor for S
subjects (S is the number of subjects in S) of N data observations across P voxels. The
brain activation of a voxel for a single subject ys

i is a N -long vector. If the task design has
repeated measurements of the same M conditions (e.g. in a single imaging run), the user
can specify this over a N×M design matrix X (M is the number of unique task conditions).
To account for the situation that ys

i consists of multiple partitions, which could be imaging
sessions or runs, we used an N -dimensional partition vector to divide N observation into
J independent partitions. Therefore, if we combine the data across repeated measurements
and different partitions, the resultant data ỹs

i would be a sum of normalized data in each
partition j as,

ỹs
i =

J∑
j

∥(X⊤
j Xj)

−1X⊤
j y

s
i,j∥ (S1)

However, we can also treat the different repetitions as independent observations, meaning
that the resultant data is normalized to length 1 across J independent partitions. This is
also the case with the Type 1 model, in which the imaging sessions are simply concatenated.
Hence, the expected emission likelihood LE of a mixture of k-classes vMF distribution in eq.
11 is modified and updated at (t+ 1) iteration by:

LE
(t+1) = SPJ

∑
k

log cM(κ
(t)
k ) +

∑
s∈S

P∑
i

K∑
k

⟨us
i (k)⟩(t)q κ

(t)
k v

(t)
k

⊤
ỹs
i (S2)

As a sufficient statistic, it should be noticed that the resultant summed vectors ỹs
i become

a M -dimensional vector but its magnitude is not 1 anymore. Therefore, the normalizing
constant will be computed in M -dimensional correspondingly, denoted as log cM(κk).

880

Arrangement model E step. Expanding eq. 10 and 7, the expected posterior under the
proposal distribution q at (t+ 1) iteration are updated as,

⟨us
i (k)⟩(t+1)

q = p(us
i = k|ys

i ; θ
(t)
A , θ

(t)
E ) (S3)

=
exp(⟨log p(ys

i |us
i = k; θ

(t)
E )⟩q + ηki

(t)
)∑

j exp(⟨log p(ys
i |us

i = j; θ
(t)
E )⟩q + ηji

(t)
)

(S4)
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where ηki is defined in Methods.

Arrangement model M step. Expanding the expected arrangement log-likelihood in
eq.10, we obtain the derivatives with respect to the parameters θA := {ηi,k}:

∂LA

∂ηi,k
=
∂
∑

s

∑
i⟨us

i (k)⟩q · ηi,k
∂ηi,k

(S5)

By setting this derivative to zero, we can obtain the following parameter updates:

ηi,k
(t+1) = log

∑
s

⟨us
i
(k)⟩(t)q (S6)

Emission model M step. To update the parameters θE of the vMF mixture in the M-step,
we need to maximize LE in respect to the parameters in vMF mixture θk = {vk, κk}. First,
we update the mean direction vk, where we get the intuitive update :

v
(t+1)
k =

ṽk

rk
, where ṽk =

∑
s

∑
i

⟨us
i
(k)⟩(t)q · ỹs

i ; rk = ||ṽk|| (S7)

The updates of the concentration parameters κk are more difficult in particular for high
dimensional problems, since it involves the inverting ratio of two Bessel functions. Therefore,
we here use an approximate solution suggested by Banerjee et al. (2005) and Hornik and
Grün (2014). In our specific case, we want to integrate the evidence across s = 1, ..., S
subjects and i = 1, ..., P voxels, with each subject and voxel may have Js

i partitions. Under
this assumption, we can (1) learn a common κ across classes by restricting κk to be equal,
as:

κ(t+1) ≈ r̄M − r̄3
1− r̄2 (S8)

r̄ =

∑K
k ∥

∑S
s

∑P
i ⟨us

i
(k)⟩(t)q · ỹs

i∥∑S
s

∑P
i J

s
i

(S9)

which is used in Type 1 and Type 2 model learning.
Alternatively, we can (2) learn k-class specific kappa κk by relaxing the constraint as:

κ
(t+1)
k ≈ r̄kM − r̄3k

1− r̄2k
(S10)

r̄k =
∥∑S

s

∑P
i ⟨us

i
(k)⟩(t)q · ỹs

i∥∑S
s

∑P
i ⟨us

i
(k)⟩(t)q · Js

i

(S11)

which will be used as the parameter estimates for the Type 3 regions-specific emission model.
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Figure S1: Comparison of the performance between the parcellations derived from Gaussian
Mixture Model (GMM) and von Mises-Fisher Mixture model (VMF). (a) The averaged DCBC
value of the group parcellation maps trained by GMM or VMF mixture model across subjects in the test
dataset. (b) The averaged DCBC value of the individual parcellation maps trained by GMM or VMF
mixture model across subjects in the test dataset.
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Figure S2: The synthetic dataset. (a) The random true group map with 5 parcels. (b) The group prior
controlled by smoothing kernel at different levels for all 5 classes. (c) The example individual parcellation
maps generated by different parameters
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Figure S3: Simulation on two synthetic sessions fusion with similar task activation using Type 1,
2, and 3 emission models. (a) The comparison of model reconstruction performance of group parcellations
learned on synthetic session 1 or 2 standalone vs. the ones learned fusion using type 1, 2, or 3 models. (b)
The mean DCBC value of the group map learned from session 1 or 2 only or learned by fusion using type
1, 2, or 3 models. (c) The mean DCBC value of individual maps across all participants when learned from
session 1 or 2 only or learned by fusion using type 1, 2, or 3 models. Error bars indicate SEM across 100
times simulation.
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Figure S4: Comparing the performance of Type 2 and 3 models when the number of parcels K
used for fitting is different from the true K in the simulation. (a) The difference of the mean DCBC
value between the group map trained on a synthetic dataset using Type 2 and Type 3 models with different
fitting K and ground true K, which tested on an independent synthetic test set. A positive value on the
grid indicates the Type 2 model outperforms the Type 3 model, while negative values mean the opposite.
(b) The difference of the mean DCBC value between the individual maps. (c) The mean DCBC value for
the group map learned from individual synthetic datasets only or learned by fusion using the Type 2 or 3
models for K = 5 to K = 40 when the true K = 20. The error shade indicates the standard error across 100
simulations. (d) The mean DCBC value for the individual maps.
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Figure S5: The visualization of the learned group maps (K = 34). (a) The maps were trained on
a pure resting-state dataset HCP-Unrelated 100 using the Type 2 or 3 fusion model. (b) The maps were
purely trained on task-based datasets using the Type 2 or 3 fusion model. The task datasets are MDTB,
Highres-MDTB, Nakai&Nishimoto, IBC, WMFS, Demand, Somatotopic. (c) The maps were trained on the
combination of resting-state and all task-based datasets. The colors for the parcels are aligned in each type of
model, where two similar colors in RGB space indicate the two parcels have similar task activation responses
on average.
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