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Abstract 21 

The ability to make advantageous decisions is criXcal for animals to ensure their survival. Patch 22 

foraging is a natural decision-making process in which animals decide when to leave a patch of depleXng 23 

resources to search for a new one. To study the algorithmic and neural basis of patch foraging behavior 24 

in a controlled laboratory se\ng, we developed a virtual foraging task for head-fixed mice. Mouse 25 

behavior could be explained by ramp-to-threshold models integraXng Xme and rewards antagonisXcally. 26 

Accurate behavioral modeling required inclusion of a slowly varying “paXence” variable, which 27 

modulated sensiXvity to Xme. To invesXgate the neural basis of this decision-making process, we 28 

performed dense electrophysiological recordings with Neuropixels probes broadly throughout frontal 29 

cortex and underlying subcorXcal areas. We found that decision variables from the reward integrator 30 

model were represented in neural acXvity, most robustly in frontal corXcal areas. Regression modeling 31 

followed by unsupervised clustering idenXfied a subset of neurons with ramping acXvity. These neurons’ 32 

firing rates ramped up gradually in single trials over long Xme scales (up to tens of seconds), were 33 

inhibited by rewards, and were beKer described as being generated by a conXnuous ramp rather than a 34 

discrete stepping process. Together, these results idenXfy reward integraXon via a conXnuous ramping 35 

process in frontal cortex as a likely candidate for the mechanism by which the mammalian brain solves 36 

patch foraging problems. 37 

  38 
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Introduc&on 39 

One of the most fundamental computaXons animals must regularly make to ensure their survival 40 

is how to effecXvely allocate Xme in the pursuit of resources. Patch foraging—the process of deciding 41 

when to leave a locaXon with depleXng resources to search for a new one—is an ethologically relevant 42 

decision-making problem faced by many species across the animal kingdom, from worms to primates [1-43 

6]. A classic result in behavioral ecology is that foraging animals should leave a patch when the marginal 44 

rate of resource intake equals the average rate in the environment—a result known as the Marginal 45 

Value Theorem (MVT) [7]. TheoreXcal work has demonstrated that integrate-to-threshold models, 46 

classically used to model evidence accumulaXon in sensory decision making, can produce opXmal value-47 

based decisions [8], and can be used to solve the patch foraging problem [9]. These integrator models 48 

can achieve MVT-opXmal behavior and, through parameter tuning, can also implement non-MVT 49 

strategies appropriate to different distribuXons of resources in the environment. The idea that integrator 50 

models can be adapted to solve foraging problems is aKracXve, because they offer a potenXal 51 

mechanism through which to link foraging behavior to its neural basis.  52 

Rodents are natural foragers and are highly amenable to a wide range of molecular/geneXc tools 53 

for dissecXon of neural circuit funcXon [10]. Therefore, foraging in rodents presents an ideal opportunity 54 

to dissect neural mechanisms of an ethologically relevant cogniXve computaXon with a well-grounded 55 

theoreXcal basis.  Recent work has idenXfied mulXple areas of rodent frontal cortex [11], including 56 

anterior cingulate cortex (ACC) [12], orbitofrontal cortex (OFC) [13], and secondary motor cortex (M2) 57 

[14] as being involved in foraging decisions. We therefore set out to record neural acXvity broadly in the 58 

frontal cortex while mice performed a well-controlled laboratory foraging task, aiming to idenXfy the 59 

behavioral algorithms, neural acXvity paKerns and brain areas that support this natural decision process. 60 
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Here, we present a novel head-fixed virtual reality patch foraging task for mice. By comparing 61 

various models of patch-leaving decisions, we show that while mouse behavior did not conform precisely 62 

to the MVT, integraXon models captured mouse behavior with quanXtaXve precision. CriXcal to accurate 63 

behavioral modeling was a slowly varying “paXence” variable, esXmated from surrounding trials, which 64 

modulated sensiXvity to Xme. Decision variables derived from integraXon models could be predicted 65 

from neural acXvity in the frontal cortex, and vice versa, more accurately than in subcorXcal areas. These 66 

results suggest that mice solve the patch foraging problem via an integraXon process within the frontal 67 

cortex, analogous to evidence accumulaXon in sensory decision making. 68 

 69 

 70 

  71 
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Results 72 

A head-fixed patch foraging task for mice 73 

 We developed a head-fixed virtual patch foraging task for mice (Fig. 1), in which they ran on a 74 

cylindrical treadmill to traverse a one-dimensional virtual linear corridor. Amer mice ran a fixed distance, 75 

a visual “proximity cue” was presented, indicaXng the availability of a resource patch. If mice stopped 76 

running while the proximity cue was on, a patch trial was iniXated with a visual cue, and water droplets 77 

were delivered stochasXcally while mice remained on the patch. Each patch delivered water droplets of 78 

one of three sizes (1, 2, or 4 µ𝐿), which was consistent within a patch. Rewards were delivered 79 

probabilisXcally each second on the patch, with probability given by a decaying exponenXal with a Xme 80 

constant 𝜏 = 8	𝑠𝑒𝑐 and one of three starXng probabiliXes (0.125, 0.25, or 0.5). There were thus nine 81 

patch types: three reward sizes × three reward frequencies (Fig. 1B). To encourage staying, the first 82 

reward was delivered on 100% of trials (at t=0, the Xme of stop). At any Xme, mice could leave the patch 83 

by travelling a fixed distance on the wheel, at which point they would enter the inter-patch-interval and 84 

be required to run to the next patch to receive more water. Therefore, the task required mice to decide 85 

when to leave, given the reward history and Xme spent on the patch. 86 

 87 

Patch wait 8mes depend consistently on both reward size and frequency 88 

 During the foraging task, mice consistently guided their behavior towards obtaining water 89 

rewards. Example trials from two mice demonstrate how their running and licking evolved in response to 90 

task events (Fig. 1D), stopping in response to proximity cues and licking in expectaXon of rewards. Of the 91 

two mice, mouse 80 was less paXent, omen acceleraXng whenever rewards were not being delivered, 92 

whereas mouse 78 waited substanXally longer in the absence of rewards. Reward seeking behavior was 93 
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evident across the populaXon. In response to the proximity cue, mice successfully stopped to enter most 94 

patches (Fig. 1E). As mice stopped to enter a patch, they showed anXcipatory licking at the same Xme as 95 

they began decreasing their speed (Fig. 1F), demonstraXng an expectaXon of reward availability. Amer 96 

receiving an iniXal reward at t=0 (consistent across all patch trials), they began modulaXng their behavior 97 

in response to reward size. Lick rates were higher on patches with larger reward size, and mice waited 98 

longer before increasing their running speed (Fig. 1F).  99 

The canonical signature of value-dependency during patch foraging is greater patch residence 100 

Xme (PRT) as a funcXon of richer reward staXsXcs. Put simply, efficient foragers should spend more Xme 101 

on patches with more abundant resources, as this increases their overall reward rate relaXve to 102 

indiscriminate foraging. Mice indeed showed higher PRT in patches with larger and/or more frequent 103 

rewards (example session, Fig. 1G; example mouse, Fig. 1H; all mice, Fig. 1I), with substanXal variability 104 

in mean PRT across subjects. We therefore confirmed that mice performed the patch foraging task in a 105 

manner consistent with one of the fundamental tenets of foraging theory, albeit with marked differences 106 

in overall willingness to wait across subjects. 107 

 108 

Reward sensi8vity scales with level of pa8ence across and within mice 109 

 To quanXfy the dependence of wait Xmes on the size and frequency of rewards, we regressed 110 

PRTs on these factors and found that reward sensiXvity varied substanXally across the populaXon. 111 

Notably, mice with higher overall PRT consistently yielded larger regression coefficients on reward size 112 

and frequency (Fig. 2A, Lem, Right, P<0.0001 linear regression), demonstraXng that more paXent mice 113 

also displayed greater sensiXvity to rewards. Coefficients for reward size and frequency covaried 114 

significantly (Fig. 2B, Lem, P<0.0001 linear regression). AddiXonally, we observed an interacXon between 115 

reward size and frequency (Fig. 2B, Right, P=0.013, ANOVA), suggesXng that mice integrated these 116 
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factors together to guide their decisions, rather than using simple heurisXcs based on size and frequency 117 

separately. We next compared regression models using different addiXve and mulXplicaXve 118 

combinaXons of these factors to determine which best accounted for behavior across patch types (Fig. 119 

2C). We found that reward size explained PRTs across condiXons beKer than reward frequency, with 120 

regressions including the interacXon of both factors performing best. Based on the observaXon that 121 

mice’s relaXve PRTs across patch types appeared approximately co-linear amer log-scaling, we tested 122 

whether a generalized linear mixed-effects model (GLME) could capture variability of PRT across mice 123 

and patch types (Fig. S2). We fit a 3-factor GLME with fixed effects for reward size and frequency and 124 

mouse ID as a random effect. We found that this captured PRTs across condiXons for most mice (Fig. 125 

S2C), further suggesXng a common feature of reward sensiXvity scaling across mice, despite the overall 126 

differences in magnitude. 127 

 In addiXon to variability across mice, we observed substanXal within-subject variability in PRT 128 

over Xme. Some mice displayed striking fluctuaXons in their PRTs across sessions (Fig. 2D, Lem: example 129 

mouse. Fig. S1D, populaXon), with the standard deviaXon in across session PRT ranging from 0.91 to 130 

11.6s (Fig. 2D, Right). PRTs also varied within session, omen gradually such that waiXng Xmes on 131 

neighboring patches were correlated with one another (Fig. 2E). Taking advantage of these slow 132 

fluctuaXons, we used PRTs from nearby patches as a proxy for esXmaXng subjects’ latent degree of 133 

‘paXence’ on a given trial (Fig. 2F, Lem). We averaged surrounding PRTs with a Gaussian kernel (excluding 134 

the current patch) to obtain a rolling esXmate of paXence across patches. We found that esXmates of 135 

paXence took different shapes over sessions across and within subjects (Fig. 2F, Right), omen with non-136 

monotonic and mulX-phasic changes over Xme, thereby limiXng the potenXal of capturing these effects 137 

with simple regressions. Latent esXmaXons of paXence were highly predicXve of PRT across trials (Fig. 138 

2G, Lem: example mouse, Right: populaXon). 139 
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 We then asked whether variability in paXence within mice scaled with reward sensiXvity 140 

similarly to the effects observed across mice. We assigned each trial to one of two groupings 141 

(“impulsive” or “paXent”) split by the median paXence esXmate per mouse. We observed that PRT 142 

scaling across the nine patch types was indeed steeper during paXent trials (Fig. 2H, example mouse). To 143 

quanXfy this, we repeated our regression analyses from Fig. 2A separately for PRTs on the impulsive and 144 

paXent groupings and found that regression coefficients for both size and frequency of rewards were 145 

consistently larger during the paXent trials (Fig. 2I, P<0.0001 for size and frequency, Wilcoxon signed-146 

rank test). These results demonstrate that within-session variaXons in paXence do not simply add 147 

constant offsets to mouse PRTs but also scale reward sensiXvity, similarly to how reward sensiXvity scales 148 

with mean PRT across mice (Fig. 2A).  149 

 150 

An integrate-to-bound process explains devia8ons from MVT predic8ons 151 

 The MVT dictates that, if patches are monotonically depleXng in value as resources are 152 

consumed, an opXmal forager should leave a patch once the instantaneous rate of reward drops below 153 

the average expected reward rate of the environment. Thus, irrespecXve of iniXal resource abundance, 154 

patches should all be lem around this same threshold crossing (Fig. 3A, Lem). To test this predicXon of 155 

MVT, we computed expected reward rate at the Xme of each patch leave. We found that mouse 156 

behavior violated this predicXon, with animals leaving high value patches too early, and low value 157 

patches too late, relaXve to an ideal observer (Fig. 3A, middle: example mouse, P<0.0001 2-way ANOVA; 158 

right: populaXon means, P<0.0001 linear mixed-effects model). This raises the quesXon of whether mice 159 

may have incomplete task knowledge (see Discussion). 160 

 We next consider specific predicXons of MVT reward rate esXmaXon, focusing on the 161 

implicaXons of exponenXally decaying reward rates. Because all patch types had exponenXally decaying 162 
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reward probabiliXes with the same Xme constant (Fig. 1C), differences in PRTs across patch types should 163 

remain constant, regardless of the threshold (Fig. 3B; see Methods). Furthermore, because we used 164 

patches with proporXonal reward sizes (1, 2, and 4µL), MVT predicts that the difference in leave Xme 165 

between 4 and 2 𝜇𝐿 patches (𝑃𝑅𝑇!"# − 𝑃𝑅𝑇$"#) should be equal to the difference between 2 and 1 𝜇𝐿 166 

patches (𝑃𝑅𝑇$"# − 𝑃𝑅𝑇%"#; Fig. 3B; see Methods). Neither of these predicXons was borne out in the 167 

data. Instead, reward sensiXvity grew with mean PRT (Fig. 2A) and we consistently observed	𝑃𝑅𝑇!"# −168 

𝑃𝑅𝑇$"# > 𝑃𝑅𝑇$"# − 𝑃𝑅𝑇%"#	(Fig. 3C, P=0.0002, Wilcoxon signed-rank test).  169 

In contrast, integrator models can explain the above empirical departures from MVT predicXons. 170 

Parameters can be chosen such that the reward rate at leave Xme differs between patch types. 171 

Furthermore, in integrator models, differences in PRT between patch types necessarily grow with Xme, 172 

and slopes can be chosen such that 𝑃𝑅𝑇!"# − 𝑃𝑅𝑇$"# > 𝑃𝑅𝑇$"# − 𝑃𝑅𝑇%"# (Fig. 3B, right). Notably, prior 173 

work has emphasized that integrator models can achieve MVT opXmal behavior [9]; here, we show that 174 

while mouse wait Xmes increase with patch value (a core feature of opXmal foraging), they deviate from 175 

opXmality in ways that can be explained by an integraXon process that is not perfectly tuned to reward 176 

staXsXcs. Therefore, while we cannot rule out addiXonal assumpXons that may render our data 177 

consistent with MVT (e.g. imperfect task knowledge), we took integrator models to be the most 178 

parsimonious explanaXon of our behavioral data, and proceeded to fit integrator models to our data to 179 

narrow down the nature of the integraXon algorithm. 180 

 181 

A compe88ve integra8on process explains patch leaving decisions when accoun8ng for latent pa8ence 182 

scaling 183 

To approximate the generaXve process mice use to solve the patch leaving problem, we devised 184 

several integrator models which differenXally track Xme and reward events, yielding probabilisXc 185 
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predicXons of patch leaving decisions. For each model, we compute a decision variable, DV, for each 186 

Xme bin, which is then transformed through a sommax funcXon to generate a predicted probability, 187 

P(Leave), of the subject leaving the patch (Fig. 3D – see Methods for detailed model descripXon). As DV 188 

increases, so does P(Leave). Because patch foraging is not a forced-choice process, but instead one that 189 

can be made conXnuously over Xme, we must remain agnosXc over the temporal precision of the 190 

decision process. We therefore included a free parameter, Pmax, constraining the maximal output value 191 

from the sigmoid. As a result, the midpoint of the sigmoid, corresponding to instances when the 𝐷𝑉 =192 

0, is not an indifference point wherein 𝑃(𝐿𝑒𝑎𝑣𝑒) = 0.5, but instead is the point at which 𝑃(𝐿𝑒𝑎𝑣𝑒) =193 

&!"#
$

. 194 

 We fit three disXnct integrator models for compuXng DVs over Xme (Fig. 3E). Common to each 195 

model is a slope at which the DV ramps up linearly over Xme in the absence of rewards, with its rate of 196 

increase scaled by reward size. We computed this reward size scaling as a power law funcXon across 197 

reward sizes. What disXnguishes the models is how they respond to reward deliveries. Model 1 198 

exclusively tracks Xme on patch, and is indifferent to rewards, ramping upwards irrespecXve of 199 

addiXonal reward deliveries. Model 2 is a full reset model, which returns to its iniXal baseline value upon 200 

each reward delivery. Model 2 is therefore “memoryless,” in the sense that its value is dictated only by 201 

the Xme since the most recent reward and the patch’s reward size. Model 3 performs a more 202 

sophisXcated integraXon, incorporaXng rewards over Xme instead of only the most recent one. For each 203 

reward, Model 3 is reduced by an amount governed by a free parameter, R. For the purposes of this 204 

model, we fit only a single value for R rather than scaling it per µL, as we found that scaling slope alone 205 

was sufficient to account for the observed differences in PRT based on reward size. As we previously 206 

observed, mice’s overall PRTs, as well as their reward sensiXvity, were both strongly influenced by their 207 

latent levels of paXence. We therefore took our previously obtained latent esXmates of paXence and 208 

allow them to scale both slope and Pmax (Fig. 3F). We found that inclusion of this latent state scaling was 209 
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criXcal to accurately predict mice’s patch leaving behavior across trials. Non-latent-scaled versions of 210 

each model performed substanXally worse than their latent-scaled counterparts (Fig. S3B, Bonferroni-211 

adjusted, P=0.0002, Wilcoxon sign-ranked test). 212 

 To beKer understand how rewards affect the decision process, we examined predicted leave 213 

probabiliXes from the respecXve latent-scaled integrator models. Model 1 can be ruled out a priori, as it 214 

could not account for the observed dependency of PRT on reward frequency, but we included it sXll as a 215 

baseline model for comparison. In contrast, Models 2 and 3 could both potenXally account for the 216 

reward effects, as each produces greater PRT as a funcXon of reward size and frequency by reducing 217 

their DV and P(Leave) predicXons following reward deliveries. We therefore sought a systemaXc means 218 

of comparing model performance beyond predicXng mean PRT, and instead focused on the probabilisXc 219 

leave decisions the models predicted within individual trials. 220 

 To fit and compare the models, we performed maximum likelihood esXmaXon to determine the 221 

best set of parameter fits for each subject. IteraXng over one-second bins, we summed log probability of 222 

the models’ output 𝑃(𝐿𝑒𝑎𝑣𝑒), adding log <1 − 𝑃',)(𝐿𝑒𝑎𝑣𝑒)> for each bin mice remained on the patch, 223 

and log <𝑃',)(𝐿𝑒𝑎𝑣𝑒)> for bins when mice lem the patch. The parameters that yielded the highest log 224 

probability for each mouse were then considered the best fit, and BIC values were calculated to assess 225 

fits for each model (Fig. 3G), while penalizing models for addiXonal free parameters. BIC was lowest for 226 

Model 3, suggesXng that a reward integrator best explains mouse leaving behavior across trials 227 

(P<0.0001 Model 3 over Model 1, P = 0.0009 Model 3 over 2, Wilcoxon signed-rank test, Bonferroni 228 

correcXon). Bayesian model selecXon further supported this result, confirming Model 3 had the highest 229 

protected exceedance probability, which measures the probability that a given model is represented 230 

more frequently than counterparts across the populaXon. 231 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.05.556267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556267
http://creativecommons.org/licenses/by-nc/4.0/


12 
 

We then took the Model 3 fits for each mouse and simulated PRTs, using P(Leave) outputs to 232 

probabilisXcally generate patch leaving decisions. Mean simulated PRTs per patch type from Model 3 233 

closely matched mice’s empirical PRTs across the populaXon (Fig. 3H, MSE = 0.413s). We further 234 

corroborated the model fits cross-validaXon and obtained similar results. For each fold, we used 235 

maximum likelihood esXmaXon to obtain parameter fits across the four training folds. Those parameter 236 

fits were then used to generate predicted P(Leave) across bins in the held-out test fold patches, over 237 

which we summed log predicXve probability of patch leaving decisions. Results from the cross-validaXon 238 

were nearly idenXcal to the original fits, with log probability of model predicXons consistently higher for 239 

Model 3 than the alternaXve models (Fig. S3E, P<0.0001 Model 3 over Model 1, P = 0.0008 Model 3 over 240 

2, Wilcoxon signed-rank test, Bonferroni correcXon). When comparing the mean PRT across patch types 241 

from simulaXons with mice’s corresponding PRT on held-out test trials, we observed that both Model 2 242 

and Model 3 matched mice’s aggregate behavior well (Fig. S3F). 243 

We next asked how well we could predict PRT across individual trials using the Model 3 244 

parameter fits from the training folds (Fig. 3I, example trial). For each patch, we calculated the leave 245 

density per one-second Xme bin by mulXplying the fracXon of trials the model predicted to sXll be on 246 

the patch at the start of the Xme bin by that Xme bin’s predicted leave probability: 247 

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑛	𝑝𝑎𝑡𝑐ℎ),' ∗ 𝑃),'(𝐿𝑒𝑎𝑣𝑒) = 𝐿𝑒𝑎𝑣𝑒	𝑑𝑒𝑛𝑠𝑖𝑡𝑦),'. We found that model predicted PRTs explained 248 

a substanXal amount of the variance across individual patches (Fig 3J, Lem: populaXon, median R2 = .54, 249 

Right: example mouse, R2 = .80). An example session is shown to demonstrate how these model 250 

predicXons capture PRT variance beyond that which is predicted by the latent paXence esXmates (Fig. 251 

3K, Fig. S3I). 252 

To further disXnguish between Models 2 and 3, we took advantage of the richness in trial history 253 

that the task provides and examined trial types with specific histories for which Models 2 and 3 make 254 

divergent predicXons (Fig. 3L). We compared two combinaXons of reward sequences: ‘RRR’ trials, which 255 
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delivered rewards at t=0,1,2 seconds, and ‘R0R’ trials, which delivered rewards t=0 and 2 seconds (but 256 

no reward at t=1). Because Model 2 produces a full reset following reward, it predicts idenXcal leaving 257 

behavior on both trial types, as both reset to the same value amer the final reward (Fig. 3L, lem). In 258 

contrast, Model 3 integrates reward history and preserves the effect of the t=1 reward, predicXng higher 259 

PRT on ‘RRR’ over ‘R0R’ patches (Fig. 3L, right). SimulaXons demonstrate these differences (Fig. 3M, lem, 260 

middle), and mouse behavior strongly matched Model 3 predicXons, with nearly all subjects waiXng 261 

longer on ‘RRR’ trials (Fig. 3M, right). These results support Model 3’s reward integraXon over Model 2’s 262 

reward reset as a beKer descripXon of the decision algorithm. We similarly compared ‘RR0’ versus ‘R0R’ 263 

trials and found that mice behavior again beKer matched Model 3 predicXons (Fig. S3G,H). In addiXon to 264 

our separate per mouse model fits, we fit behavioral models wherein a single set of free parameters was 265 

fit across mice. With only their respecXve latent esXmates of paXence across trials to scale the model 266 

predicXons, we were sXll able to robustly capture the variability across mice and patch types (Fig. S3J, 267 

MSE = 0.988). 268 

 269 

Slow ramping and rapid reward transients are prominent features of frontal cortex ac8vity 270 

We next aimed to invesXgate the neural underpinnings of the foraging strategies idenXfied 271 

above. We recorded extracellular acXvity with Neuropixels probes broadly throughout frontal cortex and 272 

underlying subcorXcal areas while mice performed the task (Fig. 4A,B; N = 6090 units from 33 recording 273 

sessions in 9 mice). Peri-sXmulus Xme histograms (PSTHs) aligned to patch stop revealed units whose 274 

acXvity ramped upward as mice remained in the patch, with ramp slopes increasing with reward size 275 

(example in Fig. 4C). For this example unit, firing rate ramped to a common threshold prior to patch 276 

leave, was inhibited by reward delivery, and showed ramping acXvity spanning up to tens of seconds 277 

within individual patches (Fig. 4C, boKom)—much like the ramping decision variables idenXfied through 278 
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behavioral modeling. In addiXon to these “ramping neurons,” we observed a diverse array of acXvity 279 

paKerns, as expected in a complex task, including “reward-responsive” neurons which responded 280 

transiently to reward delivery (Fig. 4D). 281 

Consistent with the presence of ramping acXvity in our neural data, the acXvity of individual 282 

neurons was significantly correlated with ramping decision variables derived from behavioral models 283 

(Fig. 4E). CorrelaXons could be either posiXve or negaXve but were more frequently posiXve than 284 

negaXve (1308 and 881 cells out of 6090 with z-test P < 0.001 vs shuffle, respecXvely; Fig. 4E). Consistent 285 

with this, the top principal component(s) of neural acXvity on patches omen resembled an upward ramp 286 

which was decremented by reward (Fig. 4G). Notably, greater variance in single neurons’ firing rates was 287 

explained by the model 3 decision variable in frontal cortex compared to subcorXcal areas, suggesXng a 288 

specialized role for frontal cortex in this task (Fig. 4F). However, decision variables were also correlated 289 

with behaviors such as running speed and lick rate (Fig. S4A). These correlaXons were generally lower in 290 

longer compared to shorter patches but remained non-zero (Fig. S4B). Such correlaXons may reflect 291 

embodied cogniXon and therefore should not necessarily be viewed as confounds per se (see 292 

Discussion). Nevertheless, to rigorously isolate task-related acXvity from correlated behavioral variables, 293 

we next turned to a mulXvariable regression approach using generalized linear models. 294 

 295 

GLM modeling with unsupervised clustering reveals six clusters of neurons, the most prominent of 296 

which shows ramping ac8vity and reward responses with opposite signs 297 

To comprehensively characterize the space of task-related neural acXvity in our task, we used a 298 

Poisson Generalized Linear Model (Poisson GLM; Fig. 5A; snippet of GLM fit to an example neuron, Fig. 299 

5B) which included the following regressors: session Xme and its square, to capture slowly varying 300 

changes in firing rate; behavioral variables derived from the rotaXon of the running wheel (posiXon, 301 
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speed, and acceleraXon) and the lick sensor (lick rate and its derivaXve); discrete events at patch stop, 302 

patch leave, and reward Xmes, which were convolved with a raised cosine basis, separately for each 303 

reward size; and three ramping “decision variables” which could be used to construct the decision 304 

variables in the behavioral models (Time on Patch, Total Reward, and Time Since Reward), separately per 305 

reward size. In total, the GLM included 85 variables. ElasXc net regularizaXon with 90% L1 (regularizaXon 306 

strength selected through cross-validaXon, see Methods) encouraged the model towards sparsity, thus 307 

miXgaXng issues related to correlated regressors. As a further test of whether behavioral variables such 308 

as running speed may contribute to ramping acXvity in our data, we fit also GLMs to inter-trial intervals 309 

(ITIs), and found that GLM coefficients for running speed were more correlated between odd and even 310 

patches than between odd and even ITIs, suggesXng that even if ramping acXvity is correlated with 311 

speed it is not a low-level, non-specific motor code that is common to both patches and ITIs (Fig. S5).  312 

To assess model performance, we computed cross-validated percent deviance explained 313 

compared to a null model (Fig. 5C, top; mean % deviance explained ± SEM = 5.2 ± 0.1, N = 6090 314 

neurons). Reward kernels and decision variables were termed “Task Variables” and used to idenXfy task-315 

related neurons. Percent deviance explained was computed for full models compared to models without 316 

Task Variables (“reduced models”), and neurons with deviance explained > 1% in this comparison were 317 

deemed “task-related” (Fig. 5C, boKom; 1458/6090 neurons, mean % deviance explained versus reduced 318 

model ± SEM = 0.87 ± 0.03). GLM performance was higher for frontal cortex areas than other areas (Fig. 319 

5D, mean % deviance explained ± SEM, Frontal Cortex = 6.5 ± 1.0, SubcorXcal Areas = 4.1 ± 0.6, paired 320 

t-test P = 0.016, N = 9 mice), indicaXng that frontal cortex may be especially relevant for our task. 321 

Aligning the acXvity of task-related neurons to patch stop, spli\ng trials by those in which a reward was 322 

delivered at 1 second or not (RR versus R0 trials), and sorXng by the Xme of peak response revealed a 323 

“wave” of acXvity following each reward: A rapid reward response with variable latency which gradually 324 

transiXoned into upward ramping acXvity (Fig. 5E), as exemplified by the two neurons shown in Figure 4. 325 
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 We clustered task-related neurons based on their GLM coefficients to characterize the space of 326 

acXvity paKerns in our task in an unbiased manner (Fig. 6). We addiXonally excluded 60 neurons whose 327 

coefficients on task variables were all zero, leaving 1398 task-related neurons in this analysis. The data to 328 

be clustered thus consisted of a matrix of 42 task-variable coefficients x 1398 task-related neurons (Fig. 329 

6B). First, we reduced the dimensionality of this matrix with PCA, keeping the first 3 principal 330 

components (34.7% of variance; Fig. 6C). The top component (14.5% of variance) had reward kernel 331 

coefficients and ramping coefficients with opposite signs, indicaXng that ramping suppressed by rewards 332 

was a prevalent feature of task acXvity. We then clustered the dimensionality-reduced matrix using a 333 

Gaussian Mixture Model and K (the number of clusters) spanning 1-10. K=6 minimized the BIC and was 334 

chosen as the number of clusters (Fig. 6D). 335 

 The resulXng 6 clusters could be grouped into 3 pairs with similar shapes but opposite signs (Fig. 336 

6E,F, Fig. S6A): (1) A pair of clusters with a slow negaXve/posiXve reward response, scaled by reward size, 337 

and posiXve/negaXve coefficients on Time Since Reward (Clusters 1 and 2), (2) A pair of clusters with 338 

rapid reward response, scaled by reward size, and minimal ramping coefficients (Clusters 3 and 4), and 339 

(3) a pair of clusters with minimal reward coefficients but significant posiXve/negaXve coefficients on 340 

Time On Patch (Clusters 5 and 6).  Similar clusters could be idenXfied in 6/9 mice; the other 3 mice had 341 

too few task-relevant neurons to reliably idenXfy the same paKerns (Fig. S6B). PSTHs of the average 342 

acXvity of each cluster aligned to patch stop and split by reward delivery at one second matched the 343 

paKerns of GLM coefficients (Fig. 6G). Moreover, spli\ng trials by PRT or aligning to patch leave revealed 344 

that Cluster 1, and to a lesser extent Cluster 2, ramped to a common threshold prior to patch leave, 345 

whereas Clusters 5 and 6 conXnued to ramp up/down as the animal stayed longer on the patch (Fig. 6H, 346 

Fig. S6C). Because of the clear ramp-to-threshold-like properXes of Cluster 1, we considered this to be 347 

our “ramping” populaXon (568/1398 task-relevant neurons). 348 
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We examined how these clusters mapped on to brain regions recorded in our task. A greater 349 

percentage of neurons in frontal cortex areas was idenXfied as “task-related” compared to other areas 350 

(Fig. 6I; frontal cortex areas: 916/3156 [29%], other areas: 482/2934 [16%]), consistent with a specialized 351 

role for frontal cortex in our task. However, of task-related neurons, similar fracXons were assigned to 352 

Cluster 1 across brain areas (Frontal Cortex: 40.7%, SubcorXcal Areas: 40.5%).   353 

While our recordings consisted of untagged populaXons of neurons, thus mixing diverse cell 354 

types, spike waveform can be a marker for certain cell types in the brain [15, 16]. To assess whether our 355 

GMM Clusters may be enriched for certain cell types, we computed spike waveform for each neuron in 356 

our dataset and classified the waveforms as either Regular or Narrow based on spike width (Fig. S6D-F). 357 

In Frontal Cortex recordings, we observed that GMM Cluster 3 (transient posiXve response to reward) 358 

contained an over-representaXon of Narrow waveforms (Fig. 6J). This indicates that our funcXonally 359 

defined clusters may map onto cell type-specific populaXons of neurons in the cortex, a possible 360 

direcXon for future study. 361 

  362 

Decision variables derived from behavioral modeling are represented in frontal cortex dynamics 363 

To test whether the latent decision variables idenXfied through behavioral model fi\ng were 364 

represented in neural acXvity, we fit cross-validated linear models predicXng each latent variable from 365 

the joint acXvity of co-recorded neurons (Fig. 7A). Decision variables could be reliably decoded from 366 

neural acXvity in most sessions (Fig. 7B,C). Although Model 3 best explained mouse behavior (Fig. 3), 367 

decision variables from Model 2 could be decoded from neural acXvity with similar fidelity, and Model 1 368 

with only slightly lower fidelity, consistent with a recent report [14] (mean CV R2 ±	SEM for Model 1 = 369 

0.31 ± 0.03, Model 2 = 0.38 ± 0.04, Model 3 = 0.35 ± 0.03; N = 25 sessions amer excluding 5 sessions 370 
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with CV R2 < -0.2, see Methods; Fig. 7D). Moreover, Model 3 decision variable decoding from neural 371 

acXvity was unrelated to performance of the behavioral fit on a per-session basis (Fig. S7). 372 

To assess how the ability to decode the Model 3 decision variable relates to brain region, we 373 

chose sessions in which we had sufficient neurons in both Frontal Cortex and SubcorXcal Areas (least 20 374 

neurons each). Units were down-sampled so that both areas contained the same number of neurons in 375 

this analysis. In this within-session, unit-number-matched comparison, decoding for Model 3 DV was 376 

beKer in Frontal Cortex compared to SubcorXcal Areas (Fig. 7E; mean CV R2 ±	SEM, Frontal Cortex = 0.34 377 

± 0.03, SubcorXcal Areas = 0.28 ± 0.03, paired t-test P = 0.0037, N = 23 sessions amer excluding 7 378 

sessions with insufficient neurons and 3 sessions with CV R2 < -0.2 for both frontal cortex and subcorXcal 379 

fits). 380 

 381 

State space modeling demonstrates that neural popula8on ac8vity is ramping, not stepping, on single 382 

trials 383 

In previous secXons, we idenXfied a cluster of neurons that showed ramping acXvity on average 384 

(“Cluster 1”, Fig. 6). We next tested whether single trial dynamics within this sub-populaXon (e.g. Fig. 8A) 385 

were also conXnuously varying ramps or were discrete processes [17, 18]. We fit a conXnuous ramping 386 

model and a discrete state stepping model to the neural populaXon response (Cluster 1 spike rate, 387 

summed across neurons; Fig. 8B,C). The ramping model had a pulse response to rewards and otherwise 388 

ramped in the absence of rewards. The stepping model had two discrete firing rate states; the firing rate 389 

started in the low state and probabilisXcally jumped to the higher state following Markovian dynamics. 390 

AddiXonally, to capture reward responses, the firing rate returned to the low state amer rewards, 391 

whereas otherwise the firing rate was fixed to remain in the high state. We found that 16/16 sessions 392 

with at least 10 Cluster 1 neurons were beKer fit by the ramping than the stepping model (Fig. 8D). 393 
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AddiXonally, the impact of rewards on the latent accumulator was more negaXve for larger reward sizes 394 

(Fig. 8E, lem; regression slope of model parameter vs. reward size, mean ± SEM = -0.012 ± 0.0041, t-test 395 

P = 0.0093, N = 16 sessions), and slopes were marginally shallower (Fig. 8D, right; regression slope of 396 

model parameter vs. reward size, mean ± SEM = -0.025 ± 0.012, t-test P = 0.065, N = 16 sessions), 397 

consistent with the hypothesized integraXon mechanism which accounts for the impact of rewards on 398 

mouse wait Xmes (Fig. 3). 399 

 400 

  401 
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Discussion 402 

Here, we present a novel virtual reality-based patch foraging task for mice. We varied patch 403 

richness along two independent dimensions (reward size and frequency) and demonstrated that mouse 404 

patch residence Xmes were sensiXve to both, matching a basic predicXon of the MVT. However, closer 405 

examinaXon of mouse behavior revealed discrepancies with the theory: The instantaneous reward rate 406 

at leave Xme differed between patch types, and differences in PRT between patch types increased with 407 

mean PRT. While we cannot rule out alternaXve formulaXons of MVT that could capture these effects, 408 

we found that both are explained by integrator models. We fit several variants of integrator models 409 

(Reward Indifferent, Reward Reset, and Reward Integrator) and idenXfied the Reward Integrator (Model 410 

3) as the best fit to our behavioral data, using both quanXtaXve model comparison and diagnosXc trial 411 

type comparisons. Decision variables from the Reward Integrator model were represented in neural 412 

acXvity more robustly in Frontal Cortex compared to subcorXcal areas. Using regression analysis and 413 

clustering, we idenXfied a subset of “ramping” neurons (Cluster 1) and found that the acXvity of these 414 

neurons was beKer described by conXnuous ramping rather than a discrete stepping process. Together, 415 

these results suggest that a conXnuous integraXon process reflected in the acXvity of frontal cortex 416 

neurons is a likely mechanism by which mice make patch leaving decisions during foraging. 417 

 418 

Reward sensi3vity scaling across varying levels of pa3ence 419 

Mice displayed consistent value-sensiXve behavior in our experiments, spending more Xme in 420 

patches in which rewards were larger and occurred more frequently. Looking at the effects of these 421 

reward factors more closely, we observed that PRT dependence on reward size was greater than reward 422 

frequency. This result is logical because reward size was an explicit disXncXon across patch types – if 423 

mice were on a patch with large rewards, every reward delivered was 4µL. In contrast, reward frequency 424 
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was a hidden feature per patch type, governing the probabiliXes used to generate the stochasXc 425 

rewards, but not explicitly controlling their outcome. Consequently, some high frequency patches, by 426 

chance, could yield fewer reward deliveries than some lower frequency patches. 427 

Decision making varies dramaXcally with the internal state of the organism [19] [3] [20] [21]. 428 

While most mice were value-based in their PRT behavior, they exhibited substanXal variability in their 429 

overall willingness to wait, which we describe as “paXence.” InteresXngly, we observed that reward 430 

sensiXvity scaled systemaXcally with variability in paXence, resulXng in greater differences in PRT as a 431 

funcXon of patch value when paXence was higher. Coefficients for reward size and frequency effects on 432 

PRT varied widely, but they did so with approximately the same raXo across mice. Because of this 433 

common scaling, we were able to consistently capture PRTs across condiXons and individuals with a 434 

GLME where reward effects were fixed across the populaXon, and with only a random effect term for 435 

mouse ID to scale as a mulXplier. These results suggest that mice with different PRT behavior may use a 436 

common algorithm, with individual differences in scaling. Consistent with this hypothesis, we were able 437 

to robustly predict PRTs across the populaXon with our generaXve integrator model using a single set of 438 

free parameters across the populaXon, with the only source of individual differences being achieved via 439 

the scaling introduced by the per patch esXmates of paXence. 440 

 441 

Contras3ng results with the Marginal Value Theorem 442 

Mouse behavior qualitaXvely matched one of the fundamental predicXons of the MVT: they 443 

spent more Xme foraging in patches where water resources were more plenXful. However, when 444 

examining quanXtaXve predicXons made by MVT, we found inconsistencies with our empirical data. 445 

When comparing instantaneous expected reward rate at Xme of patch leaving between mice and an 446 

ideal observer MVT model, we found that all mice significantly deviated from MVT predicXons for 447 
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reward size, and the majority also did for reward frequency. However, expecXng mice to adhere perfectly 448 

to idealized MVT behavior makes unrealisXc demands on their knowledge of task structure. We have no 449 

reason to expect that mice fully understand the task structure – for example, that there are nine discrete 450 

patch types and that reward size always remains the same within a given patch. It would require many 451 

observaXons before mice could plausibly learn these nuances, and the fact that many mice perform the 452 

task in a reward-sensiXve manner even on the first day of training indicates use of a simpler algorithm. 453 

Moreover, it would not be an effecXve strategy in naturalisXc environments to overfit behavior to the 454 

staXsXcs of patches so precisely, as environmental staXsXcs are constantly changing and animals need to 455 

be able to flexibly adjust their behavior to those changes, as well as be able to forage effecXvely in novel 456 

environments. 457 

The central test of MVT is to compare instantaneous reward rate at the Xme of patch leave with 458 

the average reward rate in the environment. We do not employ this analysis for several reasons. Because 459 

we did not have an experimental condiXon in which we manipulate environmental value, we would not 460 

have sufficient control over this variable for rigorous analysis. Changes in environmental value in our task 461 

only occur due to either 1) temporary fluctuaXons due to task stochasXcity; or 2) changes in the animals’ 462 

own behavior. The former are too short-lived and infrequent to provide sufficient analyXcal power, and 463 

the laKer would be inexorably confounded by circular logic if we aKempted to analyze changes in 464 

behavior due to value differences while selecXng for periods when the value differences were caused by 465 

a change in behavior. Moreover, making this kind of comparison rests on the assumpXon that we could 466 

comprehensively quanXfy environment value. In reality, we are only privy to variables that we can 467 

directly measure or control, as well as those that can be rigorously inferred through other correlaXons. 468 

Defining reward simply as water collected is convenient for certain analyses, but it is not comprehensive. 469 

Animals are not strictly reward maximizers. They are guided more generally by uXlity, which can be 470 

influenced by many factors (e.g. fear of predaXon, energy levels, compeXXon), the majority of which are 471 
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beyond our ability to measure. One such confound we observed in our experiments was the value of 472 

running. IntuiXvely, this would seem to be a cost since it requires Xme and energy expenditure to get 473 

from one patch to the next. However, we observed that mice, despite being water-restricted, would 474 

someXmes skip substanXal numbers of patches in a row, choosing instead to run at high speed. This 475 

behavior indicates a posiXve uXlity placed on running, sufficiently so to forego immediately available 476 

rewards, even when mice were value-based on the patches they did engage. Furthermore, the variability 477 

we observed in paXence within and across mice further emphasizes that we cannot make any precise 478 

claims about overall value. 479 

While previous studies have demonstrated effects such as animals overstaying in patches beyond 480 

that which would be predicted by MVT, these can omen be explained by other factors influencing the 481 

relaXve value comparison between patch and environmental value [22-24]. Despite these limitaXons, we 482 

idenXfied a means of tesXng MVT predicXons that is robust to experimenter uncertainty about 483 

subjecXve overall value. By instead focusing our analyses on the relaXve PRTs across patches with 484 

different reward sizes, we could overcome this epistemic limitaXon because irrespecXve of the overall 485 

value mice place on the environment, relaXve reward rates across patches of different reward size are 486 

unaffected. Using this framework, we observed that mice did not appear to be using a pure reward rate 487 

esXmaXon strategy, as MVT predicts. Instead, we found that mouse behavior could be explained by a 488 

compeXXve integraXon process, and that deviaXons we observed from MVT emerge as a direct 489 

consequence of an integraXon algorithm. Moreover, we found that dynamics matching predicXons of an 490 

integraXon process were a prominent feature throughout our recordings in frontal cortex. While we 491 

cannot rule out the possibility that further modificaXons could be added to MVT to account for the 492 

deviaXons we observed, our results build on previous theoreXcal work and demonstrate the viability of 493 

integrate-to-bound dynamics as a parsimonious explanaXon for how mice, and potenXally other animals, 494 

solve the patch leaving problem. 495 
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 496 

A compe33ve integra3on model as an algorithmic solu3on to the patch leaving problem 497 

 We constructed several different integrator models aimed at capturing the algorithm mice use to 498 

solve the patch leaving problem. Instead of devising them as pure integrate-to-bound models with a 499 

determinisXc threshold, we formulated them as cogniXve models of an ongoing decision process. To 500 

account for observed differences in PRT, we allowed integraXon slope to scale by patch reward size. In 501 

addiXon, allowing the models to scale by relaXve levels of paXence was criXcal to achieving quality fits 502 

on mice behavior, so much so in fact that an alternaXve model which ignored reward effects enXrely 503 

provided a beKer fit than Model 3 stripped of its paXence scaling. In addiXon to paXence scaling 504 

allowing the model to capture variability in PRT across trials within mice, we fit models using a single set 505 

of parameters across all mice, allowing only paXence scaling to produce differences. We found that 506 

paXence scaling over this populaXon captured PRTs across mice, demonstraXng that latent paXence 507 

scaling of a common algorithm could account for PRT differences both within and across mice. 508 

 Model selecXon criteria idenXfied Model 3 as the superior fit, but we also found that the reward 509 

reset Model 2 could account for a large fracXon of the variance in mice PRT. Other studies have 510 

demonstrated mice who were significantly beKer matched to a reward reset process over a reward 511 

integraXon strategy, but that behavior only shimed from a reward integraXon strategy amer sufficient 512 

training on a task in which reward reset was the opXmal strategy [13]. Other experiments have found a 513 

combinaXon of the two strategies best explained mice behavior [25]. We do not rule out the possibility 514 

of reward reset effects influencing mice behavior in our experiments, but we do show posiXve signs of 515 

Model 3 that could not be explained by a full reset model. We also do not rule out a model which 516 

combines features of both. Further work is required to more closely inspect relaXve influences of the 517 

two strategies.  518 
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 Our behavioral modeling builds on previous theoreXcal work and provides a framework for 519 

future invesXgaXon. We present evidence in support of an algorithm in which antagonisXc effects of 520 

Xme and reward are integrated to modulate patch leaving decisions such that greater Xme is spent on 521 

patches in which greater amounts of reward is delivered. The model accurately predicted leaving 522 

probabiliXes across Xme bins and was able to predict PRT across single trials with remarkable precision. 523 

 524 

Regional specificity of the computa3on 525 

Previous studies have demonstrated that perturbaXon of a number of rodent frontal cortex 526 

regions affects waiXng Xmes [12, 26, 27] [28]. Our recordings point to frontal cortex broadly 527 

(encompassing OFC, ACC, PL, IL, M2 and M1) as an area with enriched task-related acXvity. Specifically, 528 

ramping decision variables derived from behavioral models could be beKer decoded from neural acXvity 529 

in frontal cortex compared to subcorXcal areas (Fig. 7E).  Our observaXonal study therefore sets the 530 

stage for future experiments using optogeneXc perturbaXons to test the funcXonal contribuXons of 531 

various frontal areas and molecularly/connecXvity-defined cell populaXons in a value-based foraging 532 

task, as well as their precise Xmescales [29] [30]. 533 

 534 

The possible neural basis of a “pa3ence” latent state 535 

In our task, mouse PRTs fluctuated slowly throughout individual sessions with a Xme constant of 536 

roughly ten trials, independently from the richness of individual patches. We interpret this as reflecXng 537 

an internal state which we describe as “willingness to wait” or “paXence.” This may be related to “acXve 538 

persistence” which was causally linked to the acXvity of serotonergic neurons in a foraging task in a 539 

recent study [31], although in that study acXvaXon of serotonergic neurons promoted acXvely conXnuing 540 
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to nose-poke for reward, whereas here paXence reflects a passive process of waiXng for rewards [32]. In 541 

our case, incorporaXng the “paXence” state into our algorithmic behavioral models greatly improved 542 

model fits. This was accomplished by allowing paXence to modulate model parameters: specifically, 543 

ramping slopes were divided by a power law scaling of each trial’s relaXve latent value. Further work is 544 

needed to determine whether this is the way in which the brain incorporates the paXence state into its 545 

decision-making process, and if so, what is the neural basis of this modulaXon. 546 

 547 

Rela3onship between ramping neural ac3vity and movement 548 

As shown in Figure S4, several behavioral variables (most prominently posiXon, speed, lick rate) 549 

correlated either posiXvely or negaXvely with ramping decision variables, raising the possibility that 550 

some of the ramping acXvity in our neural data could be associated with task-related movements. 551 

Indeed, several recent studies have reported movement-related acXvity widely throughout the brain, 552 

beyond classically movement-related areas [33] [34]. Such correlaXons likely contribute to the ramping 553 

signals in our data, especially for mice in which these correlaXons were high. However, we believe 554 

movements cannot enXrely explain ramping acXvity, for the following reasons: (1) Ramps were observed 555 

even in trials in which mice exhibited no movement by these metrics (Fig. 8A), (2) A populaXon of 556 

ramping neurons (“Cluster 1”) could be idenXfied from GLM regression coefficients, in which movement-557 

related acXvity had been regressed out by including behavioral variables in the model (Fig. 5, 6), (3) 558 

Cluster 1 firing rates preceding leave Xme were similar across reward sizes despite different leaving 559 

speeds (Fig. S6C, Fig. 1F), and (4) Speed coding was qualitaXvely disXnct in the trial periods and inter-560 

trial-intervals (Fig. S5). An addiXonal possibility is that correlaXons between decision variables and 561 

behavior could, in part, reflect an embodied cogniXve process [35]. The extent to which behavior is itself 562 

an element of natural decision-making represents an interesXng direcXon for future study. 563 
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 564 

Limita3ons of using neural data to iden3fy the behavioral strategy 565 

Although Model 3 best explained mouse behavior in our task, decision variables from all three 566 

models could be decoded from neural acXvity with similar accuracy (Fig. 7D). This could reflect a 567 

“reservoir” of decision variables in frontal cortex, in which strategies that are not currently used are 568 

nevertheless conXnuously tracked in neural dynamics [14]. However, cauXon must be taken to consider 569 

the contribuXon of task-related movements to these results. For example, licking paKerns are similar 570 

following each reward and may contribute more to a “Model 2” (reset)-like paKern of neural acXvity, 571 

regardless of the actual decision algorithm implemented by the brain. If we simply exclude all 572 

movement-related acXvity (which is not pracXcal), then we risk throwing away acXvity related to 573 

embodied cogniXve processes. At the same Xme, it is circular to idenXfy movements as “embodied 574 

cogniXon” because they match a parXcular model, and then exclude other movement-related acXvity 575 

and draw conclusions based on the match between acXvity and behavior. Thus, we believe the neural 576 

data are of limited use in idenXfying the exact strategy employed by animals in this task. Instead, our 577 

argument for Model 3 is behavioral (Fig. 3), and we show that acXvity related to the decision variable 578 

from this model is present in neural acXvity (Fig. 4E, Fig. 7), providing a potenXal substrate for patch 579 

foraging calculaXons in the brain. 580 

 581 

Ramping ac3vity during decision making 582 

We observed ramping spiking acXvity to be a prominent feature of frontal cortex dynamics as 583 

Xme elapsed while mice foraged in virtual patches. Ramps scaled with patch value, with shallower ramps 584 

on patches when rewards were larger. While the accumulaXon of Xme resulted in the upward 585 

progression of ramps, we observed that addiXonal reward deliveries had an antagonisXc effect, 586 
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inhibiXng spiking acXvity and thereby driving the ramps further away from their terminal firing rates. 587 

Together, these effects provide sufficient components for allocaXng more Xme to foraging in patches in 588 

which rewards were more abundant. Building on theoreXcal work demonstraXng reward-modulated 589 

ramping acXvity to be a viable mechanisXc soluXon to the patch leaving problem [9], we found that 590 

these ramps were well-matched to decision variables in integrator models that robustly captured mice 591 

PRT behavior and explained deviaXons from predicXons of MVT. Together, these results point to 592 

integrator dynamics as a parsimonious candidate soluXon to the patch leaving problem.  593 

Ramping acXvity has been shown to be a prevalent feature of perceptual decision making across 594 

a range of organisms and brain areas [36-40]. It provides a mechanism for making relaXve value 595 

decisions [41], and precedes the onset of Xmed acXons [42] [43] [44]. We observed similar ramping 596 

dynamics within the context of naturalisXc foraging. Moreover, we observed that single trial ramps were 597 

apparent in populaXon spiking acXvity on scales of up to tens of seconds, with reward-triggered 598 

inhibiXon of those ramps followed by mice increasing their PRT before leaving patches. The flexibility of 599 

ramps to scale their slope and integrate inputs with opposing valences, taken in the broader context, 600 

suggests that ramping acXvity could be a ubiquitous feature of decision processes that unfold over Xme. 601 

 602 

  603 
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Main Figures 604 
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Figure 1: In a head-fixed patch foraging task, mice show consistent dependence of wait Xmes on reward 606 
size and frequency. 607 

A) Virtual linear track for patch foraging task.  608 
B) CombinaXons of three reward sizes and frequencies yield nine patch types.  609 
C) Probability of reward delivery amer each 1 second interval per frequency condiXon. 610 
D) Example trials from two mice. Mice stop running in response to the proximity cue to enter 611 

patches and receive stochasXcally delivered water rewards. Photographs of the three task states 612 
are shown. Monitor brightness was increased to maximum for the photos. 613 

E) Mice stopping behavior in response to the proximity cue. 614 
F) Mean populaXon running speed (Top) and lick rate (BoKom) in response to task events. (Lem) 615 

Aligned to proximity cues appearance, split by trials in which mice successfully stopped (blue) or 616 
skipped (red) the patch. (Middle) Aligned to patch stop, split by reward size. Red line indicates 617 
mean Xme of proximity cue appearance. (Right) Aligned to Xme mice lem the patch, split by 618 
reward size. 619 

G) Reward deliveries and patch leave Xmes from an example session grouped by patch reward size. 620 
Trials are sorted in ascending order of PRT from top to boKom per reward size. Dots are shaded 621 
based on underlying reward frequency condiXon. 622 

H) PRT per patch type from an example mouse. Column groupings separate patches by reward size. 623 
Within columns, patches are split by reward frequency. 624 

I) Mean PRT per mouse across patch types, y-axis log-scaled. Colored by mouse. Same patch type 625 
groupings as H. Error bars indicate standard error of the mean. 626 

 627 

 628 

  629 
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 630 

Figure 2: Reward sensiXvity scales with paXence across and within mice. 631 

A) Linear regressions of PRT on reward factors per mouse. Lem: Regression coefficient for PRT on 632 
reward frequency scales with mean PRT. Right: Same, for reward size.  633 

B) Lem: Regression coefficients for PRT on reward size and frequency scale together across mice. 634 
Right: Regression coefficients for PRT on reward frequency are larger for larger reward sizes. 635 

C) R2 values for predicXng mean PRT per patch type across mice for different addiXve and/or 636 
mulXplicaXve combinaXons of reward size and frequency. 637 

D) Lem: Mean PRT per µL across sessions, example mouse. Right: Standard deviaXon of mean PRT 638 
across sessions per subject. 639 

E) AutocorrelaXon funcXon of PRT over patches, mean across subjects. Error bars indicate standard 640 
deviaXon over per subject fits. 641 

F) Gaussian smoothing over neighboring trials provides an esXmate of latent state. Lem: Example 642 
session latent state inference. Gray trace tracks PRT across patches with colored dots indicaXng 643 
reward size for each patch. Black trace indicates value from the latent state esXmaXon. Right: 644 
EsXmated latent across trials over all 10 sessions from mouse 01. 645 
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G) Latent state esXmaXon accounts for variability in PRT across trials. Lem: Smoothed heatmap of 646 
PRT versus esXmated latents for all trials, example mouse. Right: PopulaXon R2 values from 647 
regressions of PRT on esXmated latents. 648 

H) PRT per patch type with trials split into two latent state groupings: impulsive and paXent, 649 
separated by median latent state, example mouse. 650 

I) Regressions on reward factors, fit separately per latent state grouping across subjects. 651 

 652 

  653 
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Figure 3: A compeXXve integraXon process accounts for violaXons of MVT predicXons and explains mice 655 
behavior across patches 656 

A) Instantaneous expected reward rate at Xme of patch leave across patch types, predicted by 657 
opXmal MVT (Lem), sample mouse (Middle, Bonferroni adjusted p<.0001 for size and frequency, 658 
2-way ANOVA), and populaXon (Right, p<.0001 for size and frequency, linear mixed-effects 659 
model). Error bars in for sample mouse indicate standard error of the mean. Error bars for 660 
populaXon average indicate standard deviaXon across mice. 661 

B) SchemaXc demonstraXng how MVT predicts a constant difference in PRT across reward sizes 662 
irrespecXve of threshold (Lem), whereas an integrate-to-threshold model predicts greater PRT 663 
differences across reward sizes for high thresholds (Right). Traces are colored by reward size. 664 
Dashed lines show two sample thresholds. Black dots indicate threshold crossings. 665 

C) Mice show greater differences in mean PRT between 4µL-2µL patches, compared to 2µL-1µL 666 
patches. 667 

D) Sigmoid transformaXon of decision variable (DV) into probability of mice leaving patches per one 668 
second interval for different inverse temperature values (light grey = 0.5, dark grey = 1.0, black = 669 
2.0). Red dashed line indicates the maximum P(Leave) output, Pmax. 670 

E) Example schemaXcs for DV (Top) and corresponding P(Leave) output (BoKom) for three different 671 
integrator models over patches with rewards delivered at t = [0,1,4,5] seconds. Decision 672 
variables (DV) ramp upwards over Xme. Model 1 does not respond to reward deliveries. Model 2 673 
resets to its baseline value following any reward delivery. Model 3 integrates rewards with a 674 
constant negaXve value. Red dashed line indicates the maximum P(Leave) output, Pmax. 675 

F) SchemaXc demonstraXng how DV and P(Leave) scale relaXve to latent paXence esXmaXon 676 
across patches, for a sample patch in which rewards were delivered 0 and 4 seconds. Black 677 
traces indicate patches with more paXent esXmaXons and ramp up more slowly. Red traces 678 
indicate impulsive latents and yield sharper ramps. 679 

G) RelaXve BIC values for the model fits across subjects. Model 3 yields a superior fit to Models 1 680 
and 2 (p<.0001, p=.0009, Wilcoxon signed-rank test). 681 

H) Mean PRT per patch type, per subject from Model 3 simulaXons versus empirical mouse PRT, 682 
log-scaled (r2 = .985), points colored per mouse. 683 

I) SchemaXc depicted a sample trial for calculaXng model predicted PRT on single trials. Black trace 684 
indicates fracXon of trials the model predicts subjects would sXll be on the patch at the start of 685 
that one second Xme bin (Top). Red dots indicate the probability of leaving, P(Leave), per that 686 
Xme bin. The product of fracXon of trials remaining on patch Xmes and P(Leave) determines the 687 
corresponding leave density for that Xme bin (BoKom). The average predicted PRT is then used 688 
as that trial’s predicXon. 689 

J) R2 staXsXcs for single trial predicXons from cross-validated Model 3 fits across mice (Lem, median 690 
r2 = .544). Box edges indicate 25th and 75th percenXles. Whiskers stretch out to most extreme 691 
points, as none were considered outliers. Smoothed heatmap of single trial Model 3 predicted 692 
PRT versus empirical mouse PRT, sample mouse (Right). Predicted PRT for each trial was 693 
calculated using model fit parameters from training folds and compared with PRT over trials 694 
from held out test folds. 695 

K) Model 3 predicted PRT and empirical mouse PRT across patches from the example session from 696 
Fig. 2F. Colored dots indicate mouse PRT, colored by reward size. Black dots indicate Model 3 697 
predicted PRT, calculated from training folds. Gray lines show the difference in predicted versus 698 
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empirical PRT per trial. Red trace indicates latent esXmaXons of paXence for each patch. Y-axis is 699 
log-scaled. 700 

L) Example schemaXcs demonstraXng how Models 2 (Lem) and 3 (Right) make differing predicXons 701 
for DV (Top) and P(Leave) predicXons (BoKom) on patches with rewards at t=[0,2]s (‘R0R’ 702 
patches, black) compared with patches with rewards at t=[0,1,2]s (‘RRR’ patches, blue). 703 

M) Per subject mean Simulated PRT for R0R versus RRR patches from Model 2 fits (Lem), Model 3 704 
fits (Middle), and empirical mice PRT (Right). Points are colored per mouse. Axes are log-scaled. 705 

 706 
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Figure 4: IntroducXon to neural recordings. 709 

A) Example histology slice showing probe tracks targeXng M2 and OFC. Red: DiI, Purple: DiD. Probe 710 
tracks were Xlted relaXve to brain slices, so only part of each probe track is visible in each slice. 711 

B) DistribuXon of recorded brain areas from 9 mice. Areas designated as “Frontal Cortex” are 712 
grouped together.  713 

C) Top: An example neuron showing ramping acXvity whose slope depended on reward size and 714 
which was suppressed by reward delivery. Lem: PSTH aligned to patch stop, split by reward size 715 
(cyan: 1 𝜇𝐿, purple: 2 𝜇𝐿, magenta: 4 𝜇𝐿). Middle: PSTH aligned to patch leave, split by reward 716 
size. Right: PSTH aligned to patch stop, split by whether reward was delivered at 1 second (red) 717 
or not (black); rewards of different size combined. BoPom: A snippet of the same neuron’s 718 
acXvity across several consecuXve trials, showing single neuron ramping acXvity over several 719 
seconds in individual trials. Shaded regions indicate patches, with the color indicaXng reward 720 
size. VerXcal lines indicate reward delivery. 721 

D) An example neuron showing transient acXvaXon to reward delivery. PSTHs as in C.  722 
E) Histogram of Pearson’s correlaXon between smoothed firing rate and the Model 3 decision 723 

variable (Figure 3) for each neuron in our data set. A shuffle distribuXon was generated 724 
separately for each neuron and a z-test was used to idenXfy neurons with significant 725 
correlaXons. 726 

F) 𝑅$ values for the regression of Model 3 decision variable on individual neurons’ firing rates (as in 727 
E), by brain region. In the lem plot, each point represents a recording session. In the right plot, 728 
each point represents a mouse. Consistently across mice, frontal cortex areas had higher 𝑅$ 729 
values than sub-corXcal areas.  730 

G) Hand-picked principal components of neural acXvity showing reward integrator-like acXvity. 731 
Frontal Cortex Areas: OFC: Orbitofrontal cortex, ACC: Anterior cingulate cortex, PL: Prelimbic 732 
cortex, IL: Infralimbic cortex, M2: Secondary motor cortex, M1: Primary motor cortex. 733 
Other Areas: DMS: Dorsomedial striatum, DP: Dorsal peduncular area, LS: Lateral septum, OLF: 734 
Olfactory areas, STR: Striatum, TTd: Taenia tecta dorsal part, VS: Ventral striatum. ** P < 0.01 735 
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 737 

Figure 5: GLM modeling idenXfies subset of neurons with task-related acXvity. 738 

A) SchemaXc of the Poisson GLM. 739 
B) A snippet of an example cell showing the structure of the Poisson GLM: Regressors (top) and 740 

neural acXvity (boKom). Inverted triangles in the boKom panel indicate reward delivery. VerXcal 741 
lines indicate the boundaries between patches; only on-patch Xmes were included. Colors 742 
indicate reward size. Reward Kernels, Time on Patch, Total Reward, and Time Since Reward were 743 
considered “Task Variables.” 744 

C) Top: Cross-validated percent deviance explained versus null model (intercept only) for all 745 
neurons in the dataset. BoPom: Cross-validated percent deviance explained versus reduced 746 
model (no task variables) for all neurons in the dataset. Neurons with >1% deviance explained 747 
versus reduced model were designated as “task-related.” 748 

D) Top: Average percent deviance explained versus null model by brain region. Within each brain 749 
region, neurons were averaged by mouse. Colors indicate mice. BoKom: Average percent 750 
deviance explained versus reduced model by brain region. 751 
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E) Z-scored neural acXvity for all task-related neurons from all brain regions on “40” trials (4 𝜇𝐿 752 
reward at 0 seconds, no reward at 1 second; lem panel) or “44” trials (4 𝜇𝐿 reward at 0 and 1 753 
second; right panel; white dashed line indicates reward at 1 second). Neurons were sorted based 754 
on the Xme of peak acXvity on odd 40 trials; the lem panel showed the same sort on even 40 755 
trials, and the right panel shows the same sort on all 44 trials. An iniXal transient reward 756 
response (as in Figure 4D) gradually transiXoned into upward ramping acXvity which was 757 
suppressed by reward delivery (as in Figure 4C).   758 

 759 

 760 
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Figure 6: Unsupervised clustering of GLM clustering reveals six clusters of neurons, the most prominent 763 
of which shows ramping acXvity and reward responses with opposite signs. 764 

A) GLM coefficients for the example cell shown in Figure 5A. Task Variables were used for clustering 765 
(Reward Kernels, Time on Patch, Total Reward, and Time Since Reward; the laKer three are also 766 
termed Decision Variables, or DVs). Only “Task-Relevant” neurons were included in clustering 767 
(Figure 5C), and further were required to have at least on non-zero Task Variable GLM 768 
coefficient. 769 

B) SchemaXc of clustering approach. This approach was used to group task-relevant neurons into 770 
funcXonal categories based on their response to task variables (reward kernels and decision 771 
variables). 772 

C) The top 3 PCs of the matrix of Task Variable coefficients (accounXng for 34.7% of variance). Task 773 
Variable coefficients were z-scored prior to PCA. 774 

D) Gaussian mixture model (GMM) clustering on the top 3 PCs of Task Variables was used to 775 
idenXfy clusters of neural acXvity paKerns. Lem panel: Bayesian informaXon criterion (BIC) was 776 
used to select the number of clusters (minimum BIC: 6 clusters). Middle panel: Percentage of 777 
neurons assigned to each cluster. Clusters were ordered so that paKerns with similar shapes but 778 
opposite signs were adjacent (see panel E). Right panel: Task-relevant neurons projected into the 779 
PC space used for clustering, colored by assigned cluster. 780 

E) Average z-scored GLM Task Variable coefficients for each cluster.  781 
F) Heatmap of z-scored GLM Task Variable coefficients for all neurons included in the analysis, split 782 

by cluster and sorted within cluster by the projecXon onto the first principal component (shown 783 
in panel B). 784 

G)  Average PSTHs of z-scored neural acXvity for each cluster, split by reward size and whether or 785 
not reward was delivered at 1 second (e.g. 10 indicates a 1 𝜇𝐿 reward at 0 second, not 1 second, 786 
11 indicates 1 𝜇𝐿 reward at 0 and 1 second, etc).  787 

H) Average PSTHs of z-scored neural acXvity for each cluster, split by patch residence Xme. 788 
I) Top panel: Number of neurons in each cluster, split by brain region. Lower panel: Percent of all 789 

recorded neurons in each brain region assigned to each cluster.   790 
J) Unit waveforms by cluster. Especially in Frontal Cortex, Cluster 3 was enriched for units with 791 

Narrow waveforms. 56% of Frontal Cortex Cluster 3 neurons were narrow spiking, versus 32% of 792 
Frontal Cortex neurons from the other 5 clusters. In SubcorXcal Areas, these numbers were 43% 793 
versus 34%.  794 

 795 

 796 
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 798 

Figure 7: Decision variables derived from behavioral modeling are represented in neural dynamics. 799 

A) SchemaXc of decision variable decoding (cross-validated linear regression of decision variables 800 
on smoothed, z-scored neural acXvity).  801 

B) Snippets of several conXguous patches from three example recording sessions, showing the 802 
decision variable from Model 3 (Figure 3) in black and the cross-validated neural predicXon in 803 
red. Neural predicXons were generated using linear regression on training trials applied to held-804 
out test trials. 805 

C) Histogram of cross-validated R2 for each recording session in the data set. Sessions with CV R2 806 
below an arbitrary threshold of -0.2 were deemed “poor fits” and excluded. 807 

D) Comparison of CV R2 for the decision variable derived from each of the models in Figure 3. * P < 808 
0.05, Wilcoxon signed rank test (not corrected for mulXple comparisons). 809 

E) Comparison of Model 3 decision variable coding between Frontal Cortex and SubcorXcal Areas. 810 
For each within-session comparison, neurons were down-sampled so that each region had the 811 
same number of neurons. A minimum of 20 neurons per brain region per session were required. 812 
Only sessions with at least 20 neurons in each of the two brain regions were kept. Each pair of 813 
data points represents a recording session, and colors represent mice. 814 

 815 
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 817 

Figure 8: PopulaXon acXvity is ramping, not stepping, on single trials. 818 

A) Example trial showing ramping acXvity of simultaneously recorded Cluster 1 neurons while the 819 
mouse remained sXll on the patch. Top: Raster plot of 25 Cluster 1 neurons. Middle: Raster plot 820 
of mouse licks. BoKom: Mouse speed (blue) and average firing rate of Cluster 1 neurons (red). 821 
Magenta dashed lines: Reward delivery (4 𝜇𝐿).  822 

B) SchemaXc of ramp and step models. Models were fit to Cluster 1 neurons. 823 
C) Single trial ramping and stepping model fits for an example session. 824 
D) Model comparison across sessions. Only sessions with at least 10 Cluster 1 neurons were 825 

included (16/33 sessions). For 16/16 sessions, the ramp model outperformed the step model on 826 
held out data. 827 

E) Ramping reward coefficients and slopes across reward size, by session.  828 
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Supplementary Figures 830 

 831 

Figure S1: Mouse behavior over training (related to Figure 1). 832 

A) Example mouse learning over first three days of pre-training in which proximity cue onset is 833 
followed by automaXc reward delivery amer a short delay. Patches are not introduced yet. 834 
Mouse learns that proximity cue is predicXve of reward and begins showing anXcipatory licking 835 
and slowdown in response to it. 836 

B) First session full task, with patches introduced. Mice must stop in response to the proximity cue 837 
to enter a patch and earn rewards (P < 0.0001, linear regression of PRT on patch value). Column 838 
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groupings separate patches by reward size. Within columns, patches are split by reward 839 
frequency. 840 

C) Example session in which mouse skips a substanXal fracXon of patches. PRTs are value-sensiXve 841 
during periods of task engagement when mouse does stop to enter patches (P < 0.0001, linear 842 
regression of PRT on patch value). Colored dots indicate PRT on entered patches, colored by 843 
reward size. Red Xck marks indicate patches skipped when mouse did not stop in response to 844 
the proximity cue. 845 

D) Per subject PRTs across sessions, split by patch reward size. Error bars indicate standard error of 846 
the mean. Dashed red line indicates when mice task performance achieved inclusion criteria, 847 
amer which sessions are included in the final data set. Mice with no dashed red line met 848 
inclusion criteria on the first day of the full task. Black dots mark recording sessions included for 849 
neural analysis.  850 
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 851 

Figure S2: Generalized linear mixed-effects model captures behavior with fixed parameters across mice 852 
(related to Figure 2). 853 

A) A generalized linear mixed-effects model (GLME) with log link funcXon for predicXng PRT across 854 
mice/condiXons. 855 

B) GLME-fiKed and empirical PRT per mouse across patch types. Dots indicate empirical mouse PRT. 856 
Lines represent GLME fits. Colored by mouse ID. 857 

C) Cross-validaXon of the GLME showing held-out PRT versus training fold predicted PRT. Training 858 
fold in the lemmost panel is unshuffled. Training fold trial labels for the remaining four were 859 
shuffled by reward size, frequency, size and frequency, and mouse ID, from lem to right, 860 
respecXvely. Folds yielding the median mean squared error between predicted and held-out 861 
PRTs are shown for each shuffle type. 862 

D) R2 values using GLME fiKed PRT as a predictor of empirical PRT per patch type (Lem). Regression 863 
showing relaXonship between GLME fiKed PRT versus empirical PRT, example mouse (Top, right). 864 
Slopes from per mouse regressions of empirical PRTs on GLME predicXons (BoKom, right). 865 

E) GLM predicXng PRT as a funcXon of reward size and frequency, fit separately per subject. 866 
Asterisk shows the fixed effects coefficients from the GLME fit across the populaXon 867 
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 869 

Figure S3: AddiXonal analyses of behavioral model fi\ng (related to Figure 3). 870 

A) Differences in PRT between 4µL-2µL patches versus 2µL-1µL patches scales with paXence across 871 
mice (P = 0.0021, linear regression). 872 

B) BIC values for model fits are consistently lower compared with non-latent-scaling counterparts 873 
across mice. ‘NL’ indicate no latent paXence scaling (P = 0.0002 for each pairwise comparison, 874 
Wilcoxon signed-rank test, Bonferroni correcXon). 875 
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C) Model 3 free parameter fits versus mean PRT across mice (X0: P = 0.009, Ψ: P = 0.0011, Pmax: P < 876 
0.0001, R: P = 0.0022, 𝜔: P = 0.5828, 𝜆: P = 0.2270, linear regression with Bonferroni correcXon).  877 

D) CorrelaXon matrix of Model 3 free parameter fit values across mice. Significant correlaXons 878 
indicated with asterisks, Bonferroni correcXon). 879 

E) RelaXve log predicted probability of training fold model fits on held-out test folds, means across 880 
folds. 881 

F) Mean model simulated PRTs across mice and patch types fit from training fold versus mean PRTs 882 
from held-out test folds. 883 

G) Example schemaXcs demonstraXng how Models 2 (Lem) and 3 (Right) make differing predicXons 884 
for DV (Top) and P(Leave) predicXons (BoKom) on patches with rewards at t=[0,2]s (‘R0R’ 885 
patches, black) compared with patches with rewards at t=[0,1,]s (‘RR0’ patches, blue). 886 

H) Per subject mean Simulated PRT for R0R versus RR0 patches from Model 2 fits (Lem), Model 3 fits 887 
(Middle), and empirical mice PRT (Right). Points are colored per mouse. Axes are log-scaled. 888 

I) First 20 patches from Fig. 3K showing single trial mouse and Model 3 predicted PRTs with reward 889 
Xmings indicated per patch. 890 

J) Simulated PRT versus empirical PRT for a Model 3 fit using a single free parameter fit across the 891 
populaXon (MSE = 0.988). 892 
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 893 

Figure S4: CorrelaXons between behavioral variables and decision variables from behavioral model 894 
fi\ng (related to Figure 4).  895 

A) Pearson’s correlaXon between Model 3 decision variable (Figure 3) and mulXple behavioral 896 
variables: posiXon, speed, acceleraXon, lick rate, derivaXve of lickrate. Each data point 897 
represents a single Neuropixels recording session. 898 
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B) As in A, but split into short versus long patches (patch residence Xme above or below the 899 
median, per session). For each mouse, short patches are ploKed on the lem, and long patches on 900 
the right. Data points from the same session are connected by black lines.  901 
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 903 

Figure S5: GLMs fit to intertrial intervals (ITIs) revealed qualitaXvely disXnct speed coding compared to 904 
patches, suggesXng that ramping acXvity in patches is not a low-level motor response (related to Figure 905 
5). The structure of the GLM in patches was the same as in Figure 5, but fit to odd and even patches 906 
separately. The GLM in odd/even ITIs included the following regressors: Intercept, session Xme and its 907 
square, speed, and acceleraXon. Otherwise, the GLM fi\ng procedure in ITIs was idenXcal to patches. In 908 
plots, each point represents a neuron, and “rho” above the plot indicates Pearson’s correlaXon 909 
coefficient.  910 
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 911 

Figure S6: AddiXonal analyses of GMM Clusters and spike waveform analysis (related to Figure 6). 912 

A) The reward kernel coefficients from Figure 6 mulXplied by the reward kernel basis to visualize 913 
the fiKed reward response versus Xme for each GMM cluster.  914 

B) Same as Figure 6F, but for each of the 9 mice in the dataset. 915 
C) PSTHs of z-scored acXvity for each GMM Cluster, aligned to patch leave, split by reward size. 916 
D) Example waveform indicaXng how spike width was measured. 917 
E) Histogram of spike widths for all units in the dataset. A threshold of 0.433 ms was used to define 918 

Narrow versus Regular waveforms. 919 
F) The mean waveform for Regular and Narrow units. 920 

 921 
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 923 

Figure S7: The ability of the Model 3 decision variable to predict behavior was not related to fidelity of 924 
neural decoding of that variable on a per-session basis (related to Figure 7). R2 for Model 3 behavioral 925 
model fi\ng versus (y-axis) R2 for decoding of Model 3 decision variable from neural data (x-axis), amer 926 
excluding 5 sessions with Neural R2 < -0.2.  927 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 5, 2023. ; https://doi.org/10.1101/2023.09.05.556267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556267
http://creativecommons.org/licenses/by-nc/4.0/


55 
 

Methods 928 

Experiments 929 

Mice 930 

A total of 30 adult mice (C57/BL6j, 20 male, 10 female, age 2-5 months) were used in the 931 

experiments. All procedures were performed in accordance with the NaXonal InsXtutes of Health Guide 932 

for the Care and Use of Laboratory Animals and approved by the Harvard Animal Care and Use 933 

CommiKee. 934 

 935 

Surgery 936 

Mice were anaestheXzed using isoflurane (4% inducXon, 1-2% maintenance). For behavioral 937 

experiments, a custom Xtanium headplate was aKached to the skull with Metabond (Parkell). For 938 

Neuropixels recordings, fiducial marks were made at the target sites for probe inserXon using a fine-939 

Xpped pen, and a ground pin was inserted into the skull above contralateral cortex and aKached with 940 

Metabond.    941 

 942 

Virtual reality setup 943 

Virtual reality setups were idenXcal to those used in [45]. Three monitors (width 53 cm, height 944 

30 cm) were placed in front and on either side of the animal. Virtual reality scenes were generated using 945 

VirMEn somware in Matlab [46] on a workstaXon computer (DELL Precision 5810). Mice were placed on a 946 

cylindrical Styrofoam treadmill (diameter 20.3 cm, width 10.4 cm). The rotaXonal velocity of the 947 

treadmill was recorded using a rotary encoder. The output pulses of the encoder were converted into 948 
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conXnuous velocity signal using custom Arduino code running on a microprocessor (Teensy 3.2). Velocity 949 

was integrated within VirMEn to compute posiXon. Water was delivered to the mouse from a spout 950 

placed in front of the mouse’s mouth. Licks were monitored using an infrared sensor (OPB819Z, TT 951 

electronics). Voltage signals from the rotary encoder were digiXzed and recorded on the virtual reality 952 

computer using a data acquisiXon system (PCIe-6323, NaXonal Instruments). Water Xming and amount 953 

was controlled using a solenoid valve (LHDA 1221111H, The Lee Company) and a switch (2N7000, On 954 

Semiconductor), with TTL pulses generated by the virtual reality computer via the PCIe-6323 data 955 

acquisiXon card.   956 

 957 

Neuropixels recording 958 

Spiking data were collected using Neuropixels 1.0 single shank probes. Neuropixels data were 959 

recorded with SpikeGLX (hKps://billkarsh.github.io/SpikeGLX/). Craniotomies were performed the day 960 

before recording and covered with Kwik-Cast (World Precision Instruments), and mice were allowed to 961 

recover overnight. On the day of recording, a 3d-printed piece was placed over the head of the mouse, 962 

blocking from the mouse’s sight the experimenter manipulaXng the probe above the mouse’s head. This 963 

was criXcal to maintain good behavioral performance on Neuropixels recording days. 964 

Neuropixels probes were lowered using a Thorlabs micromanipulator (PT1-Z8) at 9 𝜇𝑚/sec. Amer 965 

reaching the target depth, the probe was allowed to seKle for 30 minutes prior to starXng the recording. 966 

Recordings lasted 34 minutes (minimum) to 74 minutes (maximum) and were terminated once the 967 

experimenter determined the mouse was no longer engaging with the task (e.g., running through 968 

patches without stopping). 969 

 970 
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Spike sor3ng 971 

Neuropixels data were spike sorted offline with Kilosort 2 or 3, followed by manual curaXon in 972 

Phy. 973 

 974 

Histology 975 

 Amer the last Neuropixels recording session, mice were killed and perfused with phosphate 976 

buffered saline (PBS) followed by 4% paraformaldehyde in PBS. The brains were cut in 100 𝜇𝑚 coronal 977 

secXons using a vibratome (Leica). Brain secXons were mounted on glass slides and stained with 4’, 6-978 

diamidino-2-phenylindole (DAPI, Vectashield). Slides were imaged with a fluorescence microscope (Zeiss 979 

Axio Scan.Z1). Probe tracks were idenXfied in histology images and aligned to a reference atlas using 980 

SHARP-Track [47] or somware wriKen by Dr. Andrew Peters (hKps://github.com/petersaj/AP_histology). 981 

 982 

Analysis 983 

Unless otherwise noted, data were analyzed with custom code wriKen in MATLAB. 984 

 985 

Behavioral model fiLng 986 

 Models 1 and 2 have five free parameters: X0 sets the midpoint of the sigmoid. Ψ is inverse 987 

temperature. maxP0 constrains the models’ P(Leave) output. ω0 is an exponent for power-law scaling of 988 

slope per reward size. λ0 is an exponent for power-law scaling by latent state. Model 3 included those 989 

five, plus one addiXonal free parameter for the value subtracted from the integrator per reward delivery, 990 

R. 991 
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 Slope of the integrator model was scaled based on the patch’s reward size. We fit this slope 992 

scaling by a power-law funcXon to allow for varying sensiXvity to reward size across mice. We used µ = 993 

[.5, 1, 2] for [1, 2, 4] µL, respecXvely, to normalize slope to the medium reward size. 994 

𝜔" = µ*$  995 

Slope was addiXonally scaled by the esXmate of paXence for each patch (patch = i). We again 996 

used a power-law funcXon for this scaling, fi\ng the free parameter, λ0, per mouse to account for 997 

differences in how dependent PRT was on esXmated paXence across mice. Values for paXence across 998 

mice were mean normalized to ensure fit values across parameters could be straigh�orwardly compared 999 

across mice. Each patch’s normalized latent, Li, was scaled by λ0 to determine its contribuXon to slope 1000 

scaling: 1001 

𝜆' = 𝐿'
+$  1002 

Because variance in patch leaving Xmes increases when PRTs are longer, we also scaled maxP 1003 

with patches’ latent paXence esXmates. Because 0<maxP<1, we used a funcXon that would reasonably 1004 

allow scaling in either direcXon, while constraining the transformed value to remain between 0 and 1: 1005 

𝑚𝑎𝑥𝑃' = 𝑚𝑎𝑥𝑃,/(𝜆' ∗ (1 −𝑚𝑎𝑥𝑃,) + 𝑚𝑎𝑥𝑃,) 1006 

The other free parameters, Ψ, and, for Model 3, R, were not scaled across patches. 1007 

The models produce a decision variable (DV) per one second interval (t) by calculaXng its current 1008 

integrator value, Xi,t and subtracXng X0 from it: 1009 

𝐷𝑉 = 𝑋',) − 𝑋, 1010 
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The models differ in how they each track Xme, TOP (Time on Patch) or TSLR (Time Since Last 1011 

Reward), and whether they integrate rewards delivered (nRews = number of rewards delivered up to 1012 

that point on the patch), to compute Xi,t: 1013 

Model 1, reward indifferent: 1014 

𝑋',) =
𝑇𝑂𝑃
𝜔" ∗ 	𝜆'

 1015 

Model 2, reward reset: 1016 

𝑋',) =
𝑇𝑆𝐿𝑅
𝜔" ∗ 	𝜆'

 1017 

Model 3, reward integrator: 1018 

𝑋',) =
𝑇𝑂𝑃
𝜔" ∗ 	𝜆'

− 𝑛𝑅𝑒𝑤𝑠 ∗ 𝑅 1019 

 1020 

To compute the model’s output predicXon, P(Leave), the probability of leaving a patch per one 1021 

second bin, the DV is scaled by inverse temperature and sigmoid transformed with the output 1022 

constrained by maxP: 1023 

𝑃(𝐿𝑒𝑎𝑣𝑒)',) =
𝑚𝑎𝑥𝑃'

1 + 𝑒-./0%,'
 1024 

 1025 

We opXmized free parameter fits per subject and compared the models using mfit toolbox for 1026 

Matlab. Maximum a posteriori esXmates were computed using Matlab’s fmincon funcXon using 20 1027 

random iniXalizaXons, converging upon the set of parameter fits that maximized log likelihood of the 1028 

models at predicXng P(Leave) across one second Xme bins. Ranges for the parameters used to fit were 1029 
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X0[-5:20], Ψ [0:10], maxP0[.01:.98], ω0 [0:2], λ0[0:4], and R[0:20], with uniform priors for each. ResulXng 1030 

parameter fits are shown in Fig. S3. BIC values were computed for each model fit, and a protected 1031 

exceedance probability was calculated for each model to esXmate how prevalent the model is across 1032 

subjects. 1033 

 5-fold cross-validaXon was addiXonally performed across models. Trials were split into folds by 1034 

ordering trials per subject and labeling them in serial 1-5. Fi\ng was then performed as above on the 1035 

training folds, amer which we computed the log predicXve probability over trials from the held-out test 1036 

folds. 1037 

 1038 

Unit inclusion criteria 1039 

To be included for analysis, units from Neuropixels recordings had to have a minimum firing rate 1040 

of 1 Hz within patches and addiXonally at least 1 Hz within each third of the session to ensure that they 1041 

were tracked throughout the recording session.  1042 

 1043 

Spike waveforms 1044 

 Spike waveforms were extracted for each unit using C_Waves 1045 

(hKps://billkarsh.github.io/SpikeGLX/). Spike width was defined as the difference between the Xme of 1046 

the waveform minimum and the maximum following this minimum. A threshold of 0.433 ms was used to 1047 

define Regular (>0.433 ms) versus Narrow (<0.433 ms) waveforms (Fig. S6D-F). 1048 

 1049 

Generalized linear model (GLM) to predict neural ac3vity from behavioral variables 1050 
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Poisson GLMs were fit to spiking acXvity of single neurons using the glmnet toolbox 1051 

(hKps://glmnet.stanford.edu). To prepare data for GLM fi\ng, we binned spikes from each neuron into 1052 

50 ms bins aligned to patch stop and conXnuing unXl patch leave. The following variables were included 1053 

as regressors in the GLM: 1054 

1. Session Xme: Xme in session, (Xme in session)2 1055 

2. Behavioral variables: patch posiXon, velocity, acceleraXon, lick rate, d(lick rate) 1056 

3. Patch stop kernels: 6 kernels x 3 (1 set per reward size), peaks spanning 0-1 seconds from 1057 

patch stop 1058 

4. Patch leave kernels: 6 kernels x 3 (1 set per reward size), peaks spanning 0-1 second prior to 1059 

patch leave 1060 

5. Reward kernels: 11 kernels x 3 (1 set per reward size), peaks spanning 0-2 seconds amer each 1061 

reward 1062 

6. Time on patch: 3 (1 per reward size). Time on patch was log scaled: 𝑡123456 = ln(𝑡 + 1) 1063 

7. Time since last reward: 3 (1 per reward size). Time since reward was log scaled: 𝑡123456 =1064 

ln(𝑡 + 1) 1065 

8. Total reward: 3 (1 per reward size). Total reward was log scaled: 𝑅123456 = ln(𝑅 + 1) 1066 

Thus, a total of 85 variables were used in the GLM (86 including intercept). Kernels were a raised 1067 

cosine basis with log scaling of the x-axis (Xme), created using Matlab code from the Pillow lab 1068 

(hKps://github.com/pillowlab/raisedCosineBasis). Parameters used were: logScaling = ‘log’, logOffset = 1069 

1.0, XmeRange = [0 5].  1070 

Variables were z-scored prior to model fi\ng. Variables with one coefficient per reward size 1071 

were z-scored across reward sizes, so that coefficients could be compared across reward sizes. Kernels 1072 

were z-scored together. 1073 

Data were prepared for glmnet using custom MATLAB code, and then fit using glmnet in R. 1074 

Model fi\ng was performed on the Harvard Faculty of Arts and Sciences Researching CompuXng cluster 1075 

(FASRC cluster, hKps://www.rc.fas.harvard.edu/).  1076 
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Models were regularized with elasXc net regularizaXon with 𝛼 = 0.9 (90% L1, 10% L2) to 1077 

encourage sparse coefficients [48]. For cross-validaXon, patches were split into 5 folds. Each patch was 1078 

assigned in its enXrety to a single fold. Folds were counterbalanced for patches of different reward size. 1079 

Cross-validaXon with these folds was used to select the regularizaXon parameter for each neuron (using 1080 

the funcXon cv.glmnet). 1081 

Cross-validated deviance explained was computed for each neuron as follows: 1082 

𝐷5784 = 1 −
𝐷9:654
𝐷;<44

 1083 

 Where 𝐷9:654  is the cross-validated model deviance and 𝐷;<44  is the cross-validated null 1084 

deviance. These two terms were computed once per test fold and then averaged across folds.  For each 1085 

test fold 𝑗, 𝐷9:654
=  and 𝐷;<44

=  were computed using the formula for Poisson deviance: 1086 

𝐷9:654
= =

2
𝑁=
]^𝑦' ln

𝑦'
𝑦_'
− (𝑦' −	𝑦>̀)a

'

	 1087 

𝐷;<44
= =

2
𝑁=
]b𝑦' ln

𝑦'
𝜇=
− c𝑦' − 𝜇=de

'

	 1088 

 Where 𝑁=  is the number of observaXons (Xme bins) in the 𝑗th test fold, 𝑦'  is the number of 1089 

spikes in the 𝑖th Xme bin in the 𝑗th test fold, 𝑦_'  is the predicted mean of the Poisson distribuXon in the 1090 

𝑖th Xme bin (computed using the model fit on the training data), and 𝜇=  is the mean spike count per bin 1091 

in the training data. For bins with no spikes, we set 0 ⋅ ln(0) = 0.  1092 

 To esXmate the contribuXon of task variables (reward kernels, Xme on patch, total reward, and 1093 

Xme since reward) to model fits, we fit a reduced model in which task variables were removed. Poisson 1094 

deviance was computed for the reduced model and deviance explained by task variables was computed 1095 

as 1 − /()**	!,-.*

//.-)0.-	!,-.*
. Neurons with deviance explained > 1% by this metric were deemed “task-related.” 1096 
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 1097 

Unsupervised clustering of GLM coefficients 1098 

  We used a Gaussian Mixture Model (GMM) to cluster the matrix of Task Variables (M=42) x Task-1099 

Related Neurons (N=1398) (Fig. 6). The dimensionality of this matrix was reduced to 3 x 1398 using PCA. 1100 

The dimensionality-reduced matrix was clustered using a Gaussian Mixture Model (funcXon fitgmdist in 1101 

MATLAB, with parameters RegularizaXonValue = 0.4, MaxIter = 10000, Replicates = 10, TolFun = 1e-6) 1102 

with K (the number of clusters) spanning 1-10. For each value of K, the Bayes InformaXon Criterion (BIC) 1103 

was calculated. K was selected to minimize BIC (Fig. 6D). 1104 

 1105 

Linear models to predict behavioral decision variables from neural ac3vity 1106 

For each unit, spikes were binned into 50 ms bins and smoothed with a 100 ms kernel to 1107 

generate single-cell firing rate traces within each patch. Then, firing rate traces were z-scored across 1108 

patches for each neuron, so that model coefficients could be compared across neurons. We then fit 1109 

cross-validated linear models to predict the following behavioral model variables from neural acXvity: 1110 

the probability of leaving the patch in each Xme bin (p(Leave)), the ramping decision variable (DV), and 1111 

for the relevant models, the total integrated reward (weightedRews). As described in the behavioral 1112 

model fi\ng secXon, each of these was either scaled by the latent state (weighted average of 1113 

surrounding patch residence Xmes), or not, to test whether scaling by latent state improved model fits. 1114 

Regularized linear models were fit using the funcXon lasso in Matlab with alpha = 0.1 (10% L1, 1115 

90% L2 regularizaXon), predicXng a given behavioral model variable from the acXvity of all recorded 1116 

neurons at each Xme point. For cross-validaXon, patches were split into the same 5 folds as for the GLM 1117 

(see above). The regularizaXon parameter lambda was selected by nested cross validaXon within training 1118 
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folds. Specifically, the training data was split into 10 folds and models were fit with a range of lambda 1119 

values. Mean squared error was computed on nested test folds for each value of lambda, and lambda 1120 

was chosen such that mean squared error was within 1 standard error of the minimum. The linear model 1121 

was then fit on the enXre training set to obtain 𝛽, the coefficients mapping neural acXvity to the 1122 

behavioral variable, and 𝑅$ was computed on the test set. 𝑅$ and 𝛽 were averaged across training folds 1123 

to obtain final values for each recording session/neuron. 1124 

 1125 

State space modeling of ramping and stepping dynamics 1126 

 The ramping model was implemented as a constrained recurrent, switching linear dynamical 1127 

system with Poisson emissions [49, 50]. The model has a conXnuous latent state 𝑥 and discrete latent 1128 

state 𝑧 that both evolve over Xme. The discrete latent state can be in one of two states corresponding to 1129 

an accumulaXon state (𝑧) = 𝑎𝑐𝑐)	and a boundary state (𝑧) = 𝑏). The conXnuous latent state is iniXalized 1130 

to 𝑥, < 1. In the accumulaXon state, it follows a drim-diffusion process with a condiXon-dependent slope 1131 

and diffusion variance 𝜎$. It also accumulates pulsaXle reward inputs 𝑢). This corresponds to the 1132 

following dynamics 1133 

𝑥) =	𝑥)-% + 𝛽2,?𝑢) +	𝛽2,1	 +	𝜖) ,				𝜖) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎322$ ) 1134 

where 𝛽2,?  is the coefficient for rewards in condiXon c, and 𝛽2,1 is the slope for condiXon c. When  𝛽2,? <1135 

0 the reward decrements the accumulator, although importantly 𝛽2,?  is unconstrained during fi\ng and 1136 

is iniXalized at 0. In the boundary state, the conXnuous dynamics have no constant slope and a small 1137 

constant variance. However, rewards sXll influence the conXnuous state which can cause the model to 1138 

leave the boundary 1139 

𝑥) =	𝑥)-% + 𝛽2,?𝑢) +	𝜖) ,				𝜖) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙c0, 𝜎A$d 1140 
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where 𝜎A$ is fixed to 1e-4. TransiXons between discrete states depends on the value of the conXnuous 1141 

state relaXve to a fixed boundary threshold at 𝑥 = 1. In parXcular, the discrete state transiXon 1142 

distribuXon is 1143 

𝑝(𝑧) ∣ 𝑧)-%, 𝑥)) ∝ exp	(γcRB123 +𝑊𝑥)-%d) 1144 

where 1145 

𝑅322 = [0,−1]C ,				𝑅A = [0,−0.99]C ,				𝑊 = [0, 1]C  1146 

and 𝛾 = 50.	This se\ng of the parameters places a boundary at 𝑥 = 1 with probabilisXc transiXons to 1147 

and from the boundary state for values of the conXnuous state near the boundary. We note that the 1148 

discrete state is slightly encouraged to stay in the boundary state, as in the discrete state the threshold 1149 

for returning to the accumulaXon state decreases to	𝑥 = 0.99. Overall, the generaXve model is  1150 

𝑧) ∣ 𝑧)-%, 𝑥) ∼ 𝑝(𝑧) ∣ 𝑧)-%, 𝑥)) 1151 

𝑥_𝑡 ∣ 𝑧) , 𝑢) ∼ }
𝑁𝑜𝑟𝑚𝑎𝑙c𝑥)-% + 𝛽2,?𝑢) +	𝛽2,1	, 	𝜎322$ d				𝑖𝑓	𝑧) = 𝑧322

𝑁𝑜𝑟𝑚𝑎𝑙c𝑥)-% + 𝛽2,?𝑢) , 	𝜎A$d				𝑖𝑓	𝑧) = 𝑧A
 1152 

𝜆) = log(1 + exp(𝐶	𝑥))) 1153 

𝑦) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)) 1154 

The Xme-varying reward inputs are shimed in Xme such that 𝑢) is equal to one 400ms amer a reward and 1155 

otherwise equal zero.  1156 

 The parameters 𝜃 = (𝛽(%:F,?), 𝛽(%:F,1), 𝜎322$ , 𝐶) were fit using variaXonal Laplace EM (vLEM) [50], 1157 

while the other parameters were fixed to correspond to the ramping model structure. The vLEM 1158 

algorithm returns an approximate posterior distribuXon 𝑞(𝑥%:)) that approximates the true posterior 1159 

distribuXon over the conXnuous latent states 𝑝( 𝑥%:C ∣∣ 𝑦%:C , 𝑢%:C , 𝜃 ). For model comparison, the heldout 1160 

log-likelihood was esXmated via importance sampling using 𝑞(𝑥%:)) 1161 
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log 𝑝H(𝑦%:C ∣ 𝑢%:C) ≈ log
1
𝑆
]

𝑝H < 𝑦%:C , 𝑥%:C
(1)
∣∣ 𝑢%:C >

𝑞(𝑥%:C
(1))

,					𝑥%:C1 ∼ 𝑞(𝑥%:C
(1))

I

1J%

 1162 

with S = 200 and where the discrete latent state is marginalized in the numerator when compuXng 𝑝H. 1163 

 The stepping model was implemented as a constrained HMM with input-dependent transiXons 1164 

and trial-dependent rates. It has two discrete states corresponding to a “down” and “up” state.  Here the 1165 

Xme-varying inputs 𝑢) are one-dimensional and equal to 1 when there is a reward at Xme t and are 1166 

otherwise zero. As in the ramping model, the rewards are shimed 400ms in Xme. The model starts in the 1167 

down state and in the absence of a reward transiXons to the up state with probability 𝑝1. When there is 1168 

a reward, the model is forced to transiXon back to the down state. The generaXve model is  1169 

	𝜋(𝑢_𝑡	) = 	�
�1	 −	𝑝1	 𝑝1

0 1 � 					𝑖𝑓	𝑢) = 0

�1 0
1 0� 															𝑖𝑓	𝑢) = 1

	 1170 

𝑧) ∣ 𝑧)-%, 𝑢) ∼ 𝜋(𝑢))K'23  1171 

𝑦) ∣ 𝑧) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆K',') 1172 

where 𝜆K','  is the firing rate for state 𝑧) on trial i. Notably, we fit separate firing rate parameters for each 1173 

state and trial to allow the model to account for variability in overall rates across trials.  1174 

 The overall model parameters are 𝜃 = (𝜆:,%:L , 𝑝1) and are fit via maximum likelihood using the 1175 

EM algorithm. The per-trial firing rates are iniXalized to the mean number of spike counts in the first and 1176 

last 10 Xme bins of a trial for the down and up states, respecXvely. To evaluate the model on heldout 1177 

trials, the step probability 𝑝1 was kept constant but we fit the per-trial firing rates 𝜆K','  to the test trials. 1178 

Given the per-trial firing rates on test trials, the heldout log-likelihood was computed as the log-1179 

likelihood of the test trials marginalizing out the discrete states. This is a strong baseline since it has 1180 
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access to the heldout data for fi\ng the per-trial firing rates, whereas the ramping model does not per-1181 

trial parameters that are fit on the heldout data.  1182 

 For both models, we fit the model to the summed spike count of cluster 1 neurons from the 1183 

frontal cortex. We fit and compared the models for sessions with at least 10 such neurons. The models 1184 

were fit to binned spike counts in 50ms bins. For each session, 80% of the trials were used for training 1185 

the model parameters and the held-out loglikelihood is computed and reported on the remaining 20% of 1186 

the trials. Both models were fit using code in the SSM (hKps://github.com/lindermanlab/ssm) and SSM-1187 

DM (hKps://github.com/davidzoltowski/ssmdm) code packages.  1188 

 1189 

  1190 
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