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Abstract
Identifying non-coding regulatory variants in the human genome remains a challenging task
in genomics. Recently we advanced our leading regulatory variant database, RegulomeDB,
to its second version. Building upon this comprehensive database, we developed a novel
machine-learning architecture with stacked generalization, TLand, which utilizes
RegulomeDB-derived features to predict regulatory variants at cell or organ-specific levels.
In our holdout benchmarking, TLand consistently outperformed state-of-the-art models,
demonstrating its ability to generalize to new cell lines or organs. We trained three types of
organ-specific TLand models to overcome the common model bias toward high data
availability cell lines or organs. These models accurately prioritize relevant organs for 2
million GWAS SNPs associated with GWAS traits. Moreover, our analysis of top-scoring
variants in specific organ models showed a high enrichment of relevant GWAS traits. We
expect that TLand and RegulomeDB will further advance our ability to understand human
regulatory variants genome-wide.

Introduction
Understanding the biological impact of variants located in non-coding regions of the human
genome is a significant challenge. Nearly 90% of disease-risk-associated single nucleotide
polymorphisms (SNPs) identified from genome-wide association studies (GWAS) are within
non-coding regions. Similarly, 75% of patients affected by Mendelian disease have mutations
outside of protein-coding regions (1). The abundance of disease-associated non-coding
variants makes these regions highly promising for identifying causal SNPs and improving our
understanding of their functional consequences.

Prioritizing non-coding variants requires integrating multiple layers of functional information,
including regulatory annotations identified from high-throughput sequencing datasets (e.g.
DNase-seq (2), ChIP-seq (3), and ATAC-seq (4)). Such annotations provide additional
information in pinpointing causal variants, which are often not the lead variants identified in
GWAS studies. Despite the benefit of incorporating functional genomics assay-based
evidence when examining non-coding variants, the lack of available variant annotation tools
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limits the use of such data. Most resources developed for clinical purposes have focused on
coding regions as an application of exome sequencing-based data (5, 6), which captures
less than 5% of human variation (7–9).

Previously we built RegulomeDB, a comprehensive database for prioritizing and annotating
variants in non-coding regions, which was highly sought after in the research community
(10). RegulomeDB intersects query variants with regulatory regions predicted by functional
genomics assays and, by utilizing ranking heuristics, informs users about putative functional
consequences to prioritize variants. Recently, RegulomeDB has been upgraded to version 2
(11), improving its annotation power by incorporating thousands of new functional genomics
datasets from the ENCODE project (12), Roadmap Epigenomics Consortium (13), and the
Genomics of Gene Regulation Consortium. A suite of models, namely SURF and TURF, was
developed and integrated in this version to provide accurate probabilistic scores for general
and cell-type specific regulatory activities (14, 15).

However, a drawback to this model suite is it was trained using hg19-referenced datasets
from ENCODE for only six common cell lines. The resulting models are biased, lacking
sufficient statistical power to generalize their predictions when applied to less-studied cell
lines. As a result, RegulomeDB scores are less-informative for cell lines, tissues, and organs
that lack the abundance of data available for commonly-studied cell lines. This can make it
challenging for users to identify variants of interest and formulate hypotheses regarding their
regulatory functions. Nonetheless, we anticipate RegulomeDB to further improve for years to
come as new datasets are released by the ENCODE (12) and IGVF (16) consortia, spanning
additional cell lines, tissues, and assay types: e.g., Hi-C and (17) and Enformer predictions
(18). However, the current SURF and TURF models were not designed to incorporate data
continuously, and are potentially prone to overfitting as the feature space expands. Given the
breadth and volume of functional genomics datasets being released each day, these are
serious limitations.

Here we present TLand, a flexible architecture based on stacked generalization (19) to learn
RegulomeDB-derived features to predict regulatory variants at a cell-specific level or
organ-specific level. TLand's stacked generalization approach groups feature into
biologically meaningful subspaces, training individual estimators before assembly to reduce
overfitting and enable further integration of features. Cell-specific TLand consistently
outperformed state-of-the-art models in benchmarking with a hold-out cell line. By
developing a suite of models rather than a single, monolithic model, organ-specific TLand
addresses the data availability bias, further improving upon the cell-specific TLand in
identifying regulatory variants relevant to the target organ as predicted by GWAS.
Furthermore, analysis of top-scored variants in specific organ models showed high
enrichment of correlated GWAS traits. Given its superior performance relative to its
predecessors and competing methods, we expect TLand to address the ongoing challenge
of reliably prioritizing variants, even in less-studied cell lines and organs, thus advancing our
ability to identify regulatory variants genome-wide.
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Methods

Allele-specific binding (ASB) variants
We define a variant as likely-regulatory if it shows evidence for allele-specific binding (ASB),
the molecular signature of which is significantly different counts when ChIP-seq reads are
phased between the two alleles in a heterozygous individual. We trained our models on ASB
variants for all TFs with ChIP-seq data in ENCODE. We included a total of 7,530 ASB
variants in 6 cell lines (GM12878, HepG2, A549, K562, MCF7, and H1hESC) called by
AlleleDB (20). We utilized negative training sets previously produced in our lab (15),
encompassing non-ASB variants and randomly-selected background variants. In total, we
included 14,773 unique variants in our training set. The complementary ASB data of IMR-90
and H9 used for evaluation were downloaded from Adastra (21) at
https://adastra.autosome.org/bill-cipher/search/advanced?fdr=0.05&es=0&cl=IMR90%20(lun
g%20fibroblasts) and
https://adastra.autosome.org/bill-cipher/search/advanced?fdr=0.05&es=0&cl=H9.

Model architecture
TLand is a one-layer stacked architecture that consists of two parts: three base classifiers
and one meta-classifier (Fig 1b and Supplementary Fig 1). TLand takes input as 19 generic
features, 40 deep learning prediction-derived features, and 5 cell-specific features or 13
organ-specific features (Supplementary Table 1), which are directly derived from
RegulomeDB queries. Features were bagged into 3 subspaces: experimental set (generic
features and cell/organ-specific features), deep learning set (deep learning features and
cell/organ-specific features), and cell/organ-specific set (only cell/organ-specific features).
We selected lightGBM (22), random forest (23), and neural network (24) as base classifiers
due to their distinct decision boundaries. Our base models were fine-tuned with Optuna (25).
We used 300 estimators in random forest models, 250 boost rounds, and a 0.049 learning
rate in lightGBM models, 3 layers with 128 neurons per layer, batch size of 128, adaptive
learning rate, and with the max iteration of 30 in neuron network models. Probabilities were
used as the output of base classifiers and to train our meta-classifier. We calculated
interaction terms of probabilities up to the degree of 2 before feeding into our meta-classifier.
We customized a ridge classifier to output probabilities with hyperparameter alpha as 1.9 as
our final meta-classifier. The ridge classifier was trained with 4-fold group cross-validation.
We grouped the training data based on the genomic positions (i.e. variants at the same
genomic positions regardless of whether cell lines were in the same group). All models were
specified with balanced class weights. LightGBM was implemented with the Python package
(22). Random forest, neural network, and relevant pipelines were implemented with
scikit-learn (26). The stacked generalization algorithm was implemented with mlxtend (27).

Model training and evaluation
TLand was trained, validated, and tested on the generated ASB datasets. After
concatenating across six cell lines, 88,638 (i.e. 14,773 x 6) variants were used for training
and validation. The concatenation allowed us to have more data per prediction task. For the
task of predicting an unseen cell line, we held out data for one cell line as a test case, then
used the rest as training data for the TLand model. The test and train split ratio for negative
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data is ⅙. Similarly, for organ-specific models, we held out one organ as a test dataset and
used organ-specific labels for splitting the data. After evaluation, the final models were
trained with all 88,638 variants.

DNase signal quantile normalization
All 1372 DNase bigwig default files processed on GRCh38 assembly (up to May 2022) were
obtained from ENCODE (Supplementary Table 5). We designed an efficient pipeline to
quantile normalize all signals to achieve the balance between accuracy, runtime, and
storage (Supplementary Fig 2). BigWig files were first converted to BedGraph format using
bigWigToBedGraph (28). Average signals were extracted for 10bp, non-overlapping windows
extracted from each BedGraph file with bedmap (29) and stored in bed files. These bed files
were concatenated and converted to parquet format for processing with qnorm (30), a
Python package that applies a multithreaded incremental normalization strategy to efficiently
normalize extremely large datasets (30). We quantile normalized 10-bp average signals for
all 1372 DNase datasets with a batch size of 343 files per normalization iteration. Details of
storage, runtime, and memory are shown in Supplementary Fig 2.

Benchmarking other models and organ definition
We benchmarked TLand with state-of-the-art models, including GenoNet, DeepSEA, Sei,
and TURF. Pre-calculated GenoNet scores were downloaded from
https://zenodo.org/record/3336209/files/. DeepSEA and Sei models were downloaded from
the original paper (31, 32). The previous best model, TURF, was re-trained to predict
regulatory variants on GRCh38 by querying and inputting the GRCh38 features (15). Final
predictions were made by averaging across cell lines instead of the test unseen cell line
models. We averaged relevant cell line model predictions to estimate the organ level
predictions, using the human organ definitions from ENCODE
(https://www.encodeproject.org/summary/?type=Experiment&control_type!=*&replicates.libra
ry.biosample.donor.organism.scientific_name=Homo+sapiens&status=released. ). For
example, we averaged TURF model predictions of A549 and IMR-90 to predict lung
regulatory variants.

GWAS variants and LD data
We first downloaded all known SNV positions significantly associated with traits described in
the GWAS Catalog (https://www.ebi.ac.uk/gwas/api/search/downloads/alternative). We then
completed LD expansion for each SNV, incorporating all SNVs from the 1000 genome
project in strong LD (R2 threshold of 0.6). R2 values were downloaded from
(gs://genomics-public-data/linkage-disequilibrium). In total, we calculated their TLand model
scores for 1,974,549 SNVs.

Target organs annotations for GWAS traits
Gold-standard target-organ associations for 44 GWAS traits were annotated with Open
Targets (https://platform.opentargets.org/), EMBL-EBI Ontology Lookup Service
(https://www.ebi.ac.uk/ols/index), and ChatGPT (33) for selected GWAS traits
(Supplementary Table 3). These annotations were used to evaluate model performance for
each GWAS trait.
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Prioritization of relevant organs for GWAS traits
We predicted approximately 2 million GWAS variants and strongly-linked SNPs across 51
organs. For each manually annotated GWAS trait, we selected all associated SNPs. For
each organ, we calculated the p-value from a one-tailed Student’s t-test (34) comparing the
sampled organ-specific SNP scores versus the population distribution, defined as the 2
million SNP score distribution for the organ. We ranked organs by the inverse of their
p-values, using a significance threshold of 0.05 to select only organs with statistical support
for a functional association. We evaluated performance by comparing the ranked (i.e.
prioritized) organs with the manually annotated target organs for each trait. Accuracy was
defined as the fraction of correct overlaps between model-based and gold-standard organ
annotations among the top 4 organs for each model. We combined any two models' ranking
lists by taking the union of their list then ranked by p-value and selected the top 5 organs for
each combination.

GWAS trait enrichment
Top-scoring GWAS variants (variants with organ-specific scores >0.5) for each organ were
selected. We then traced back associations between these variants and the traits with which
they are associated by counting the number of appearances of each trait among each
variant, weighted by the corresponding organ-specific score. Traits for which total counts (i.e.
trait count of all associated GWAS and strongly-linked SNPs) were low were filtered out of
the results for each organ. Organ-specific GWAS trait enrichment scores were calculated as
the weighted appearance count divided by the total count.

Results

TLand incorporates comprehensive datasets to predict regulatory
variants
We developed a new model architecture, TLand, to predict regulatory variants from a
comprehensive set of features derived from RegulomeDB (Fig 1b and Supplementary Fig 1).
TLand takes input as genomic positions or dbSNP IDs, queries RegulomeDB for features,
then outputs the probability that each variant is a cell-type specific (Supplementary Fig 1) or
organ-specific (Fig 1b) regulatory variant. Importantly, by combining stacked generalization,
features grouping, and interaction terms in meta-classifier training, the TLand model is
capable of incorporating growing training datasets and novel data types into its feature
space while combating overfitting, whereas its predecessors cannot.

The continuously growing corpus of genomic data captures an increasingly complete view of
human regulatory variation. RegulomeDB recently upgraded to version 2, expanding to >650
million and >1.5 billion genomic intervals in hg19 and GRCh38, respectively (11). The large
discrepancy in the data availability between the two assemblies, for example in ChIP-seq
and open chromatin data (RegulomeDB TF ChIP-seq availability in Fig 1a, open chromatin
in Supplementary Fig 3, histone ChIP-seq in Supplementary Fig 4), results from better
representation of complex variation and correction of sequencing artifacts in the GRCh38
assembly (12). Features used to predict regulatory variants included experimental and
computational features derived in GRCh38, the majority of which were derived from
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Figure 1. TLand improves regulatory variant predictions. (a) TF ChIP-seq data availability across
organs on RegulomeDB v2. Green bar plots represent counts on GRCh38. Orange bar plots
represent counts on hg19. The total number of counts for each assembly is in the middle of the gray
box. Notice that the summation is not simply adding all numbers together due to some cell lines
having multiple corresponding organs. (b) Organ-specific TLand architecture. Organ-specific TLand
was trained to predict human regulatory variants in an organ-specific manner by using
RegulomeDB-derived features. (c) Benchmarking TLand performance by AUROC and AUPR. X-axis
is holdout cell lines or organs. Y-axis is AUPR on the top panel and AUROC on the bottom panel.

RegulomeDB v2 (Supplementary Table 1). 1,372 DNase-seq BigWig files were
quantile-normalized and derived as 5 quantile features for each genomic locus. The
DeepSEA disease score feature (31) was replaced by its successor Sei (32). The Sei model
simultaneously predicted 21,907 binary assay labels which were dimension-reduced to 40
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features representing sequence classes. Assembling deep learning model predictions and
training with comprehensive features reduced the variances of our final models and
generalizes well to new cell lines and less-studied organs (35, 36).

Training data across six common cell lines were concatenated to train an agnostic model
while the specificities of input features decided the cell or organ specificities for model
predictions. Features were bagged into three biologically meaningful subspaces before each
set was fed into an individual base classifier. Subspaces included a generic experimental
feature set, a computational feature set, and a cell/organ-specific experimental feature set
for regulatory variants.

We adapted the stacked generalization algorithm to stack the output of individual classifiers
and use a meta-classifier to compute the final prediction (19). Stacking allows for the
utilization of the strength of each individual classifier by using their output as input of a final
meta-classifier. Cross-validation is required to prevent information leaks during the training of
the meta-classifier. We made several modifications to the algorithm. We used group
cross-validation to make base classifiers to learn the regulatory function as the conditional
probability between generic features and cell/organ-specific features. Interaction terms were
calculated before feeding them into the meta-classifier. We used probability rather than
binary prediction in the first layer of base classifiers to train the meta-classifier to obtain
higher accuracy (37).

TLand improves regulatory variant predictions
Cell-specific TLand models substantially outperformed state-of-the-art models for predicting
unseen cell line regulatory variants (Fig 1c and Supplementary Fig 5). On average, across
holdout cell lines, cell-specific TLand models outperformed the previous best model (TURF)
with the area under the precision-recall curve (AUPR) and the area under the receiver
operating characteristic (AUROC) increasing from 0.389 to 0.471, and 0.729 to 0.776,
respectively. Although GenoNet outperformed TURF in three cell lines, applying the unseen
cell line model of GenoNet to assess the upper limit of the prediction task attributed the
performance-gain to information leakage. Cell-specific TLand models still had superior
performance compared to GenoNet, improving average AUPR by 0.09 and AUROC by 0.04.
The high performance of cell-specific TLand can be explained in two ways. First, we derived
comprehensive feature sets for predicting regulatory variants from RegulomeDB,
categorizing them into experimental feature sets and a complementary non-correlated
computational feature set (i.e. deep learning feature set) (Supplementary Fig 6). The
inclusion of experimental features enabled a ~30% performance gain compared to DeepSEA
and Sei models, which use only deep learning features, with average TLand average
AUPR=0.471 compared to AUPR=0.336 for DeepSea and AUPR=0.364 for Sei. Second,
TLand’s architecture models different biological domains separately and then calculates their
conditional probabilities. The meta-classifier finds the best combination of these probabilities
and subtracts redundant information through the inclusion of negative coefficients
(Supplementary Fig 7) to cancel out noise, thus improving predictions, yielding
improvements of 0.10 in average AUPR and 0.04 in average AUROC when compared to
TURF (Supplementary Fig 8).
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Organ-specific TLand models address data availability bias
TLand’s flexible architecture allows for the substitution of cell-specific features with
organ-specific features, which can be retrained with organ-specific labels to develop
organ-specific TLand models. Organ-specific TLand models have the ability to predict
regulatory variants specific to organs, even when those organs include only less-studied cell
lines or tissues. These models performed better than their cell-specific counterparts in two
out of four cell-type specific tasks, specifically in HepG2 (AUPR 0.547 vs. 0.514, AUROC
0.781 vs. 0.692) and MCF-7 (AUPR 0.512 vs. 0.512, AUROC 0.879 vs. 0.840). However,
because GM12878 and K562 cell lines have conflicting labels for their same organ blood,
the blood organ-specific model was only evaluated in the organ-specific (i.e. heart) task, not
in either of the cell-line-specific tasks. The superior performance of organ-specific models,
even in hold-out cell line tasks, can be attributed to the fact that cell-type specific regulatory
variants in HepG2 and MCF-7 are well-represented by corresponding organ-specific
regulatory variants within the RegulomeDB database (see Supplementary Fig 9). In the
A549 cell line, which is from the least-represented organ lung, the organ-specific TLand
model underperformed the cell-specific TLand model holdout on A549 (AUPR 0.329 vs.
0.347) as the organ model predicted regulatory variants in the lung other than in A549 cell
line. To better evaluate model performance in the lung, the ASB dataset from the
second-most representative cell line in the lung, IMR-90, was added to complement the
holdout dataset. The inclusion of this dataset led to TLand outperforming the cell-specific
model when holding out on the lung with IMR-90 datasets (AUPR 0.483 vs. 0.432, AUROC
0.841 vs. 0.814), indicating the organ-specific TLand model can predict a comprehensive set
of organ-specific regulatory variants.

However, adding the second most representative cell line in the embryo, H9, did not improve
the TLand organ-specific model when compared to the cell-specific model when holding out
on the embryo organ (AUPR 0.536 vs. 0.597). Deep learning features, such as DeepSEA
disease impact score (31) and Sei sequence classes (32), were more representative of the
cell lines or organs with more data availability. This is because the scores were
dimensionally reduced from 919 and 21,907 prediction tasks of experimental assays for
DeepSEA and Sei, respectively (including TF and histone ChIP-seq and open chromatin
assays). Cell lines and organs with more available data dominated the dimension-reduced
results. Thus, we removed deep learning features and developed the organ-specific TLand
light model (Supplementary Fig 10) to predict regulatory variants in organs with low data
availability, such as the embryo. We defined organs with >=100 available ChIP-seq assays
as “high data availability” and those with <100 assays as “low data availability”. We observed
that the TLand (full) model consistently outperformed the TLand light model in organs with
high data availability (Fig 1a and c; Supplementary Fig 5), while the light model surpassed
the full model in organs with low data availability. For example, the organ-specific TLand light
model was the best model when holding out the embryo organ (AUPR 0.639, AUROC
0.774). Those findings indicate that TLand light models are suitable for predicting regulatory
variants for organs with low data availability whileTLand (full) models are more suitable for
organs with high data availability. We then proceeded with our analysis by training the TLand
and TLand light models on all available data. We trained an additional TLand model, TLand
lightest, where the organ-specific ChIP-seq features were removed to further reduce bias
towards over-represented organs (benchmarking results shown in Supplementary Table 2).
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TLand prioritizes relevant organs for GWAS traits
To systematically evaluate organ-specific TLand models, we predicted around 2 million
GWAS SNPs including SNPs within the same LD blocks across 51 organs defined by
ENCODE (12). We found that TLand predictions were more highly correlated with TLand
light predictions than TLand lightest (e.g. in the heart organ in Supplementary Fig 11). In
addition, we were able to use TLand scores to cluster organs from the same or closely
related systems in the human body. For example, TLand (Fig 2a) and TLand light
(Supplementary Fig 12) clustered the brain and spinal cord from the central nervous system
and the eye and ear from the sensory system together. TLand lightest model, however, was
able to cluster the blood vessel, the arterial blood vessel, and the vascular together as part
of the circulatory system (Supplementary Fig 13), which was missed by the other two
models. This confirmed our earlier observation that TLand light and lightest models are more
accurate and appropriate than the full model for organs with low data availability. We
manually curated a list of GWAS traits with relevant organs. TLand, TLand light, and TLand
lightest models prioritized the relevant organs for 44 GWAS traits (Supplementary Table 3)
with an average accuracy of 0.311, 0.340, and 0.466, respectively (Fig 2b. See the definition
of accuracy in Methods). By integrating prioritized organs from two distinct models, TLand
and TLand lightest, the average accuracy was increased to 0.482. The overall low accuracy
was partially due to the uncertainty as to whether low scores reflect low data availability or
are true negatives, lacking regulatory function in the target organ.

To better evaluate TLand models in organs with low data availability, we focused on the
top-scoring variants in those organs. We found that top-scored variants from organ-specific
models were enriched for associated GWAS traits relevant to their target organs (Methods,
Fig 2c and results in Supplementary Table 4). For example, two of the three most-enriched
GWAS traits identified by the TLand lightest model identified were relevant to the heart
organ: atrial fibrillation and resting heart (Fig 2c). Originally, TLand lung models were unable
to prioritize the lung organ given the corresponding GWAS SNPs of relevant traits
(Supplementary Table 3). However, we found that traits such as physical activity
measurement and peak expiratory flow were enriched by top-scored variants in the TLand
model. Traits that were associated with multiple organs were able to be properly identified by
multiple-organ models. For example, both the bone element and the immune TLand lightest
models pinpointed ankylosing spondylitis, a type of inflammatory arthritis affecting the spine
and large joints (38), as one of the most enriched GWAS traits for their top-scored variants
(Fig 2c). Thus, organ-specific TLand models can accurately prioritize regulatory variants
within relevant organs.

Discussion
The identification and characterization of non-coding regulatory variants in the human
genome remain a major challenge in the field of genomics. We have developed a novel
model architecture, TLand, to accompany the recent advancement of RegulomeDB. TLand
utilizes RegulomeDB-derived features to infer regulatory variants at cell-specific and
organ-specific levels. By applying stacked generalization to incorporate comprehensive
datasets on the GRCh38 reference genome, including experimental and computational
features, TLand models consistently outperformed state-of-the-art models in holdout
benchmarking. This demonstrates the TLand models' ability to generalize to new cell lines or
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Figure 2. TLand prioritizes relevant organs for GWAS traits. (a) UMAP projections of TLand
predictions on GWAS and LD SNPs. They are colored according to human systems. (b) Performance
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of TLand models prioritizing organs. X-axis are TLand models. Y-axis is accuracy (definition see
Methods). (c) Prioritization of GWAS traits given top-scored variants by TLand and TLand lightest
models. TF ChIP-seq data availability plot is re-plotted in the top left where green represents high
data availability and TLand was the model used, and blue represents low data availability and TLand
lightest was the model used. Each circle next to the organs indicates the data availability of each
organ. The colors of enrichment bars correspond to the model used.

organs, a major advancement over the SURF and TURF models they extend. Much of this
improvement can be attributed to better handling of differential data availability issues. In
particular, TLand light and lightest models are applicable to organs with limited data, e.g. the
embryo, whereas current leading models, such as DeepSEA disease impact scores, perform
poorly in such organs.

The TLand models presented here represent a promising foundation for further
improvements. These are largely facilitated by TLand’s ability to ingest new datasets as they
are released. We aim to continuously incorporate new datasets into RegulomeDB as they
are released, thus extending its performance and applicability as the number and diversity of
training datasets grow across different cells, tissues, and organs. Many of these, including
gkm-SVM model predictions (39) and Hi-C contact maps (17) as new features for TLand
models. TLand’s flexible, modular design allows the grouping of features into
biologically-meaningful sets which can be evaluated against others before making the final
decision about whether to include novel features in the model.

One limitation of this study is the limited number of allele-specific binding (ASB) sites in our
training dataset. Because of data availability limitations, ASB training datasets were derived
from the personal genomes of only six common cell lines. In addition, there is an extensive
disagreement between existing ASB prediction methods, further reducing the quantity of
high-confidence training variants. Recently, Adastra, a new database hosting 652,595 ASBs
passing 5% FDR across 647 cell lines and 1,043 TFs, was published (21). However,
Adastra’s predicts ASB based on a statistical model, not by using personal genomes directly.
Therefore, it is unclear whether incorporating these ASB predictions in the high-confidence
training datasets will yield meaningful improvements to the TLand models. This remains an
area of ongoing interest.

Overall, TLand advances the field of non-coding variant analysis by incorporating
comprehensive datasets to predict functional regulatory variants at cell-specific and
organ-specific levels. To foster downstream applications, pre-trained TLand models and
pre-calculated TLand scores for 2 million GWAS genomic variants are publicly-available at
https://doi.org/10.5281/zenodo.7818540. TLand’s flexible models and ability to integrate
novel datasets in a principled way significantly improve our ability to identify human
regulatory variants genome-wide. This ability will only improve as more and larger training
datasets, spanning additional organs, tissues, cell types, and assays are released.

Availability
To facilitate the reproducibility of our analyses, we have made the following resources
available: Scripts to reproduce the analyses can be found at
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https://github.com/nsamzhao/tland_supplementary. The data used in the analyses and final
trained models can be accessed at Zenodo https://doi.org/10.5281/zenodo.7818540.
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