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Abstract: Machine learning research has achieved large performance gains on a wide range of 13 

tasks by expanding the learning target from mean rewards to entire probability distributions of 14 

rewards — an approach known as distributional reinforcement learning (RL)1. The mesolimbic 15 

dopamine system is thought to underlie RL in the mammalian brain by updating a representation 16 

of mean value in the striatum2,3, but little is known about whether, where, and how neurons in 17 

this circuit encode information about higher-order moments of reward distributions4. To fill this 18 

gap, we used high-density probes (Neuropixels) to acutely record striatal activity from well-19 

trained, water-restricted mice performing a classical conditioning task in which reward mean, 20 

reward variance, and stimulus identity were independently manipulated. In contrast to traditional 21 

RL accounts, we found robust evidence for abstract encoding of variance in the striatum. 22 

Remarkably, chronic ablation of dopamine inputs disorganized these distributional 23 

representations in the striatum without interfering with mean value coding. Two-photon calcium 24 

imaging and optogenetics revealed that the two major classes of striatal medium spiny neurons 25 

— D1 and D2 MSNs — contributed to this code by preferentially encoding the right and left tails 26 

of the reward distribution, respectively. We synthesize these findings into a new model of the 27 

striatum and mesolimbic dopamine that harnesses the opponency between D1 and D2 MSNs5–15 28 

to reap the computational benefits of distributional RL.    29 
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Main Text 30 

Midbrain dopamine neurons and their primary target, the striatum, constitute an evolutionarily 31 

ancient16 neural circuit that is critical for motivated behaviors17,18. Computationally, dopamine 32 

has long been thought to signal reward prediction error (RPE)2,19,20, reminiscent of the teaching 33 

signals used in many reinforcement learning (RL) algorithms21. Consistent with this idea, 34 

dopamine is also known to modulate plasticity of certain corticostriatal synapses in roughly the 35 

manner predicted by RL theory22, allowing neurons in the striatum to learn a representation of 36 

average anticipated reward23–28, often called “value”. 37 

Despite the simplicity and popularity of this model, it leaves many aspects of the mesolimbic 38 

circuit unexplained. For one, value representations reside not only in the striatum but throughout 39 

the entire brain29–35, and are enriched in neurons projecting to the striatum36,37. Second, the 40 

striatum is far from uniform, containing a variety of interneuron subtypes as well as D1 and D2 41 

medium spiny neurons (MSNs), whose projection patterns differ38 and whose plasticity is 42 

modulated in opposite directions by dopamine22,39,40. These differences at the receptor level 43 

translate to opposite coding properties5,6 and effects on behavior7–15, but interpreting their 44 

distinct roles is complicated by the fact that these two populations often co-activate41–45. Third, 45 

dopamine activity is much more complex than a simple scalar RPE, varying both qualitatively 46 

across dopamine projection systems46–49 and quantitatively within systems4,50,51. Whether such 47 

diversity is cause to revise RPE-based accounts of dopamine4,52,53 or discard them altogether54,55 48 

is currently the subject of intense debate.  49 

In parallel to these questions about the neuronal representation of value, the striatum — 50 

particularly the ventral striatum (VS, also referred to as the nucleus accumbens) — has long been 51 

associated with decision-making under risk. VS lesions56–58 and dopaminergic drugs59,60 can both 52 

impair risky decision-making, with some groups suggesting a particular role for VS D2 53 

MSNs61,62. Aberrant processing of risk, in turn, is thought to underlie many diseases associated 54 

with these circuits, particularly addiction63–65. Given this, it is perhaps surprising that, with a few 55 

exceptions66, conventional RL models of the basal ganglia ignore the role of risk, and most 56 

theoretical investigations of uncertainty focus on sensory noise rather than intrinsic, irreducible 57 

environmental stochasticity67–70. 58 

Borrowing from tremendous successes and popularity in machine learning71–73, it was recently 59 

proposed4 that the residual heterogeneity within RPE-coding dopamine neurons74,75 resembles 60 

the predictions of a particular algorithm known as Expectile Distributional RL (EDRL)76. This 61 

algorithm not only unifies the learning of value and risk (and potentially higher-order moments 62 

of reward distributions) within the same biologically-plausible framework but also provides 63 

novel computational advantages — even with risk-neutral settings — related to representation 64 

learning in deep neural networks77,78 and, potentially, directed exploration79–82. However, 65 
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alternative accounts of the same dopamine data have since been put forward83, including some 66 

that question the very existence of a probabilistic value code84,85. 67 

Here, we provide the first direct evidence for distributional RL in the mammalian brain by 68 

demonstrating that the striatum, and particularly VS, encodes not just mean value but also reward 69 

variance. We combine our observations with well-established features of the anatomy and 70 

physiology of the basal ganglia to construct a new computational model of reward distribution 71 

learning in the striatum. The proposed model brings together diverse dopamine inputs4 and 72 

asymmetric plasticity rules22,39,40 to enable a biological implementation of EDRL. Our model 73 

makes several new experimental predictions about the representational geometry of the striatal 74 

population code and its dependence on intact dopamine inputs, which we confirm using 75 

Neuropixels recordings and dopamine lesions. Moreover, it suggests a way to unify the opponent 76 

yet concurrent and non-redundant contributions of D1 and D2 MSNs to behavior via their coding 77 

of the right and left tails of the reward distribution, respectively. We validate this view using cell 78 

type-specific two-photon calcium imaging and optogenetic manipulations. Together, this study 79 

improves our understanding of the computational principles underlying the brain’s reward 80 

circuitry and tightens the bonds between natural and artificial intelligence. 81 

A behavioral task to investigate distributional RL 82 

Representations of reward variance have been previously observed in a variety of cortical86–88 83 

and subcortical89–91 regions, but not in the striatum. To determine whether striatal neurons 84 

encode reward variance while remaining agnostic to its representational format, we designed a 85 

classical conditioning task in which water-restricted mice were trained to associate random odor 86 

cues with probability distributions over stochastic reward magnitudes (Fig. 1a). Three different 87 

probability distributions (Fig. 1b) were used: Nothing (100% chance of 0 μL reward), Fixed 88 

(100% chance of 4 μL reward), and Variable (50/50% chance of 2/6 μL reward). Fixed and 89 

Variable distributions shared the same mean but had a different variance. Thus, distributional RL 90 

predicts systematic differences in their underlying neural representations, whereas traditional RL 91 

— assuming risk neutrality — does not. To ensure any such differences did not reflect 92 

idiosyncratic odor preferences, two unique odors predicted each of the three distributions, 93 

allowing us to compare odor representations both across- and within-distributions.  94 

Crucially, while animals’ anticipatory licking revealed a clear preference for Rewarded (Fixed 95 

and Variable) over Unrewarded odors, it did not differ between the Fixed and Variable 96 

distributions (Fig. 1c; here and elsewhere, we plot each mouse’s mean across sessions as a 97 

colored line for clarity, but the statistical tests disaggregate sessions using a Linear Mixed 98 

Effects model with mouse-level random effects; see Methods). Additional behavioral data, 99 

including face motion, whisking, pupil area, and running92, also did not support reliably 100 

distinguishing Fixed from Variable trials (Fig. 1d and Extended Data Fig. 1a-b). The meager, 101 

non-significant classification ability that may have existed was orthogonal to the regression 102 
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weight vector trained to predict value from all trial types (Extended Data Fig. 1d-e). This implies 103 

that any ability to decode these trial types from neural data must be due to the associated 104 

probability distributions and not to differential valuation or motor behavior. 105 

Striatum represents both mean and variance 106 

Next, we used high-density electrophysiological probes (Neuropixels) to acutely record activity 107 

from across a broad swathe of the anterior striatum (Fig. 1e and Extended Data Fig. 2a; N = 12 108 

mice, n = 71 sessions, 13,997 neurons). Consistent with prior work23–28, we found that both the 109 

average firing rate of all neurons (Fig. 1f and Extended Data Fig. 2b) and the time course of trial 110 

type-averaged activity projected onto the first principal component (PC; Fig. 1g) cleanly 111 

separated Rewarded from Unrewarded odors. Furthermore, a substantial fraction of the activity 112 

of individual neurons within our 1 s analysis window just before reward delivery correlated 113 

significantly with expected reward, allowing us to reliably predict mean value from neural 114 

(pseudo-) population activity across all striatal subregions (Extended Data Fig. 2c-e). Other 115 

striatal neurons correlated significantly with reward prediction error during the reward period93, 116 

but these formed a smaller and mostly independent subset (Extended Data Fig. 2f-h). 117 

However, not all neurons obeyed this simple pattern seen at the level of population averages. 118 

Some single neurons consistently preferred Variable odors, while others — even when recorded 119 

simultaneously — preferred Fixed (Fig. 2a). Such neurons fired similarly to both instances of the 120 

Fixed and Variable odors, suggesting that they abstracted over odor-specific details to instead 121 

encode information about variance — even as the population as a whole contained ample odor 122 

information (Extended Data Fig. 3a-e). 123 

Following observations of variance coding in other brain regions87,89, we identified variance-124 

encoding neurons by linearly regressing single-neuron firing onto reward variance, after 125 

regressing out the effect of mean reward. Unlike these prior studies, however, we surprisingly 126 

found fewer striatal variance-encoding neurons than would be predicted from odor coding alone 127 

(Extended Data Fig. 3f-h). Furthermore, in contrast to codes in which neural activity is construed 128 

as representing samples from some probability distribution, across-trial Fano factors were the 129 

same across trial types with different variances94,95 (Extended Data Fig. 4a-d). We therefore 130 

adopted a different set of approaches to characterize distributional coding across the entire neural 131 

population. 132 

First, we projected each session’s trial type-averaged firing rates in the 1 s window before reward 133 

delivery (“Late Trace period”) onto the first and second PCs (accounting for 72.9 ± 2.4 and 10.0 134 

± 1.0% of the variance across trial types, respectively; mean ± s.e.m. across mice; Fig. 2b). We 135 

then measured the Euclidean distances in PC space along each dimension. As expected, trial 136 

types with different mean rewards segregated out along PC 1 (Fig. 2c). More surprisingly, 137 

though, Fixed and Variable odors separated out along PC 2, such that there was a greater 138 

distance between across-distribution odor pairs than within-distribution odor pairs (Fig. 2d). 139 
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Second, to determine whether we could observe the same trends in native firing rate space, we 140 

performed representational dissimilarity analysis (RDA) between the average population activity 141 

vector for each of the rewarded trial types (Fig. 2e). Once again, the distance between across-142 

distribution pairs was greater, on average, than between within-distribution pairs (Fig. 2f). We 143 

observed the same effects in the classification performance of single-trial linear classifiers 144 

applied to pairs of rewarded trial types (Extended Data Fig. 5a-b) or applied to trial type groups 145 

that either respected or violated their distribution identities (Extended Data Fig. 5c-d). 146 

Distributional decoding was orthogonal to mean value coding (Extended Data Fig. 5e-h), stable 147 

over time (Extended Data Fig. 5i-k), and strongest in the more ventral and lateral parts of the 148 

striatum, particularly the lateral nucleus accumbens shell (lAcbSh; Extended Data Fig. 6). Lastly, 149 

an artificial neural network-based decoder trained on single pseudo-trial population activity 150 

successfully predicted complete reward distributions, even when its training and evaluation was 151 

restricted to trials with the same mean, and generalized to unseen odors (Extended Data Fig. 7). 152 

Variance is encoded abstractly 153 

The preceding analyses show that the neural activities evoked by odors identifying the same 154 

distribution are more similar to one another than to those evoked by odors identifying 155 

distributions with the same mean but different variances. Let us now ask about the relationship 156 

between Fixed and Variable odor representations. More specifically, is variance represented in 157 

an “abstract format” — i.e., in a way that supports generalization to unseen situations96? To find 158 

out, we adapted two previously-defined metrics96 to our task: parallelism score and cross-159 

condition generalization performance (CCGP). Both ask, in different ways, whether there is a 160 

consistent direction in firing rate space that distinguishes low and high-variance cues (see 161 

Methods). 162 

The parallelism score is simply the average cosine similarity between the two difference vectors 163 

pointing from Variable to Fixed population activity, one for each odor identifying the respective 164 

distribution (Fig. 2g). Across sessions and mice, these difference vectors were significantly more 165 

aligned than would be expected by chance (Fig. 2h). Similarly, a decoder trained on one Fixed 166 

vs. Variable dichotomy and then tested on the held-out dichotomy achieved above-chance 167 

CCGP, averaged across all four possible dichotomies (Fig. 2i-j). These analyses show that 168 

variance is not just encoded arbitrarily, but in an abstract format. 169 

Using striatal opponency to implement distributional RL 170 

How might such an abstract representation be acquired? While there exist multiple theories for 171 

how the brain might learn (factorized, that is, abstract) reward distributions71,72,83, EDRL76 is 172 

especially promising because it requires only minimal modifications to existing, empirically 173 

tested models of the basal ganglia4. EDRL proposes not just a single value predictor but an entire 174 

family of predictors Vi, which learn at different rates, αi
+ and αi

–
 , for positive and negative RPEs, 175 

respectively (Fig. 3a). “Optimistic” predictors have relatively high αi
+ and will converge to 176 
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values above the distribution mean, while the opposite is true of “pessimistic” predictors. Each 177 

predictor converges to a so-called “expectile” of the reward distribution, parameterized by 𝜏𝑖 =178 

𝛼𝑖
+

𝛼𝑖
++ 𝛼𝑖

− between 0 and 1. Expectiles generalize the mean (τ = 0.5) just as quantiles generalize the 179 

median, and collectively, they characterize the complete reward distribution97 (Fig. 3b; see 180 

Methods). 181 

While EDRL has some appealing properties, it ignores the molecular and cellular diversity 182 

within the striatum, most notably the presence of D1 and D2 MSNs38. As an extension, we 183 

propose reflected EDRL (REDRL) — so called because D2 MSN activity is simply the negative 184 

of the corresponding value predictor, plus a constant offset to ensure non-negative activities (Fig. 185 

3c). This simple modification does not merely lend EDRL additional biological plausibility; 186 

rather, it demonstrates how the particular anatomy of the striatum can benefit distributional RL 187 

computations while explaining a host of data regarding activity in the striatum and opponency 188 

between D1 and D2 MSNs. 189 

To implement REDRL in the striatum, we first require structured heterogeneity in dopamine 190 

inputs, which can be modeled as piecewise linear response functions to reward size4 (Fig. 3d). 191 

Since RPE is defined as actual minus predicted reward, the reward amount which elicits no 192 

change in dopamine firing relative to baseline — the so-called “zero-crossing point”4 — is 193 

equivalent to the learned value prediction for that neuron. Pessimistic dopamine neurons have 194 

steeper slopes for rewards below their associated value prediction (α′i–) and shallower slopes 195 

above it (α′i+), reflecting relatively low learning rates from positive RPEs. The converse is true of 196 

optimistic dopamine neurons. Second, these diverse dopamine responses combine with opponent 197 

plasticity rules in D1 and D2 MSNs, with D1 MSNs increasing synaptic weights more from 198 

positive RPEs (βm
+) and D2 MSNs increasing synaptic weights more from negative RPEs22,39,40 199 

(βm
 –; Fig. 3e). Importantly, while asymmetric, these synaptic weight updates are not fully 200 

dichotomous; D1 and D2 MSNs still learn slightly from dopamine changes in their non-preferred 201 

directions66, in line with the shallower but nonzero slope of D1 and D2 receptor occupancy 202 

curves at baseline dopamine concentrations66,98,99.  203 

By composing these two functions, we get the complete REDRL model. The opponency of the 204 

plasticity rule gives rise to opponent directions of value coding (Fig. 3f), with D15,6,100,101 and D2 205 

MSNs5,6,102 primarily correlating positively and negatively, respectively, with value and reward. 206 

Meanwhile, its asymmetric nature has the effect of extremizing value predictors — D1 MSNs are 207 

more optimistic, and D2 MSNs more pessimistic, than their individual dopamine inputs would 208 

create on their own (Fig. 3g) — setting up a global bias for D1 and D2 MSNs to encode the right 209 

and left tails of the value distribution, respectively, and shifting the zero-crossing points of the 210 

coupled dopamine neurons up or down accordingly (Fig. 3d-g). Notably, this also predicts that 211 

D1 MSNs will acquire positive associations faster than D2 MSNs, while D2 MSNs may be 212 

preferentially involved in later discrimination or extinction39,40,103 (Fig. 3a).  213 
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Armed with such a model, we can ask whether the population activity predicted by REDRL 214 

mirrors that observed in our striatal data. Strikingly, the top two PCs of the model predictors 215 

closely resemble the projection of the data using principal component analysis (PCA; Fig. 3h-i). 216 

Moreover, REDRL gives rise to a new prediction: Variable odors should be more distant from 217 

Nothing odors along PC 1 than Fixed odors, a prediction that due to PCA’s mean-centering is 218 

independent of the D2 offset, and that we confirmed to hold true in our data (Fig. 3j-k). 219 

Secondly, REDRL predicts the existence of substantial populations of neurons that correlate 220 

either positively (D1) or negatively (D2) with expected reward across trials (Fig. 3l). We again 221 

found this to be the case in our data (Fig. 3m), with a slight bias toward positive correlations, 222 

perhaps reflecting the preponderance of D1 over D2 MSNs in the striatum104–106. Lastly, REDRL 223 

predicts that the average firing rate should be slightly higher for Variable than for Fixed odors on 224 

average, which we also observed (Fig. 3n-o). While other distributional RL formulations 225 

predicted some of these effects, only REDRL and its close cousin, Reflected Quantile 226 

Distributional RL (Extended Data Fig. 8a-m) predicted all of them. Thus, REDRL provides a 227 

mechanistic account of distributional reinforcement learning which quantitatively matches the 228 

structure of striatal representations. 229 

Dopamine is necessary for distributional RL 230 

If striatal representations are updated incrementally by dopamine RPEs as predicted by REDRL, 231 

then eliminating dopamine prior to learning should disrupt these distributional representations 232 

(Fig. 4a). To test this hypothesis, we injected the neurotoxin 6-hydroxydopamine (6-OHDA) 233 

unilaterally into the lateral ventral striatum in naive mice, which resulted in local lesions of 234 

dopamine neurons projecting to the injection site (Fig. 4b-c; Extended Data Fig. 9a). After 235 

recovery, we trained the animals on the same task and then recorded neurons in both the control 236 

and lesioned hemisphere (N = 5 mice, n = 20 sessions, 2,283 neurons from control; 19 sessions, 237 

2,596 neurons from lesion). Unilateral lesions modestly impaired our ability to distinguish 238 

Rewarded and Unrewarded odors based on behavioral predictors, but animals nonetheless 239 

learned the task (Extended Data Fig. 9b-c). 240 

Projecting striatal activity from each hemisphere independently into PC space suggested that 241 

Fixed and Variable distributions were less well-separated in the lesioned hemisphere relative to 242 

the control hemisphere (Fig. 4d). Indeed, when we quantified distances as before, we found 243 

Nothing and Rewarded odors to be equally well separated along PC 1 for both hemispheres (Fig. 244 

4e), but less-well separated along PC 2 in the lesioned hemisphere, with an associated smaller 245 

difference in distances between across-distribution and within-distribution pairs (Fig. 4f). 246 

Analogous effects were seen for parallelism score (Fig. 4g) and representational dissimilarity 247 

(Fig. 4h), with stronger (and abstract) variance coding in the control relative to the lesioned 248 

hemisphere. The persistence of mean value coding in the lesioned hemisphere may reflect the 249 

inability of unilateral 6-OHDA to kill all dopamine neurons within the targeted hemisphere, the 250 
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interhemispheric broadcasting of mean value information once it reaches cortex31–37, or, more 251 

radically, the dispensability of dopamine for learning about mean value entirely. 252 

In addition to supporting our mechanistic REDRL model, the selective disruption of variance 253 

coding by 6-OHDA gives us an experimental tool with which to probe the function of 254 

distributional RL in the brain. When paired with deep neural networks, distributional RL is 255 

thought to boost system performance mainly by improving state representations1,4,78. Due to 256 

multiplexing of odor-specific representations alongside distribution information within the 257 

striatum (Extended Data Fig. 3), it is possible to ask whether dopamine lesions also impair 258 

striatal stimulus representations. We used multinomial logistic regression to decode odor identity 259 

from neural activity during the 1 s window following odor onset. While we could decode odor 260 

identity well above chance for both hemispheres, decoding performance was significantly higher 261 

in the control than the lesioned hemisphere (Fig. 4i). The lesion caused a drop in decoding 262 

performance across nearly all trial types, with the main driver being an increased confusion 263 

between Fixed and Variable odors (Fig. 4j-k). These results are consistent with distributional RL 264 

playing a similar role in shaping the representation of sensory inputs in artificial neural networks 265 

and biological brains. 266 

Opponent contributions of D1 and D2 MSNs to REDRL 267 

To dissect the distinct contributions of D1 and D2 MSNs predicted by REDRL, we turned to 268 

two-photon calcium imaging through implanted gradient refractive index (GRIN) lenses (Fig. 269 

5a). We injected AAV9-hSyn-FLEX-jGCaMP7s virus107 into the lAcbSh of Drd1-Cre (N = 4 270 

mice, n = 27 sessions, 945 neurons) or Adora2a-Cre (N = 4 mice, n = 38 sessions, 1,106 271 

neurons) transgenic mice108, which drive expression in D1 and D2 MSNs, respectively (Fig. 5b). 272 

Using this method, we were able to image up to ~50 neurons simultaneously per field of view 273 

(31.6 ± 17.4, mean ± s.d. across sessions; Fig. 5c). 274 

We observed different patterns of deconvolved Ca2+ activity across D1 and D2 populations100–102 275 

(Extended Data Fig. 10a-b). Many D1 MSNs were activated more to Rewarded than to 276 

Unrewarded odors and outcomes, while the reverse was true, albeit less strongly, in D2 MSNs 277 

(Fig. 5d-f). In addition to correlations across trials during the Late Trace period, we also 278 

investigated differences between the Late Trace and Baseline periods, because REDRL predicts 279 

increases in value predictions after Rewarded odor onset. Consistent with our model, significant 280 

fractions of D1 and D2 MSNs increased and decreased their activities, respectively, more on 281 

Rewarded than Unrewarded trials, although the pattern in D2 MSNs was again more 282 

heterogeneous than in D1 MSNs (Extended Data Fig. 10c). 283 

Intriguingly, we also found neurons which, like those we recorded using electrophysiology, 284 

reliably distinguished between Fixed and Variable odors during the Late Trace period (Fig. 5g). 285 

To test whether these trends were systematic, we performed the same analyses (RDA, CCGP and 286 

PCA) separately on D1 and D2 MSNs, while pooling across all sessions and all mice to 287 
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compensate for the lower cell counts and higher variability of Ca2+ signals. Consistently across 288 

disjoint subsets of trials in both D1 and D2 MSNs, across-distribution pairs were represented 289 

more dissimilarly than within-distribution pairs (Fig. 5h), and variance was encoded in an 290 

abstract format (Fig. 5i). 291 

REDRL not only predicts that distributional coding should be present in both D1 and D2 MSNs 292 

independently but also specifies the ways in which this coding should differ. For one, this 293 

particular set of distributions should elicit higher variance across trial types for optimistic than 294 

for pessimistic reward predictors on average — which is also true in the two-photon data for D1 295 

and D2 MSNs, respectively (Fig. 5j). More impressively, when projecting optimistic (τ > 0.5) 296 

and pessimistic (τ < 0.5) predictors into 2D PC space separately, we found that optimistic 297 

predictors exhibited the same trend as the full complement of value predictors, with Variable and 298 

Nothing odors further separated along PC 1 than Fixed and Nothing odors (Fig. 5k). However, 299 

pessimistic predictors actually showed the opposite trend, with Variable and Nothing odors 300 

closer together along PC 1 than Fixed and Nothing (Fig. 5l-m). Analogously, representational 301 

dissimilarity was less for Variable and Nothing odors than Fixed and Nothing odors specifically 302 

for pessimistic predictors; optimistic predictors did not differ (Fig. 5n). PCA projections (Fig. 303 

5o-q) and RDA (Fig. 5r) for D1 and D2 MSNs mirrored these predictions precisely, revealing a 304 

subtle distinction in distributional coding across MSN subtypes and confirming a novel 305 

prediction of REDRL. 306 

Perturbing REDRL with optogenetics 307 

As a final test of REDRL, we sought to independently manipulate D1 and D2 MSNs while mice 308 

performed a similar classical conditioning task. To do so, we expressed either the excitatory 309 

opsin CoChR109 (N = 12 mice, n = 96 sessions) or the inhibitory opsin GtACR1110,111 (N = 13 310 

mice, n = 92 sessions) in D1 or D2 MSNs and implanted an optical fiber in lAcbSh112 (Fig. 6a). 311 

We then manipulated these neurons during the 2 s Trace Period after odor offset and quantified 312 

licking during the last 1 s of this Trace Period, just prior to reward delivery (Fig. 6b). 313 

To identify the REDRL model predictions for these manipulations, we clamped the simulated 314 

values of inhibited and excited predictors respectively at 0 and 8 μL, the maximum reward size 315 

we delivered in these experiments. We performed these simulated manipulations separately in 316 

optimistic and in pessimistic neurons while letting the non-manipulated predictors retain their 317 

original values. We then computed the animal’s predicted value estimate as the mean across both 318 

optimistic and pessimistic predictors (Fig. 6c-d). For comparison, we performed similar 319 

manipulations on other distributional code types (Extended Data Fig. 11). We then took the 320 

difference between the models’ estimated values in Manipulation vs. No Manipulation trials for 321 

each trial type (Fig. 6e; Extended Data Fig. 12) and compared it to the difference in anticipatory 322 

licking. REDRL not only captured the main effects of “go” and “no-go” pathways113 but also 323 

predicted precise patterns of licking across trial types, even for the same type of manipulation 324 
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(Fig. 6f). This could not be explained simply by ceiling effects, as the increase in licking was 325 

sometimes greater for Rewarded than Unrewarded odors, as in the case of D2 inhibition. 326 

Quantitative comparison between the data and various models confirmed that REDRL (and the 327 

highly similar Reflected Quantile code) best fit the licking data (Fig. 6g). 328 

Discussion 329 

Here we have combined large-scale electrophysiology with cell-type specific recordings and 330 

manipulations to develop the REDRL model of the basal ganglia. This model maintains the 331 

normative algorithmic advantages of distributional RL1 while lending itself to a biological 332 

implementation that is consistent with the observed structure of dopamine population activity4 333 

and dopamine-mediated plasticity rules22,39,40. The most notable feature of REDRL is the distinct 334 

role played by D1 and D2 MSNs, which specialize in the right and left tails of the reward 335 

distribution, respectively. This bifurcated layout resembles other neural systems, such as 336 

ON/OFF pathways in vision, and likely has similar benefits, such as efficient coding114, reduced 337 

metabolic cost115, and flexibility116. For example, certain computations, such as expected value 338 

estimation, would benefit from combining information from D1 and D2 MSNs, but others, such 339 

as risk-sensitive behavior, might depend on one tail or the other, and thus primarily require 340 

information from a single population. Furthermore, this architecture simplifies the problem of 341 

connectivity: anatomically and/or genetically-defined subsets of dopamine neurons117,118 could 342 

form independent closed loops with D2 (via ventral pallidum) and D1 MSNs, thereby helping to 343 

keep separate pessimistic and optimistic RPE channels. These predictions should form the basis 344 

of future anatomical investigations into the mesolimbic dopamine circuitry, as well as theories of 345 

alternative architectures that might obviate this need119, which is shared by EDRL. 346 

At the level of the striatum, REDRL helps unify previous approaches to understanding D1 and 347 

D2 MSNs within a single, normative framework. While there have been previous hints that D1 348 

and D2 MSNs are oppositely modulated by dopamine22,39,40 and oppositely correlated with 349 

reward and expected value5,6,100–102, this has generally been attributed to go/no-go or 350 

approach/avoid pathways and modeled using a single value predictor3,66,113,120,121. Here, we show 351 

how, far from being a bug or redundancy in the RL architecture, such diversity could actually be 352 

a feature, biasing convergence to optimistic or pessimistic value predictors. More speculatively, 353 

it could explain why D1 and D2 MSNs often act in an opponent fashion without being inverses 354 

of each other41–45. The tendency for both pathways to activate prior to movement onset, for 355 

example, would be predicted if such transition points coincide with increases in the predicted 356 

variance of rewards (and thus the density on both the left and right tails). 357 

REDRL also lends a new perspective to the coding of uncertainty in the brain. Typical treatments 358 

of this topic focus on perceptual uncertainty, where the observer’s role is to infer the distribution 359 

of world states consistent with a pattern of neural activity70. While the problem is generally 360 

formulated as one of Bayesian inference67,  the associated uncertainty is frequently attributed to 361 
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noisy inputs rather than ones that are genuinely ambiguous (as in the case of the Necker cube122). 362 

In RL settings, in contrast, uncertainty generally arises from a combination of state ambiguity, 363 

insufficient exploration, and intrinsic stochasticity123, all of which complicate the problem of 364 

learning from limited experience. Distributional RL excels in partitioning out this intrinsic 365 

uncertainty from other sources, potentially allowing for improvements in state representation77,78, 366 

exploration79–82, value estimation124, model-based learning125, off-policy learning126, and risk 367 

sensitivity127–130. 368 

Many questions remain as to how the brain transforms high-dimensional reward distributions 369 

into a single choice, but it is tempting to speculate that this process corresponds to the 370 

dimensionality reduction that takes place throughout the various nuclei of the basal ganglia131, 371 

ultimately collapsing onto a unitary value estimate in the mediodorsal thalamus that defines the 372 

choice axis. Notably, such a “distributional critic” — centered here in the lAcbSh, a region 373 

which receives RPE-like mesolimbic dopamine input46–50 — could integrate seamlessly into a 374 

broader RL framework132–136, with the dorsal striatum likely playing the role of the “actor” and 375 

choosing actions in continuous, high-dimensional spaces137. Modifications of the encoded reward 376 

distribution, such as by dopaminergic drugs59,60, or of the downstream basal ganglia circuit, 377 

could then bias risky choice on rapid or developmental timescales61,138,139. Various 378 

psychopathologies — such as depression, in which patients learn more from losses than 379 

gains140,141, or addiction, in which patients systematically overweight the right tail of the reward 380 

distribution142 — could similarly stem from the dysfunction of this core distributional RL 381 

circuitry. Thus, REDRL can serve as a bridge between reinforcement learning, behavioral 382 

economics, computational psychiatry, and systems neuroscience, demonstrating how the circuit 383 

logic of the striatum can combine with vector-valued dopamine signals to realize the 384 

computational benefits of distributional RL.  385 
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Methods 386 

Experimental Procedures 387 

Mice 388 

A total of 46 adult C57BL/6J (Jackson Laboratory) male and female mice were used in these 389 

experiments. Twelve wildtype animals (6 M, 6 F) were used for Neuropixels recordings, of 390 

which five (2 M, 3 F) were also included in unilateral 6-OHDA experiments. For two-photon 391 

imaging, four Drd1-Cre (B6.FVB(Cg)-Tg(Drd1-cre)EY262Gsat/Mmucd, 392 

RRID:MMRRC_030989-UCD; 3 M, 1 F) and four Adora2a-Cre (B6.FVB(Cg)-Tg(Adora2a-393 

cre)KG139Gsat/Mmucd, RRID:MMRRC_036158-UCD; 1 M, 3 F) mice were used108,143,144. For 394 

optogenetic excitation, we used five Drd1-Cre (2 M, 3 F) and seven Adora2a-Cre (3 M, 4 F) 395 

animals. For optogenetic inhibition, we crossed these lines with a Cre-dependent GtACR1 396 

reporter mouse111 (R26-CAG-LNL-GtACR1-ts-FRed-Kv2.1, RRID:IMSR_JAX:033089). Five 397 

Drd1-Cre;GtACR1 (2 M, 3 F) and eight Adora2a-Cre;GtACR1 (4 M, 4 F) mice were used. All 398 

transgenic mice used for experiments were backcrossed with C57BL/6J and heterozygous for the 399 

relevant allele(s). 400 

Animals were housed on a 12 hr dark/12 hr light cycle and performed the task at the same time 401 

each day (± 1 hour), during the dark period. Ambient temperature was kept at 75 ± 5°F, and 402 

humidity was kept below 50%. Animals were group-housed (2–5 animals/cage) until surgery, 403 

then individually housed throughout training and testing. All procedures were performed in 404 

accordance with the National Institutes of Health Guide for the Care and Use of Laboratory 405 

Animals and approved by the Harvard Institutional Animal Care and Use Committee (IACUC).  406 

Surgeries 407 

All surgeries were performed under aseptic conditions. Mice (> 8 weeks old) were anesthetized 408 

with isoflurane (3.5% induction, followed by 1–2% maintenance at 1 L/min), and local 409 

anesthetic (lidocaine, 2%) was administered subcutaneously at the incision site. Analgesia 410 

(buprenorphine for pre-operative treatment, 0.1 mg/kg, intraperitoneal (i.p.); ketoprofen for post-411 

operative treatment, 5 mg/kg i.p.) was administered for two days after surgery. After leveling, 412 

cleaning, and drying the skull, we affixed a custom-made titanium head plate to the skull with 413 

adhesive cement20 (C&B Metabond, Parkell). 414 

For all injections, the solution (6-OHDA or virus) was backfilled into a pulled glass pipette 415 

(Drummond, 5-000-1001-X), followed by mineral oil and a plunger. A small craniotomy (< 1 416 

mm diameter) was made using a dental drill, and then the pipette assembly was mounted on the 417 

stereotaxic holder, lowered to the desired coordinate, and injected slowly (~100 nL/min) to 418 

minimize damage to the surrounding tissue (Narishige, MO-10). After each injection, we waited 419 

at least 10 minutes to allow the solution to diffuse away from the pipette tip before slowly going 420 
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up to the next coordinate or retracting the pipette from the brain. Target coordinates (in mm) for 421 

the lAcbSh were the same across experiments: AP 1.1 from bregma, ML 1.7, and DV 4.2 from 422 

the pial surface. 423 

6-OHDA procedure 424 

To unilaterally ablate dopamine neurons projecting to lateral ventral striatum, we followed an 425 

existing protocol52,145. The following solution was injected (i.p.) into animals at 10 mg/kg prior 426 

to surgery: 427 

● 14.25 mg desipramine (Sigma-Aldrich, D3900-1G) 428 

● 3.1 mg pargyline (Sigma-Aldrich, P8013-500MG) 429 

● 5 mL distilled water 430 

Most animals (weighing ~25 g) received ~250 μL of this solution, which was given to prevent 431 

dopamine uptake in noradrenaline neurons and to increase the selectivity of update by dopamine 432 

neurons. We additionally prepared a solution of 10 mg/mL 6-hydroxydopamine (6-OHDA; 433 

Sigma-Aldrich, H116-5MG) and 0.2% ascorbic acid in saline (0.9% NaCL; Sigma-Aldrich, 434 

PHR1008-2G). The ascorbic acid in this solution helps prevent 6-OHDA from breaking down. 435 

The control hemisphere was either injected with vehicle ascorbic acid solution or uninjected; we 436 

observed no differences between these groups and so combined them. To further prevent 6-437 

OHDA from breaking down, we kept the solution on ice, wrapped in aluminum foil, and used it 438 

within three hours of preparation. If the solution turned brown during this time (indicating that 6-439 

OHDA had broken down), it was discarded and a fresh solution was made. 225 nL 6-OHDA (or 440 

vehicle) was injected unilaterally into lAcbSh. 441 

Surgeries occurred at least 1 week before the start of behavioral training. We lesioned nine 442 

animals and included control hemisphere data for all of them in the main dataset. However, four 443 

of these animals either died before we could record from the lesioned hemisphere or were not 444 

correctly targeted for the lesion and/or recording, and so were excluded from the lesion dataset. 445 

Viruses 446 

To express constructs specifically in D1 or D2 MSNs, we injected viruses into Drd1-Cre and 447 

Adora2a-Cre mice. For imaging experiments, we unilaterally injected 450 nL AAV9-hSyn-flex-448 

GCaMP7s (≥ 1×10¹³ vg/mL, Addgene)107 into lAcbSh. For optogenetic activation experiments, 449 

we bilaterally injected AAV9-hSyn-flex-CoChR-GFP (5.1 x 1012 vg/mL, UNC Vector Core, 450 

NC)109 at AP 1.1, ML ±1.7 in 300 nL increments at four separate depths below the pial surface: 451 

4.2, 3.4, 2.6, and 1.8.  452 

GRIN lens and fiber implantations 453 

Prior to GRIN lens surgery we injected animals i.p. with 50 μL dexamethasone (2 mg/mL; 454 
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Vedco) to reduce inflammation. Before virus injection, a needle was mounted on the stereotaxic 455 

holder, connected to light suction, and lowered to 3.4 mm below the pial surface to gently 456 

aspirate away the overlying brain tissue. After virus injection, a singlet GRIN lens (0.5 NA, 0.6 457 

mm diameter, 7.3 mm length, 0 – 200 µm WD, 3/2 pitch, Inscopix, 1050-004597) was mounted 458 

onto a stereotaxic cannula holder (Doric) and then slowly lowered over at least 30 minutes to its 459 

target depth, 200 μm above the injection site and 3.8 mm below the pial surface. Metabond was 460 

used to secure the GRIN lens on all sides and allowed to dry completely before removing the 461 

cannula holder and covering everything with another layer of Metabond mixed with charcoal 462 

powder to block out light. Lastly, a plastic cap was attached with Kwik-Cast (World Precision 463 

Instruments) to protect the lens from damage. 464 

For optogenetic manipulation, we bilaterally implanted tapered fibers (0.66 NA, 200 μm 465 

diameter, 3 mm emitting length, 5 mm implant length; Optogenix) in the lAcbSh after virus 466 

injection, at a depth of 4 mm. Each fiber was secured using Metabond and then protected with a 467 

fitted cap. 468 

Behavior setup and tasks 469 

Behavioral events were controlled (and licking was monitored) using custom-written software in 470 

MATLAB (Mathworks, Natick, MA) and the Bpod library (Sanworks, Rochester, NY) 471 

interfacing with the Bpod state machine (Sanworks, 1024 and 1027), valve module (Sanworks, 472 

1015), and port interface board (Sanworks, 1020)/water valve (Lee Company, LHDA1233115H) 473 

assembly. Odors were delivered using a custom olfactometer146, which directed air through one 474 

of eight solenoid valves (Lee Company, LHDA1221111H) mounted on a manifold (Lee 475 

Company, LFMX0510528B). Each odor was dissolved in mineral oil at 10% dilution, and 30 μL 476 

of diluted odor solution was applied to a syringe filter (2.7 μm pore, 13 mm diameter; Whatman, 477 

6823-1327). Wall air was passed through a hydrocarbon filter (Agilent Technologies, HT200-4) 478 

and split into a 100 mL/min odor stream and 900 mL/min carrier stream using analog flowmeters 479 

(Cole-Parmer, MFLX32460-40 and MFLX32460-42), which were recombined at the odor 480 

manifold before being delivered to the animal’s nose. Licking was monitored using an infrared 481 

emitter-photodiode pair positioned just in front of the plastic lick spout, positioned at the 482 

animal’s mouth.  483 

Animals used for Neuropixels recording and 2-photon imaging were conditioned with six 484 

different neutral odors, chosen at random from these seven: isoamyl acetate, p-cymene, ethyl 485 

butyrate, (S)-(+)-carvone,  (±)-citronellal,  α-ionone, and L-fenchone. Optogenetic manipulation 486 

animals used only the first three. In all experiments, the mapping between physical odor and 487 

conceptual trial type was randomized across mice. Each trial began with a 1 s odor presentation, 488 

followed by 2 s trace period and then reward delivery. There was a minimum of 4.6 s before the 489 

next trial (4.1 s for optogenetic manipulation animals), plus a variable ITI drawn from a 490 

truncated exponential distribution with a mean of 2 s, minimum of 0.1 s, and maximum of 10 s. 491 
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For 2-photon imaging experiments, this was extended to a mean of 10.5 s, minimum of 6.5 s, and 492 

maximum of 18.5 s to account for the slower kinetics of the calcium indicator relative to 493 

electrophysiology. 494 

The recording task consisted of three different reward distributions, Nothing, Fixed, and Variable 495 

(Fig. 1b). Each distribution was then paired with two unique odors, for a total of six odors. The 496 

distributions were as follows: 497 

● Nothing: 100% chance of 0 μL water 498 

● Fixed: 100% chance of 4 μL water 499 

● Variable: 50% chance of 2 μL water; 50% chance of 6 μL water 500 

The task used for optogenetic manipulation was simplified in two ways. First, we used only one 501 

odor per distribution, for a total of three odors. Second, we modified the Variable distribution to 502 

be 50/50% between 0 and 8 μL, because our model predicted that increasing the variance would 503 

lead to a greater behavioral difference between Fixed and Variable odors. 504 

Behavior training 505 

Water restriction began no earlier than 5 days after recovery from surgery. Animals’ condition 506 

was monitored daily to ensure that mice did not dip below 85% of their free-drinking body 507 

weight, including supplementing with additional water after the task to bring their total daily 508 

intake to ~1.2 mL. Over the course of three successive habituation days, mice were (1) handled 509 

gently for several minutes in their home cage, (2) permitted to freely roam around the platform in 510 

the behavior rig to collect water and then (3) head-fixed while receiving frequent (inter-reward 511 

interval 4-5 s) 6 μL water rewards. 512 

The optogenetic manipulation task proceeded in only one phase, with up to 110 Nothing, 110 513 

Fixed, and 114 Variable trials, randomly interleaved. By contrast, training for the recording task 514 

took place in three phases, each with a maximum of 300 trials. 515 

● In Phase 1, mice experienced both Nothing odors and both Fixed odors with equal 516 

probabilities 517 

● In Phase 2, mice experienced all six odors, but with the Variable odors 5.5x more 518 

frequent than the others 519 

● In Phase 3, mice experienced all six odors at the final ratio of 4:4:7 520 

(Nothing:Fixed:Variable), to increase the statistical power for analyzing responses to 521 

different reward sizes 522 

On recording days, animals experienced a maximum of 20 additional Unexpected reward trials, 523 

in which 4 μL of water was delivered without being preceded by an odor cue. All trials were 524 

randomly interleaved in all phases. 525 
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For both tasks, animals completed at least 150 trials per day, and almost always more than 250. 526 

The experiment might be terminated early by the experimenter if the animals stopped licking in 527 

anticipation (or consumption) of the rewards due to satiety. A behavior session was considered 528 

“significant” if the lick rate during the last half second prior to reward delivery was significantly 529 

different between Rewarded (Fixed and Variable) and Unrewarded (Nothing) odors (Mann-530 

Whitney U test, α = 0.05) and the effect size was at least 0.75 licks/s. Animals were advanced to 531 

the next phase, or to habituation for recording/manipulation, after at least two consecutive days 532 

with significant behavior. On recording/manipulation days, only significant behavior sessions 533 

were included for neural or behavioral analysis. 534 

Neuropixels recordings 535 

The day before recording, animals were habituated to the recording setup by covering their heads 536 

with a plastic sheet to block their view of the probe and manipulator. We then turned on the 537 

lamp, ran the brushed motor controller (Thorlabs, KDC101 and Z825B) up and down several 538 

times, tapped on the skull several times with fine forceps, and left the animal head-fixed for at 539 

least 30 mins before beginning the behavioral protocol. If necessary, we repeated this habituation 540 

protocol every day until the animal’s behavior was significant (see “Behavioral training” above). 541 

After this, we anesthetized the animal to make a small craniotomy, which was then covered with 542 

Kwik-Cast. The craniotomy was guided by fiducial marks made at the target sites for probe 543 

insertion during headplate implantation using a fine-tipped pen. Target coordinates included: AP 544 

0.9, ML 1.7 (lAcbSh); AP 1.1 ML 1.4 (nucleus accumbens core); and AP 1.4, ML 0.6 (medial 545 

accumbens shell, mAcbSh). For the first craniotomy, a ground pin was inserted into the posterior 546 

cortex and a custom-made plastic recording chamber was fixed to the top of the headplate, both 547 

using five-minute epoxy (Devcon). 548 

The next day, we head-fixed the mouse, covered its head as before, removed the Kwik-Cast, and 549 

flushed the craniotomy with saline. For the first recording in each craniotomy, we coated the 550 

probe in lipophilic dye at 10 mg/mL. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 551 

perchlorate, Sigma-Aldrich, 42364-100MG) and DiD (1,1′-dioctadecyl-3,3,3′,3′- 552 

tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate, Biotium, 60014-10mg) were 553 

dissolved in 100% ethanol (Koptec, V1001), and DiO (3,3'-dioctadecyloxacarbocyanine 554 

perchlorate, ThermoFisher, D275) was dissolved in 100% N,N-dimethylformamide (Sigma-555 

Aldrich, D4254). The coated Neuropixels 1.0147 or four-shank Neuropixels 2.0148 probe was then 556 

mounted on the manipulator, and connected to the ground pin via a wire soldered onto the 557 

reference pad and shorted to ground. In the event the external reference was unstable, we used tip 558 

referencing instead. All recordings were performed in SpikeGLX software 559 

(https://github.com/billkarsh/SpikeGLX) with sampling rate = 30 kHz, LFP gain = 250, and AP 560 

gain = 500, and we analyzed only the AP channel (which was high-pass filtered in hardware with 561 

a cutoff frequency of 300 Hz). 562 
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We inserted the probe into the brain at 9 μm/s before slowing to 2 μm/s when we were 500 μm 563 

above the target depth. We stopped insertion when we saw ventral pallidal activity, characterized 564 

by large-amplitude, high-frequency spikes, on the first 40 channels or so (or 5 channels for 565 

Neuropixels 2.0). This point was usually reached around 5.2 mm below the visually-identified 566 

pial surface. After reaching the target depth, the probe was allowed to settle for 30 minutes prior 567 

to starting the experiment and Neuropixels recording. Behavioral and neural recordings were 568 

synchronized using a TTL pulse sent from the Bpod to the PXIe acquisition module SMA input 569 

at the start of every trial. After the experiment, the probe was retracted at 9 μm/s and the 570 

craniotomy was re-sealed with Kwik-Cast. Neuropixels data were spike sorted offline with 571 

Kilosort 3149 with default parameters, followed by manual curation in Phy 572 

(https://github.com/cortex-lab/phy). 573 

Two-photon imaging 574 

Imaging data were acquired using a custom-built two-photon microscope. A resonant scanning 575 

mirror and galvanometric mirror (Cambridge Technology, CRS 8 KHz and 6210H) separated by 576 

a scan lens-based relay on the scan head (Thorlabs, MM201) allowed fast scanning through a 577 

dichroic beamsplitter (757 nm long-pass, Semrock) and 20x/0.5 NA air immersion objective lens 578 

(Nikon, Plan Fluor). Green and red emission light were separated by a dichroic beamsplitter (568 579 

nm long-pass, Semrock) and bandpass filters (525/50 and 641/75 nm, Semrock) and collected by 580 

GaAsP photomultiplier tubes (Hamamatsu, H7422PA-40) coupled to transimpedance amplifiers 581 

(Thorlabs, TIA60). A diode-pumped, mode-locked Ti:sapphire laser (Spectra-Physics) delivered 582 

excitation light at 920 nm with an average power of ~60 mW at the top face of the GRIN lens150, 583 

modulated by a Pockels cell (Conoptics, 350-80). The microscope was controlled by ScanImage 584 

(Version 4; Vidrio Technologies). The behavior platform was mounted on an XYZ translation 585 

stage (Thorlabs, LTS150 and MLJ050) to position the mouse under the objective, and the top 586 

face of the GRIN lens was first located using a 470 nm LED (Thorlabs, M470L2). 587 

Due to the limited axial resolution of the implanted GRIN lens, we acquired only a single 588 

imaging plane at 15.2 Hz unidirectionally with 1.4x digital zoom and a resolution of 512 x 512 589 

pixels (~1 μm/pixel isotropic). Imaging was either continuous or triggered 2.6 s before 590 

odor/unexpected reward onset, depending on the session. Bleaching of GCaMP7s was negligible 591 

over this time. TTL pulses were sent from the microscope to Bpod to synchronize imaging and 592 

behavioral data. Imaging typically began ~4 weeks after GRIN implantation, to allow sufficient 593 

time for the virus to express and for inflammation to clear. 594 

Two-photon pre-processing 595 

We used the Suite2p toolbox151 (version 0.10.3) to register frames, detect cells, extract Ca2+ 596 

signals, and deconvolve these traces. We used parameter values of tau=2.0 (to approximately 597 

match the decay constant of GCaMP7f107), sparse_mode=False, diameter=20, high_pass=75, 598 

neucoeff=0.58; fs was set to the measured frame rate for that session (~15.2 Hz), and all other 599 
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parameters were set to their defaults. Briefly, non-rigid motion correction was used in blocks of 600 

128 x 128 pixels to register all frames to a common reference image using phase correlation. Cell 601 

detection consisted of finding and smoothing spatial PCs and then extending ROIs spatially 602 

around the peaks in these PCs. Next, Ca2+ traces were extracted from each ROI after discarding 603 

any pixels belonging to multiple ROIs. Finally, neuropil contamination and deconvolved spikes 604 

were estimated in a single step from Ca2+ fluorescence in each ROI using the OASIS 605 

algorithm152 with a non-negativity constraint. This deconvolved activity was used for all 606 

subsequent analysis. ROIs were manually curated on the basis of anatomical and functional 607 

criteria using the Suite2p GUI to exclude neuropil and ROIs with few or ill-formed transients. 608 

Face and body imaging 609 

In addition to the lick port, we monitored behavior using two cameras at 30 Hz, one pointed at 610 

the face (PointGrey, FL3-U3-13Y3M) and one pointed at the body (PointGrey, CM3-U3-13S2C) 611 

under both visible and infrared LED illumination. Cameras were synchronized from Bpod once 612 

per trial using GPIO inputs, and data were written to disk via Bonsai153. Behavioral features were 613 

extracted using custom code alongside Facemap92 (version 0.2.0). Face motion energy was 614 

computed as the absolute value of the difference between consecutive frames and summed across 615 

all pixels to yield the “whisking” signal. In addition, we performed singular value decomposition 616 

(SVD) on the motion energy video (in chunks, following ref.92) and projected the movie onto the 617 

top 50 components to obtain their activity patterns over time. Pupil area was estimated simply as 618 

the mean (inverse) pixel value within a mask, after interpolating over blink events. Running was 619 

computed using the phase correlation of the cropped body video, to take into account limb and 620 

tail movements. 621 

Optogenetic manipulation 622 

473 nm laser light (Laserglow Technologies, LRS-0473-GFM-00100-03) was delivered to the 623 

implanted tapered fibers using a custom-built rig (modeled after refs.154,155) coupled to a high-624 

performance patch cord (0.66 NA, Plexon, OPT/PC-FC-LCF-200/230-HP-2.2L KIT). Briefly, 625 

light was split into two identical paths using a 50/50 beamsplitter cube (Thorlabs, CCM1-626 

BS013). Each path was then focused onto a galvanometric mirror (Novanta 6210K) and re-627 

collimated using an achromatic doublet (Thorlabs, AC508-100-A-ML), before being focused 628 

onto the back of the patch cord using an aspheric condenser lens (Thorlabs, ACL50832U). This 629 

setup allowed us to modulate the angle at which light entered the patch cord, and thus the 630 

distance at which it exited the tapered fiber. We delivered light at two different angles (three in 631 

some experiments), but here we analyze only ventral manipulation trials, in which the incident 632 

angle of light was ~0°, light exited near the tip of the fiber, and coupling between the patch cord 633 

and fiber was approximately 50%154. 634 

The laser output (and the angle of the galvanometric mirrors) was controlled by Bpod via 635 

PulsePal156 (Version 2; Sanworks, 1102). Stimulation was delivered bilaterally during the two 636 
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second-long trace period, immediately prior to reward. For CoChR excitation experiments, we 637 

used 10 ms pulses at 20 Hz with an output power at the tapered fiber of 100 μW. For GtACR1 638 

inhibition, we used a constant, 1 mW pulse for the full 2 seconds. In both cases, stimulation was 639 

delivered on 45.5% of trials, uniformly at random across manipulation locations and trial types. 640 

Histology and immunohistochemistry 641 

Mice were deeply anesthetized with ketamine/dexmedetomidine (80/1.1 mg/kg) and then 642 

transcardially perfused using 4% paraformaldehyde. The brains were sliced at 100 μm into 643 

coronal sections using a vibratome (Leica) and stored in PBS. If performing immunostaining, 644 

slice thickness was 75 μm. These slices were then permeabilized with 0.5% triton X-100, 645 

blocked with 10% FBS, and stained with rabbit anti-tyrosine hydroxylase antibody (TH; AB152, 646 

EMD Millipore, RRID: AB_390204) at 1:750 dilution at 4°C for 24 hours to reveal dopamine 647 

axons in the striatum. Next, slices were stained with fluorescent secondary antibodies (Alexa 648 

Fluor 488 goat anti-rabbit secondary antibody, A-11008, Invitrogen, RRID: AB_143165) and 649 

DAPI at 1:500 dilution at 4°C for 24 hours. Slices were then mounted on glass slides 650 

(VECTASHIELD antifade mounting medium, H-1000, or with DAPI for non-stained slices, H-651 

1200, Vector Laboratories) and imaged using Zeiss Axio Scan Z1 slide scanner fluorescence 652 

microscope. We visually verified the placement of all GRIN lenses and fibers to be within the 653 

lAcbSh. 654 

Data Analysis 655 

Atlas registration 656 

For electrophysiology experiments, we registered slices to the Allen Mouse Brain Atlas with 657 

SHARP-Track157 and used it to trace dyed probe trajectories in the AP and ML directions as well 658 

as visualize the registered trajectories as a coronal stack. We also used this registration to define 659 

the unique DV extent of each mouse’s lateral ventral striatal 6-OHDA lesion, and we considered 660 

only neurons that fell within this range to have been lesioned. To more accurately ascertain the 661 

depth of recordings, we used the International Brain Lab’s Ephys Atlas GUI 662 

(https://github.com/int-brain-lab/iblapps/tree/master/atlaselectrophysiology), focusing on the 663 

boundary between the ventral pallidum and nucleus accumbens due to the abrupt change in 664 

electrophysiological characteristics at this interface. When necessary, we also adopted their 665 

convention that in Allen Common Coordinate Framework158 (CCF) coordinates, bregma = 5400 666 

AP, 332 DV, and 5739 ML. For plotting probe trajectories in 3D, we used the Brainrender 667 

library159.  668 

For more fine-grained analysis of subregions, we used the Kim Lab atlas160 accessed through the 669 

BrainGlobe Atlas API161. This atlas applies the Franklin and Paxinos162 labels to the Allen 670 

CCF158, with additional striatal subregions defined by Hintiryan et al.163. For some subregions, 671 

the parcellation was finer than we needed, so we pooled subregions as follows: 672 
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● Olfactory tubercle (OT): Tu1; Tu2; Tu3 673 

● Ventral pallidum (VP): VP 674 

● Medial nucleus accumbens shell (mAcbSh): AcbSh 675 

● Lateral nucleus accumbens shell (lAcbSh): lAcbSh; CB; IPACL 676 

● Nucleus accumbens core (core): AcbC 677 

● Ventromedial striatum (VMS): CPr, imv; CPi, vm, vm; CPi, vm, v; CPi, vm, cvm 678 

● Ventrolateral striatum (VLS): CPr, l, vm; CPi, vl, imv; CPi, vl, v; CPi, vl, vt; CPi, vl, cvl 679 

● Dorsomedial striatum (DMS): CPr, m; CPr, imd; CPi, dm, dl; CPi, dm, im; CPi, dm, cd; 680 

CPi, dm, dt 681 

● Dorsolateral striatum (DLS): CPr, l, ls; CPi, dl, d; CPi, dl, imd 682 

Unit inclusion criteria 683 

To be included for analysis, units from Neuropixels recordings had to have a minimum firing 684 

rate of 0.1 Hz and to have been stable, defined as a coefficient of variation of firing rate 685 

(computed in 10 equally-sized, contiguous, disjoint blocks during the session) less than 1. 13,997 686 

single units survived these inclusion criteria in the main dataset. In the lesion dataset, we 687 

additionally filtered neurons by their DV position: only those that fell within the DV range of the 688 

lesion were included in the matched control dataset for that mouse. Of the 9,081 neurons that 689 

survived the electrophysiological criteria, 4,879 were in the correct anatomical location, of which 690 

2,283 came from the control and 2,596 came from the lesioned hemisphere. 691 

Putative cell type identification 692 

We assigned units to putative cell types using previously-established criteria164. Briefly, to be 693 

considered MSNs, units were required to have broad waveforms (Kilosort template trough-to-694 

peak waveform duration > 400 μs) and post-spike suppression ≤ 40 ms. For the latter, we used 695 

the autocorrelation function with a bin width of 1 ms. Post-spike suppression was quantified as 696 

the duration for which the autocorrelation function was less than its average during lags between 697 

600–900 ms. 698 

Statistical software 699 

All statistical analysis, except where explicitly stated, was performed in Python using the NumPy 700 

(v. 1.22.3), SciPy (v. 1.7.3), pandas (v. 1.1.4), scikit-learn (v. 1.0.2), statsmodels (v. 0.14.0), 701 

Matplotlib (v. 3.5.1), and seaborn (v. 0.12.2) packages165–171. If not otherwise specified, 702 

statistical tests used Linear Mixed Effects models (LMEs) with a random intercept for each 703 

mouse, and, if applicable, a random slope for each mouse as a function of grouping (e.g. Across- 704 

vs. Within-distribution), implemented in statsmodels. All reported p-values are two-tailed. 705 

Units of analysis 706 
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For the behavior, control and manipulation datasets (Figs. 1, 2, 3, and 6), each observation was 707 

an individual session — that is, we used simultaneously-recorded neurons and behavior and 708 

computed effects (PCA, RDA, parallelism score, classification) on a session-by-session basis. 709 

However, given the limited spatial extent of our lesion and our lower number of simultaneously-710 

recorded neurons, for the lesion dataset (Fig. 4) we used pseudo-populations. More specifically, 711 

we created pseudo-populations by splitting the dataset into disjoint sets of trials172, which were 712 

stitched across sessions, but not across animals. Within each session, we used simultaneously-713 

recorded trials across neurons to preserve noise correlations where possible. For these LMEs 714 

then, pseudo-populations provided the observations and mouse was again the grouping variable. 715 

The same procedure was used for all subregion-specific analyses (Extended Data Figs. 2d, 3e, 716 

6a-d) and ANN-based decoding (Extended Data Fig. 7a-d) due to the lower number of 717 

simultaneously-recorded neurons available for these analyses. 718 

For the imaging dataset (Fig. 5) and ANN-based transfer (Extended Data Fig. 7e-f), we did not 719 

have enough neurons in all animals to assess distributional coding. We therefore pooled neurons 720 

not only across sessions but also across animals within genotype. Pseudo-populations were 721 

otherwise constructed exactly as in the lesion case. To be consistent with the parametric nature of 722 

LMEs while recognizing that observations were no longer specific to individual mice, we used 723 

one sample t-tests to assess statistical significance relative to chance levels and LMEs (with just 724 

one observation per group) to assess differences between groupings. 725 

The only exception to these choices was when computing the fraction of cells significantly 726 

encoding each variable of interest (mean, reward, RPE, etc.), or their conjunction. In this case, 727 

we always pooled across-sessions within-mouse, since we were computing a single fraction, and 728 

used paired samples t-tests between data and shuffled fractions (or actual combined cells versus a 729 

prediction assuming independence). 730 

Time periods for analysis 731 

In general, we analyzed behavioral and neural data during the Late Trace period, 1–0 s before 732 

reward delivery. However, for odor decoding, we used the Odor period (0–1 s after odor onset), 733 

and reward or RPE we used the Outcome period (0–1 s after reward delivery). Neural and 734 

behavioral data were averaged within these 1 s periods before analysis, with the exception of 735 

plots of classification or regression time courses, in which averages within non-overlapping 250 736 

ms bins were used.  737 

Visualization of neural time courses 738 

For smoothed plots of neural time courses (Figs. 1f, g; 2a; 5d, g; Extended Data Fig. 2b, 10a-b), 739 

we smoothed neural activity (spike trains or deconvolved activity traces) with a Gaussian kernel 740 

(s.d. 100 ms) before plotting or reducing dimensionality. Z-scored firing rates were computed 741 

using the mean and standard deviation of this smoothed trace. PCA time courses (Fig. 1g) were 742 
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extracted by computing the average normalized, smoothed firing rate for each trial type and 743 

concatenating these into a 2D matrix of shape N✕(T✕6), where N is the number of neurons, T is 744 

the number of time points per trial, and 6 corresponds to the six possible odors. PCA was then 745 

performed and the time courses were reconstructed separately for each of the six odors. All other 746 

analyses used unsmoothed data so as to not be contaminated by later time points. 747 

Principal component analysis and representational dissimilarity analysis 748 

For two-dimensional PC plots, normalized activity during the Late Trace period was averaged 749 

across trials within a given type to produce a matrix of shape N✕6. We then applied PCA to 750 

reduce this matrix to shape 2✕6, having retained only the top 2 PCs. Results were qualitatively 751 

identical when using all neurons or only putative MSNs for the main dataset (Fig. 2). We report 752 

Euclidean distances between projected trial types, measured separately along each PC. RDA was 753 

similar, except that we computed cosine distances in the native (pseudo-)population normalized 754 

firing rate space, rather than a lower-dimensional projection. 755 

Parallelism score 756 

Following ref.96, we computed the normalized mean firing rate in response to each of the Fixed 757 

and Variable odors. There are two possible ways to pair up these four odors: (1) Fixed 1 vs. 758 

Variable 1 and Fixed 2 vs. Variable 2, or (2) Fixed 1 vs. Variable 2 and Fixed 2 vs. Variable 1. In 759 

both cases, we can compute difference vectors pointing from Variable to Fixed (Fig. 2g) and 760 

then take the cosine similarity between them. The parallelism score we report is simply this 761 

cosine similarity, averaged over the two possible divisions. Note that in the case of isotropic 762 

noise, the vectors that we define are equivalent to those defined by a maximum-margin linear 763 

classifier between the two conditions. However, high parallelism score does not necessarily 764 

imply high cross-condition generalization performance (CCGP)  — for example, if the test 765 

conditions are much closer together than the training conditions, the noise is high and/or 766 

anisotropic, or the coding directions for different variables are not orthogonal (e.g. arranged as a 767 

parallelogram rather than a rectangle). 768 

Classification 769 

For both behavioral and neural binary classification, we used a support vector classifier (SVC) 770 

with a linear kernel, hinge loss function, L2 penalty, balanced accuracy scoring across classes, 771 

and regularization parameter 5 x 10-3, implemented in scikit-learn. The linear kernel allows for 772 

easy interpretation of the learned weights. Input data (unnormalized spike counts, lick counts, or 773 

mean Facemap predictors) were transformed using StandardScaler (computed on training data) 774 

before being fed to the classifier.  775 

We ran five different classification analyses: CCGP96, pairwise decoding, congruency, mean, and 776 

odor, as described in the Main Text and figure legends. Across-distribution and within-777 
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distribution results were just the average over the relevant dichotomies (e.g. the four possible 778 

ways to set up CCGP). For all simultaneous decoding analyses except for CCGP, five cross-779 

validation folds were used, and reported classification accuracy was the average over these five 780 

folds. For CCGP, cross-validation was unnecessary because training and test sets were fully 781 

disjoint already. Similarly, for pseudo-population based decoding (Figs. 4–5), 5 training sets and 782 

1 disjoint test set were used in all cases. For six-way odor classification, we used multinomial 783 

logistic regression rather than SVC, again with a regularization parameter of 5 x 10-3 and 784 

balanced accuracy scoring across classes. 785 

Cross-temporal decoding (Extended Data Fig. 3d, 5h-j) settings were identical to the above. For 786 

the odor, pairwise, and congruency analyses, we ensured that the same trial never appeared in 787 

both the training and testing sets, despite the different time windows used, to avoid leakage due 788 

to temporal autocorrelation. For CCGP, train and test trials were always different, so this was not 789 

a concern.  790 

Cosine similarity to classification boundary 791 

Both linear classification and regression find a high-dimensional weight vector in neural state 792 

space; computing the cosine similarity between these vectors can identify whether two analyses 793 

are honing in on the same or different features. For each session, in addition to performing 794 

classification as described above, we regressed input data (unnormalized spike counts, lick 795 

counts, or mean Facemap predictors) during the same time period against per-trial mean or 796 

variance (using StandardScaler followed by RidgeCV with default scikit-learn parameters). Note 797 

that the regression uses all six trial types, while the classification is limited to looking at only two 798 

(pairwise or CCGP) or four (congruency or mean) odors at a time. We then took the weights 799 

learned by each regression and computed the cosine similarity with the classification weights 800 

(separately for each of the five classification cross-validation folds for non-CCGP decoders; each 801 

session was summarized as the average of these five measurements). We report the results of an 802 

LME testing either the difference from a chance value of 0, indicating orthogonality (CCGP), or 803 

the difference between the absolute cosine similarities for across- and within-distribution 804 

decoders (pairwise and congruency; Extended Data Fig. 5f-g). 805 

Distribution-coding subpopulation 806 

To identify neurons that contributed significantly to distribution decoding, we extracted the 807 

coefficients from each session’s CCGP, pairwise, and congruency decoders and averaged them 808 

across dichotomies (and across cross-validation folds if necessary). For the pairwise and 809 

congruency analyses, we additionally took the difference between Across- and Within-810 

distribution coefficients. For each quantile level (computed on each set of coefficients 811 

individually for each mouse and each decoder), we then calculated the fraction of neurons above 812 

this quantile level for all three decoders compared to null decoders in which trial types had been 813 

shuffled before being run through the decoder. We chose a cutoff such that only 2.5% of these 814 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.573966doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.02.573966
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

cells from the null decoders survived; for the actual data, this corresponded to 1,600 significant 815 

distribution-coding neurons, or 11.43% of the total. We refer to these neurons as the 816 

“distribution-coding subpopulation” (Extended Data Fig. 6e-f, 7). 817 

Percentage of significant cells 818 

To compute correlations with different variables of interest, we calculated the trial-wise Pearson 819 

correlation between unsmoothed activity in a given bin and the value of the variable of interest 820 

on that trial. We then did the same thing, except that for each neuron independently we shuffled 821 

the mappings between odor and distribution. For example, when considering correlations with 822 

mean value, a Fixed 1 trial would correspond to a mean of 4 (μL). If upon shuffling, Fixed 1 823 

odors were mapped to Nothing 2, then the corresponding mean in the shuffled dataset would be 824 

0. Percentages of cells significantly correlating with variables of interest (positively, negatively, 825 

or without restriction) were averaged over the four 250 ms bins corresponding to the Late Trace 826 

period, and then we subtracted the shuffled from the unshuffled fraction to account for odor 827 

coding. 828 

Changes relative to Baseline 829 

In order to assess changes in neural activity relative to the Baseline period, we first grouped all 830 

Unrewarded (Nothing) and Rewarded (Fixed and Variable) trials for each neuron. We then ran a 831 

rank-sum test between Late Trace activity and Baseline activity, separately on each neuron and 832 

trial type grouping. Finally, we computed the fraction of cells per mouse that increased or 833 

decreased significantly (α = 0.05) and then ran paired t-tests on the respective fractions for 834 

Rewarded versus Unrewarded trials types. 835 

Comparisons across subregions, hemispheres, and genotypes 836 

Whenever subregions, hemispheres, or genotypes were directly compared, we randomly 837 

subsampled the number of neurons so that population sizes were identical across this 838 

comparison. For subregion and hemisphere (lesioned vs. control), this matching was done 839 

within-animal. When comparing subregions, we excluded a subregion from an animal if it did 840 

not contain at least 40 neurons, hence the differing number of dots (animals) per subregion 841 

(Extended Data Fig. 2e, 3e, 6a-d, 6f. For genotype (D1 vs. D2 MSNs), matching was done 842 

across-animals, for the entire population of D1 or D2 neurons. To allow for higher neuron 843 

counts, all of these decoding analyses were performed on pseudo-populations.   844 

Artificial neural network-based distribution decoding 845 

To determine whether neural populations contained sufficient information to reconstruct the 846 

complete reward distribution, rather than simply perform binary classification based on reward 847 

variance, we constructed an artificial neural network (ANN)-based distribution decoder. Pseudo-848 
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population activity from the distribution-coding subpopulation r was first mapped into 16 849 

dimensions by a trainable, unregularized decoding matrix W. The network takes Wr as input and 850 

outputs the predicted distribution. It has one input layer, two hidden layers, and one output layer. 851 

Each of the two hidden layers had 32 neurons and used the non-linear activation function 𝑓(𝑥) =852 

𝑙𝑛(1 + 𝑒𝑥𝑝(𝑥 + 1)) − 1, which is close to the identity function for x >> 0 and to –1 for x << 0. 853 

The output layer had size 4, with each dimension corresponding to a possible reward size (0, 2, 854 

4, or 6 μL). After linear combination, we also applied the nonlinear function f(x) as specified 855 

above, followed by the softmax function to turn the output into a normalized probability 856 

distribution. 857 

We applied stochastic gradient descent (SGD) to minimize the following loss function based on 858 

the 1-Wasserstein distance (D): 859 

𝐿(𝑊, 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) = ⟨𝐷(𝑑𝑒𝑐𝑜𝑑𝑒𝑑_𝑑𝑖𝑠𝑡, 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ_𝑑𝑖𝑠𝑡)⟩ + 𝜆||𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑤𝑒𝑖𝑔ℎ𝑡𝑠||2
2, 860 

where D is defined as 𝐷(𝑃, 𝑄) = ∑ |𝑃(𝑟𝑛) − 𝑄(𝑟𝑛)|𝑛  for discrete cumulative distribution 861 

functions (CDFs) P and Q, where the sum is over all used reward magnitudes, and where rn is the 862 

respective reward magnitude. In other words, the 1-Wasserstein distance measures the unsigned 863 

area between two CDFs. For plotting, we normalized this metric by dividing by the minimum 864 

achievable Wasserstein distance that would result from predicting the same distribution for every 865 

trial type across the training and test sets (“Wasserstein distance relative to reference”). 866 

For all experiments, λ was set to 0.02 and the learning rate was 0.002. All the trainable weights 867 

were randomly initialized with a mean of 0 and standard deviation of 1, and then divided by 15. 868 

For each disjoint pseudo-population, we trained each of 5 candidate ANNs initialized randomly 869 

and differently for 1,200 iterations, and picked the best-performing one to further train for 870 

10,000 iterations. The ANN was implemented in Julia (v. 1.6.7) and trained on a GPU (NVIDIA, 871 

GeForce RTX 2070). 872 

In the standard decoding setting, all six trial types were included in the training and testing sets 873 

(with different trials in each). For decoding restricted to trial types with the same mean, only 874 

Fixed and Variable trial types were used, but split according to the same logic. In both cases, we 875 

performed decoding independently from each mouse, and we compared our results to what 876 

happened when we randomly shuffled the odor-distribution mappings before training. If merely 877 

odor identity (or, in the restricted case, mean) is encoded, then the ordered and shuffled networks 878 

should attain similar performance. 879 

Finally, in the transfer analysis, in a similar spirit to CCGP, we trained on only four trial types 880 

and then tested on the held-out two trial types. “Matched” transfers used one Fixed and one 881 

Variable odor in the training set, assigned to the proper distribution, and evaluated performance 882 

on the corresponding test odor. “Mismatched” transfers used either two Fixed or two Variable 883 

odors in the training set, assigning one to each distribution, and evaluated performance on the 884 
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held-out odors, again assigning one to each distribution. Nothing trial types were always 885 

assigned to Nothing distributions. To gain statistical power, we pooled neurons across mice for 886 

these analyses. 887 

Computational Modeling 888 

In this section, we briefly review the theory behind various distributional RL algorithms before 889 

specifying the details of our implementation, for the purpose of comparing the learned code to 890 

neural activity and generating predictions for optogenetic perturbations. All models were trained 891 

for 2,000 trials per distribution. 892 

Reflected expectile distributional RL (REDRL) 893 

EDRL was first put forward as a novel machine learning algorithm76 and later used to explain 894 

dopamine neuron diversity in the mammalian midbrain4. EDRL approximately minimizes the 895 

expectile regression loss function (ER): 896 

𝐸𝑅(𝑉; 𝜇, 𝜏) = 𝔼𝑍~𝜇[[𝜏𝟙𝑍>𝑉 + (1 − 𝜏)𝟙𝑍≤𝑉](𝑍 − 𝑉)2],  897 

where V is the value predictor, μ is the target distribution, Z is a random sample from μ, τ is the 898 

asymmetry, and 𝟙 is the indicator function, which is 1 when the subscript is satisfied and 0 when 899 

it is violated. It is an asymmetrically-weighted squared error loss function; in this sense, it 900 

generalizes the mean (squared error loss, equivalent to the 0.5th expectile) just as quantiles 901 

generalize the median97. 902 

EDRL and REDRL minimize this ER loss function simultaneously for many values of τ, indexed 903 

by i, generally using SGD with respect to the value predictors (or their parameters). This 904 

formulation is sufficiently general that it can be combined with nonlinear function approximation 905 

and temporal difference learning methods, and its effectiveness has been demonstrated on the 906 

suite of Atari video games76. However, for simplicity, here we present the Rescorla-Wagner173 907 

version of the update rule for tabular states, so the random sample from μ reduces to simply the 908 

reward, r. This is the learning rule depicted in Fig. 3: 909 

𝛿𝑖 = 𝑟 −  𝑉𝑖 910 

𝑉𝑖  ← 𝑉𝑖 + 𝛼𝑖
− ⋅ 𝛿𝑖 ,  if  𝛿𝑖 ≤ 0 911 

𝑉𝑖  ← 𝑉𝑖 + 𝛼𝑖
+ ⋅ 𝛿𝑖 ,  if  𝛿𝑖 > 0 912 

For the learning simulations (Fig. 3a), we used α = αi
+ + αi

– = 0.03 and initialized all value 913 

predictors to 2. 914 

In the biological implementation of the REDRL algorithm (Fig. 3d-g), we decompose this update 915 
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into two piecewise linear functions. The first function models dopamine RPEs, which are 916 

allowed to take on different slopes in the positive and negative domains, α′i+ and α′i–. The second 917 

function differs between D1 and D2 MSNs (indexed by m) by a reflection over the y-axis. It 918 

maps changes in dopamine firing into changes in synaptic weights39, which we’ll parameterize 919 

here by βm
 –/+ (equal to 0.75/3 for D1 and 3/0.75 for D2 MSNs for the purpose of Fig. 3).  920 

Composing these functions gives rise to the following update rules: 921 

𝐷1𝑖  ← 𝐷1𝑖 + 𝛼𝑖
′−

⋅ 𝛽𝐷1
− ⋅ 𝛿𝑖 ,  if  𝛿𝑖 ≤ 0 922 

𝐷1𝑖  ← 𝐷1𝑖 + 𝛼𝑖
′+

⋅ 𝛽𝐷1
+ ⋅ 𝛿𝑖 ,  if  𝛿𝑖 > 0 923 

𝐷2𝑖  ← 𝐷2𝑖 − 𝛼𝑖
′−

⋅ 𝛽𝐷2
− ⋅ 𝛿𝑖 ,  if  𝛿𝑖 ≤ 0 924 

𝐷2𝑖  ← 𝐷2𝑖 − 𝛼𝑖
′+

⋅ 𝛽𝐷2
+ ⋅ 𝛿𝑖 ,  if  𝛿𝑖 > 0 925 

Note that D1 and D2 neurons receive unique indices i, so there is no overlap in the idealized 926 

case. As a consequence of the opponent plasticity rule, changes in synaptic weights in D1 and D2 927 

MSNs have opposing effects on the encoded value predictor, modeled simply by the identity 928 

function (for D1 MSNs) or its negation, (for D2 MSNs). Therefore, this update rule becomes 929 

equivalent to the algorithmic rule if we let 𝛼𝑖
− = 𝛼′𝑖

− ⋅ 𝛽𝑚
−  and 𝛼𝑖

+ = 𝛼′𝑖
+ ⋅ 𝛽𝑚

+ . The degree of 930 

optimism or pessimism is parameterized by the dimensionless quantity 𝜏𝑖 =
𝛼𝑖

+

𝛼𝑖
+ + 𝛼𝑖

−, which 931 

ranges from 0 to 1. Importantly, τi uses the net asymmetries learned by the MSNs as opposed to 932 

the asymmetries of the dopamine neurons. Therefore, both the expectile that is learned in the 933 

striatum and the zero-crossing point of the corresponding dopamine neuron are dictated by τi, 934 

which can give rise to multiple dopamine neurons with the same apparent asymmetry but 935 

different zero-crossing points. This stands in contrast to the EDRL model, in which the dopamine 936 

neuron asymmetries alone fully determine the zero-crossing point, but nonetheless predicts the 937 

observed correlation between zero-crossing points and asymmetries4. 938 

For D1 MSNs βm
 + > βm

 – and so τi skews optimistic; analogously, for D2 MSNs βm
 + < βm

 –, and τi 939 

skews pessimistic. The precise distribution of τ’s will depend on the distribution of dopamine 940 

neuron asymmetries (α′i+ and α′i–) as well as the ratio of βm
 + to βm

 –, neither of which has been 941 

measured precisely. To avoid making too many assumptions and to simplify interpretation, we 942 

plotted all REDRL results based on a simulation of 10 predictors with uniform spacing of τi 943 

between 0.05 and 0.95, with all τi > 0.5 assigned to D1 MSNs and all τi < 0.5 assigned to D2 944 

MSNs. Furthermore, we directly computed the expectiles of the relevant reward distributions 945 

(rather than obtaining them incrementally from samples and updates) in order to eliminate noise. 946 

We confirmed that all of our main results were robust to these choices of τ and simulation 947 

approach. 948 
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Quantile distributional RL (QDRL) 949 

QDRL is exactly akin to EDRL, except that we minimize the quantile regression (QR) loss72: 950 

𝑄𝑅(𝑉; 𝜇, 𝜏) = 𝔼𝑍~𝜇[[𝜏𝟙𝑍>𝑉 + (1 − 𝜏)𝟙𝑍<𝑉]|𝑍 − 𝑉|],  951 

This is an asymmetrically-weighted absolute value loss function, which would return the median 952 

when positive and negative errors are balanced (τ = 0.5). The update rule, derived by SGD, 953 

utilizes only the sign of the prediction error, not its magnitude97: 954 

𝑉𝑖  ← 𝑉𝑖 − 𝛼𝑖
−,  if  𝛿𝑖 < 0 955 

𝑉𝑖  ← 𝑉𝑖 + 𝛼𝑖
+,  if  𝛿𝑖 > 0 956 

Unlike expectiles, quantiles have an intuitive interpretation: the τ-th quantile is the number such 957 

that τ fraction of samples from the distribution fall below that value and 1 – τ fall above it. It is 958 

therefore the inverse of the cumulative distribution function (CDF). We additionally 959 

implemented a “reflected” version of QDRL by applying the same transformation to D2 MSNs, 960 

those predictors with τi < 0.5. 961 

We also note that it is possible to interpolate between EDRL and QDRL using Huber 962 

quantiles72,174. This is simply an asymmetric squared loss within a certain interval (controlled by 963 

a hyperparameter κ), and a standard quantile loss outside this interval. The update rule is likewise 964 

a combination of EDRL and QDRL: piecewise linear within some range before saturating. This 965 

rule would obtain if, for example, plasticity could only change some maximum amount in either 966 

direction at any given time, as is likely the case in the brain. Notably, the Huber quantile loss is 967 

frequently used in machine learning applications72. 968 

Categorical distributional RL (CDRL) 969 

CDRL71 adopts a very different approach to learning the reward distribution. Rather than a 970 

quantile or expectile function, CDRL imagines a set of “atoms”, which function similarly to bins 971 

of a histogram. For that reason, we model these “categorical codes” using one hypothetical 972 

neuron per reward size (0–8 μL), in increments of 2 μL. The height of that bin is then assumed to 973 

be linearly (and positively) related to the firing rate of that neuron. Generalizing this scheme to 974 

use basis functions over bin values does not qualitatively alter the predictions.  975 

Laplace and cumulative code 976 

The Laplace code83 grew out of an effort to devise a fully local temporal difference (TD) 977 

learning rule for distributional RL. Its teaching signal is simply a sigmoidal function of reward: if 978 

reward exceeds some threshold, the neuron fires, and thresholds are heterogeneous across 979 

neurons. In the limit of infinitely steep sigmoids (Heaviside step functions), the value predictors 980 
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converge to the probability that the reward exceeds the given threshold (discounted and summed 981 

over future time steps, in the TD case). This exceedance probability is equal to 1 – CDF of the 982 

reward distribution, for our simplified Rescorla-Wagner setting. By analogy to CDRL, we chose 983 

to model neural activity as linearly and positively related to this value of 1 – CDF at each of the 984 

reward bins. For completeness, we also investigated a “cumulative” code, which was just the 985 

CDF at each reward bin, or 1 – the Laplace code. The spatial derivative of this cumulative code 986 

is then equivalent to the categorical code, assuming sufficient support. 987 

Actor Uncertainty (AU) model 988 

The AU model66 manages to learn about reward uncertainty using biologically-plausible learning 989 

rules in D1 and D2 MSNs. We therefore wanted to test its predictions against these other models. 990 

The AU model makes use of two value predictors: one D1 and one D2 MSN, which learn as 991 

follows: 992 

𝑉 = 𝐷1 − 𝐷2 993 

𝐷1 ← 𝐷1 + 𝛼|𝑟 − 𝑉|+ − 𝛽 ⋅ 𝐷1 994 

𝐷2 ← 𝐷2 + 𝛼|𝑟 − 𝑉|− − 𝛽 ⋅ 𝐷2 995 

Here, |𝑥|+ = 𝑚𝑎𝑥(𝑥, 0) and |𝑥|− = 𝑚𝑎𝑥(−𝑥, 0), and 0 < β < 1 scales the decay term to ensure 996 

stability. Using this model, it can be shown66 that D1 – D2 encodes an estimate of mean reward, 997 

and D1 + D2 encodes an estimate of reward spread. For our implementation, we set α = 0.1 and β 998 

= 0.01. 999 

Distributed AU model 1000 

The distributed AU model175 works similarly, except that we now allow there to be different 1001 

learning rates αi
+ and αi

–  for D1 and D2 MSNs, respectively, just as in the distributional RL 1002 

setting. The difference Vi = D1i – D2i approximates the τi-th expectile, biased by 𝛽. For our 1003 

simulations, we chose α = αi
+ + αi

– = 0.2 and β = 0.01. 1004 

Modeling perturbations 1005 

Simulating optogenetic inhibition and excitation in these models (Extended Data Fig. 11) 1006 

required slightly different choices, depending on the type of code. For expectile, quantile, and 1007 

AU-based models, we clamped the relevant simulated neuron(s) to either 0 or 8, the maximum 1008 

reward value across all distributions, to simulate model inhibition and excitation, respectively. 1009 

Note that it was the neural activity (D1i or D2i) that we were directly clamping when applicable, 1010 

not the value prediction it encoded (Vi). For the expectile and quantile models, optimistic and 1011 

pessimistic perturbations meant clamping the value of predictors with τi > 0.5 and τi < 0.5 1012 

respectively. For the AU model, they were identified with the D1 and D2 MSN, respectively. 1013 
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Finally, for the distributed AU model, we implemented two versions of the perturbation, one in 1014 

which all D1 (optimistic) or all D2 (pessimistic) neurons were manipulated, and one in which 1015 

only those with τi > 0.5 or τi < 0.5, respectively, were manipulated. We call the latter the “Partial 1016 

Distributed AU” model, for the purposes of model comparison. For the AU models, it is only the 1017 

difference D1i – D2i that is bounded within the range of reward sizes, not the activities 1018 

individually. We therefore added or subtracted a fixed amount (the maximum reward size across 1019 

all trial types, 8 μL) across reward predictors to simulate excitation or inhibition, respectively, in 1020 

these models, rather than clamping their value to a constant. 1021 

For categorical, cumulative, and Laplace codes, the semantics of each simulated neuron are 1022 

different: their activations range from 0 to 1 and encode a (cumulative) probability, rather than a 1023 

value. Thus, inhibiting or exciting them meant changing the relevant probability to 0 or 1, 1024 

respectively. Pessimistic neurons were those that corresponded to the 0 or 2 μL bins, and 1025 

optimistic neurons corresponded to 6 and 8 μL. To reconstitute a properly-normalized probability 1026 

distribution after the perturbation, in the case of the categorical code, we divided by the sum of 1027 

the predictors (or made it a uniform distribution if the sum was zero). For the categorical and 1028 

Laplace codes, we took the spatial derivative of the implied CDF, subtracted off the minimum if 1029 

any value was negative, and then divided by the sum (or made it uniform if the sum was zero). 1030 

In all cases, we found the mean of the (imputed) perturbed probability distribution and then 1031 

compared it to the mean without any perturbation to model the effect of optogenetic 1032 

manipulation on lick rate. 1033 

Model comparison 1034 

We used the predicted Manipulation – No Manipulation differences from each model as a 1035 

regressor with which to predict the difference in licking across trial types, averaged across mice, 1036 

using linear regression (with no intercept term). Separate regressions were fit for inhibition and 1037 

excitation to allow for potentially different scaling in each case, and their coefficients of 1038 

determination were averaged to produce a single summary measure of goodness of fit. 1039 

Data availability 1040 

Pre-processed data will be posted to online repositories upon publication. 1041 

Code availability 1042 

Analysis code will be posted to online repositories upon publication.  1043 
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Fig. 1 | A classical conditioning task and recording setup to investigate distributional 1470 

reinforcement learning. a, Water-restricted, head-fixed mice were trained to associate odors 1471 

with stochastic rewards following a brief (2 s) trace period. When not otherwise specified, 1472 

behavioral and neural activity were analyzed in the final second of the trace period (“Late Trace” 1473 

period) in order to assess reward anticipation. Odor-reward distribution mappings were 1474 

randomized across mice. CS, conditioned stimulus. ITI, inter-trial interval. b, Probability 1475 

distributions over reward amounts that were paired with odors. Each distribution was associated 1476 

with two distinct odors, for a total of six odors, in order to distinguish stimulus information from 1477 

distributional content. Furthermore, two distributions (Fixed and Variable) had the same mean of 1478 

4 μL, but different variance. c, Anticipatory lick rates for each trial type, computed during the 1479 

Late Trace period (Nothing 1 or Nothing 2: p < 0.001 versus Fixed 1, Fixed 2, Variable 1, and 1480 

Variable 2; Fixed 1: p = 0.502, 0.925, 0.419 versus Fixed 2, Variable 1, and Variable 2, 1481 

respectively). d, Cross-validated classification accuracy of a linear kernel Support Vector 1482 

Machine trained on licking, pupil area, whisking, running, and singular value decomposition of 1483 

behavioral videos (Extended Data Fig. 1). The data associated with the two odors corresponding 1484 

to the same distribution were pooled and then split into training and validation sets. Left, 1485 

behavioral classifier accuracy across time. Predictors were aggregated within 250 ms, non-1486 

overlapping bins. Shaded regions denote 95% confidence intervals across mice. Pink, Nothing 1487 

vs. Fixed; Grey, Nothing vs. Variable; Cyan, Fixed vs. Variable. Right, quantification of 1488 

behavioral classifier accuracy when trained separately on the entire Late Trace period (Fixed vs. 1489 
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Variable: p < 0.001 versus Nothing vs. Fixed and Nothing vs. Variable,  p = 0.053 compared to 1490 

chance level of 50%). e, Reconstructed Neuropixels probe trajectories, aligned to the Allen 1491 

Mouse Brain Common Coordinate Framework. f, Individual neurons’ firing rates were z-scored 1492 

across time, aligned to stimulus onset, averaged for each trial type, and then averaged across 1493 

neurons. Color code as in c. Average firing rates correlate with mean reward. g, Trial type 1494 

averages for each neuron were concatenated, and the first principal component was extracted and 1495 

plotted across neurons. Color code as in c. For Figs. 1–3 and 6, asterisks represent the result of 1496 

Linear Mixed Effects model across sessions with a random intercept for each mouse, and, if 1497 

applicable, a random slope for each mouse as a function of grouping (e.g. Across- vs. Within-1498 

distribution): ∗∗∗, p < 0.001; ∗∗, p < 0.01; ∗, p < 0.05; n.s., not significant at α = 0.05. Asterisks 1499 

over lines connecting different groupings indicate significant differences between groups, while 1500 

asterisks without corresponding lines indicate that the group is significantly different from 1501 

chance, indicated by the dashed grey line. The shaded region from 0 to 1 s represents the interval 1502 

of odor delivery, and the vertical line at 3 s indicates reward timing. For Figures 1–4, pastel 1503 

colors in the background show averages across sessions within mice, while dots with error bars 1504 

in the foreground denote means and 95% confidence intervals across mice. Differences were 1505 

taken within-session.  1506 
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Fig. 2 | Distributional coding across the striatum. a, Example peri-stimulus time histograms 1507 

(PSTHs) of two simultaneously-recorded neurons in the ventromedial striatum. Top, spike 1508 

rasters, aligned to odor onset and sorted by trial type. Bottom, mean ± s.e.m. firing to each trial 1509 

type, after smoothing the entire session’s spike train with a Gaussian kernel (s.d. = 100 ms). 1510 

While both neurons tend to increase on average to rewarded odors, the neuron on the left prefers 1511 

Variable odors, while the one on the right prefers Fixed odors, and tend to do so consistently for 1512 

different odors associated with the same distribution. b, Firing rate during the Late Trace period, 1513 

averaged across trials of each type, was projected into two dimensions using principal 1514 

component analysis (PCA) independently for each session. We then measured the distances 1515 

between trial types along each PC, as shown by the arrows. Color code as in a. c, Euclidean 1516 

distance along PC 1 was significantly greater for across-mean pairs (Nothing vs. Rewarded) than 1517 

within-mean pairs (Fixed vs. Variable; p < 0.001). d, Euclidean distance along PC 2 was 1518 

significantly greater for across-distribution pairs (Fixed vs. Variable) than within-distribution 1519 

pairs (Fixed 1 vs. Fixed 2 or Variable 1 vs. Variable 2; p = 0.006). e, Schematic illustrating 1520 

representational dissimilarity analysis (RDA). The population vector corresponding to each trial 1521 

type was computed independently for each session. We then computed the cosine distances 1522 

between across-distribution and within-distribution pairs, shown by the green and orange arcs. f, 1523 

Quantification of cosine distances (Across- vs. Within-distribution: p = 0.029). g, Schematic 1524 
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illustrating parallelism score. We computed the difference vector between each Fixed and 1525 

Variable trial type for each session independently. Parallelism score is defined as the cosine 1526 

similarity between each non-overlapping pair of vectors, averaged over the two possible 1527 

combinations (dark green and light green). h, Quantification of parallelism score (p = 0.015 1528 

compared to chance level of 0). i, Schematic illustrating computation of cross-condition 1529 

generalization performance (CCGP). Linear support vector classifiers (SVCs) were trained to 1530 

discriminate one Fixed and one Variable odor and then tested on the held-out Fixed vs. Variable 1531 

pair. This was then repeated and averaged over all four possible combinations of training and test 1532 

sets. j, Quantification of CCGP (p = 0.001 compared to chance level of 50%).   1533 
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 1534 

Fig. 3 | Reflected Expectile Distributional Reinforcement Learning (REDRL). a-c, 1535 

Algorithmic REDRL model. a, Over the course of training, value predictors (Vi, here initialized 1536 

to 2) converge to the expectiles of the associated reward distribution. b, Post-learning activity of 1537 

the simulated value predictors, Vi, as a function of their optimism level. The relative pessimism 1538 

or optimism of each predictor is parameterized by τ, which can range from 0 to 1 (x-axis). c, Left, 1539 

pessimistic (τ < 0.5) value predictors are identified with D2 MSNs (green), and their coding is 1540 

flipped such that decreases in D2 activity correspond to increases in Vi, and vice versa. 1541 

Optimistic (τ > 0.5) predictors are directly proportional to D1 MSN activity (orange). Right, 1542 

collectively, this striatal code characterizes the complete reward distribution via its expectiles. d-1543 

g, Implementation of REDRL within the mesolimbic circuit. d, Heterogeneity across dopamine 1544 

neurons can be characterized using piecewise linear functions. Pessimistic neurons have high 1545 

slopes in the negative domain (α′i–) and low slopes in the positive domain (α′i+), while the 1546 

opposite is true for optimistic neurons. Over the course of learning, the zero-crossing point Vi 1547 

associated with each neuron will shift to equal the τi-th expectile (vertical dotted line)4. e, D1 and 1548 

D2 MSNs have asymmetric plasticity rules, potentiating more to increases and decreases in 1549 

dopamine, respectively, relative to baseline (vertical dotted line)39. f, As a consequence, D1 1550 

activity is expected to correlate positively, and D2 activity negatively, with the corresponding 1551 

value prediction5,6. To recover Vi, we must subtract out the D2 activity, which could be 1552 

accomplished for instance via its inhibitory projection to the ventral pallidum. g, The change in 1553 

each value predictor is 𝛥𝑉𝑖 = 𝛼′𝑖
−/+

⋅ 𝛽𝑚
−/+ ⋅ 𝛿 = 𝛼𝑖

−/+ ⋅ 𝛿, as demanded by the gradient 1554 

descent-based update rule. The net result is that D1 MSNs are biased optimistically, and D2 1555 

pessimistically, relative to their dopamine input asymmetries, because their learning constants  1556 

βm
–/+ favor positive and negative prediction errors, respectively. With the plasticity rule shown, 1557 

all D1 MSNs have τ > 0.5, and all D2 MSNs have τ < 0.5, justifying the division in c, though the 1558 
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precise distribution will depend on the specific plasticity rule and distribution of dopamine 1559 

asymmetries. h, Two-dimensional PCA projection of converged value predictors, plus noise, for 1560 

the REDRL model. Variable odors are further separated than Fixed from Nothing along PC 1 1561 

because after mean-centering, the patterns of Nothing and Variable activity are almost perfectly 1562 

anticorrelated with one another, and the PC 1 loadings closely resemble Nothing activity itself. i, 1563 

PCA projection of example session (same as Fig. 2b) shows a striking resemblance to the 1564 

REDRL prediction in separating primarily Rewarded and Unrewarded odors along PC 1 and 1565 

Fixed and Variable odors along PC 2. j, In addition, REDRL predicts that the distance between 1566 

Nothing (N) and Variable (V) odors along PC 1 should be slightly greater than that between 1567 

Nothing and Fixed (F). k, Striatal data are consistent with this prediction, with the distance along 1568 

PC 1 significantly greater for Nothing vs. Variable than Nothing vs. Fixed odor pairs (p = 0.007). 1569 

l, REDRL predicts that there should be substantial fractions of neurons that correlate either 1570 

positively or negatively with mean value, corresponding to D1 and D2 MSNs. m, Significant 1571 

populations of striatal neurons encode mean reward positively and negatively. Mean reward 1572 

predicted on each trial was correlated with Late Trace activity. Then, for each neuron 1573 

independently, we shuffled the odor-distribution mappings and re-computed the correlations. 1574 

Each point denotes the per-mouse difference in fraction of significant cells (that is, cells with 1575 

uncorrected p < 0.05) for the unshuffled and shuffled data, separately for cells that correlated 1576 

positively or negatively with mean reward (Positive and Negative: p < 0.001, paired samples t-1577 

test comparing ordered and shuffled fractions across mice). n, REDRL predicts that Variable 1578 

odors elicit higher population mean firing than Fixed odors, regardless of the optimism or 1579 

pessimism of the underlying value predictor. o, Mean z-scored firing rates for each neuron, in 1580 

addition to being higher for Rewarded than Unrewarded odors (p < 0.001), were also higher for 1581 

Variable than for Fixed odors (p = 0.006), as assessed by an LME with neuron-level 1582 

observations, averaged over trials, and mouse-level random effects.          1583 
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Fig. 4 | Dopamine is necessary for learning distributional representations. a, Schematic 1584 

illustration of the basal ganglia, showing how dopamine is hypothesized to act as a teaching 1585 

signal to update corticostriatal synaptic weights. Therefore, dopamine lesions (pink “x”) are 1586 

predicted to disrupt representations of the reward distribution in the striatum. b, Schematic 1587 

illustration of dopamine lesion experiment. 6-OHDA was injected unilaterally into the lateral 1588 

ventral striatum of naive mice to ablate dopamine neurons. After recovery and training, we 1589 

recorded striatal activity in both the lesioned and control hemispheres. c, Histology from an 1590 

example 6-OHDA animal showing Neuropixels probe tracks (red and yellow), dopamine axons 1591 

(green), and lesion (white dashed line surrounding region of reduced TH staining). d, PCA 1592 

projection of Late Trace activity from the control (left) and lesioned (right) hemispheres for an 1593 

example mouse. e, Distance along PC 1, while significantly higher for across-mean than within-1594 

mean pairs (p < 0.001), does not differ between hemispheres (p = 0.676). For all panels of this 1595 

figure, colored lines denote individual mice, averaged across pseudo-populations, and LMEs use 1596 

these pseudo-populations as the individual observations with mouse-level random effects. f, By 1597 

contrast, the difference in distance along PC 2 between across- and within-distribution pairs is 1598 

significantly positive (p = 0.033) and greater for the control relative to the lesioned hemisphere 1599 
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(p = 0.026). g, Parallelism score is significantly positive (p = 0.029) and greater in the control 1600 

relative to the lesioned hemisphere (p = 0.009). h, Similarly, the difference in representational 1601 

dissimilarity between across- and within-distribution pairs is significantly positive (p = 0.036) 1602 

and greater in the control relative to the lesioned hemisphere (p = 0.005). i, Six-way odor 1603 

classification accuracy during the Odor period is above chance (p < 0.001) and higher for the 1604 

control relative to the lesioned hemisphere (p < 0.001). j, Difference in odor classifier confusion 1605 

matrices between the control and lesioned hemispheres. The probability of correct classification 1606 

(main diagonal) decreases for nearly all trial types upon lesioning. k, The decrement in odor 1607 

coding due to the lesion is mainly due to an increase in across-distribution, within-mean 1608 

classification errors (the tendency in the lesioned hemisphere to predict Variable even when the 1609 

true label was Fixed; p < 0.001) and a concomitant decrease in within-distribution classification 1610 

(p < 0.001 for Across- vs. Within-distribution difference).     1611 
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 1612 

Fig. 5 | Opponent contributions of D1 and D2 MSNs to distributional coding. a, Schematic 1613 

illustration of two-photon calcium imaging experiment. We first injected a virus encoding the 1614 

calcium indicator GCaMP7s and then implanted a GRIN lens in the lAcbSh in either Drd1-Cre 1615 

or Adora2a-Cre mice, which drive Cre-dependent expression specifically in D1 and D2 MSNs, 1616 
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respectively. b, Example slice showing expression of GCaMP in the lAcbSh in a Drd1-Cre 1617 

animal. c, Example FOV imaged through a GRIN lens in a Drd1-Cre animal. d, Deconvolved 1618 

Ca2+ activity from an example D1 (left) and D2 (right) MSN. As in Fig. 2a, the top panel is a 1619 

raster plot, normalized by maximum deconvolved activity, and the bottom panel shows average 1620 

deconvolved activity ± s.e.m. across trials of each type. The D1 MSN responds most to 1621 

Rewarded odors, while the D2 MSN responds most to Nothing odors. e, Quantification of 1622 

average percentage of cells that correlate significantly positively with mean (left) or reward 1623 

(right) during the Late Trace and Outcome periods, respectively, relative to the expectation from 1624 

odor coding alone (shuffling odor-distribution mappings, horizontal dashed line). There are 1625 

significantly more cells than expected by chance for D1 (paired samples t-test comparing ordered 1626 

and shuffled fractions across mice, p = 0.009, 0.006 for mean and reward, respectively), but not 1627 

D2 (p = 0.113, 0.107) MSNs. Thick lines show the mean ± 95% confidence interval across mice. 1628 

f, Same as e, but for significant negative correlations. In this case, D2 (p = 0.013, 0.001) but not 1629 

D1 (p = 0.736, 0.433) cells are significantly more common than expected by chance. g, Same as 1630 

d, but showing an example D1 (left) and D2 (right) MSN that reliably discriminate Fixed and 1631 

Variable odors. h, Cosine distance is significantly greater for across than within-distribution 1632 

pairs for both D1 (p = 0.022) and D2 (p < 0.001) MSNs. For panels h, i, q, and r of this figure, 1633 

individual replicates are pseudo-populations, split across trials and pooled across mice, hence 1634 

there are no mouse-level random effects. Thick lines show the mean ± 95% confidence interval 1635 

across pseudo-populations. i, CCGP is significantly above chance for both D1 (one-sample t-test 1636 

relative to 0.5, p < 0.001) and D2 (p = 0.048) MSNs, demonstrating abstract encoding of 1637 

variance in both populations. j, Variance across trial types, computed for the simulated REDRL 1638 

predictors (left) and normalized neural data (right). Small dots are averages within sessions, 1639 

medium dots are averages within mice, and large dots with error bars show averages ± 95% 1640 

confidence intervals across mice (p = 0.017 for effect of genotype). k-l, Simulated REDRL value 1641 

predictors were projected into two-dimensional PC space separately for optimistic (D1, k) or 1642 

pessimistic (D2, l) value predictors. m, Quantification of Euclidean distance along PC 1 for the 1643 

REDRL model. While optimistic predictors show the same trend as the complete code (Fig. 3j), 1644 

pessimistic predictors swap the ordering between Fixed and Variable odors. Error bars denote 1645 

95% confidence intervals across odor pairs. n, Same as m, but using cosine distance in the full-1646 

dimensional space to quantify representational dissimilarity, again independently for optimistic 1647 

and pessimistic predictors. o-r, Same as k-n, but showing data collected from D1 and D2 MSNs 1648 

rather than simulated optimistic and pessimistic predictors, respectively. For both the distance 1649 

along PC 1 (Nothing vs. Variable compared to Nothing vs. Fixed: p = 0.001 for D1, p < 0.001 1650 

for D2, p < 0.001 for the relative differences between D1 and D2) and the representational 1651 

dissimilarity (p = 0.489 for D1, p < 0.001 for D2, p < 0.001 for the relative differences), striatal 1652 

data closely match the theoretical predictions.                  1653 
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Fig. 6 | Causal contributions of D1 and D2 MSNs to REDRL. a, Schematic illustration of 1654 

optogenetics experiments. For excitation, a Cre-dependent virus containing the ultrasensitive 1655 

excitatory opsin CoChR was injected into the lateral striatum at four separate depths. For 1656 

inhibition, we used transgenic animals expressing the inhibitory opsin GtACR1, also in a Cre-1657 

dependent manner. Cre was delivered transgenically by way of Drd1-Cre or Adora2a-Cre mice, 1658 

and a tapered fiber was implanted in the lAcbSh. b, The trial structure in these experiments was 1659 

identical to the recording experiments, except that stimulation was delivered throughout the 1660 

duration of the Trace period. Licking was again quantified during the Late Trace period, 1–0 s 1661 

before the outcome, to avoid counting any artifactual licking around stimulation onset. The laser 1662 

was pulsed for CoChR-based excitation and continuous for GtACR1-based inhibition. c, 1663 

Approach for simulating the effects of optogenetic inhibition in the REDRL model. Within each 1664 

group of panels (Nothing, Fixed, and Variable), the left column shows the predicted D1 (yellow) 1665 

and D2 (green) activities for the No Manipulation (faded circles) and Manipulation (“x”s) 1666 

conditions. Inhibition is simulated by clamping the relevant population to zero. The middle 1667 
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column portrays the resulting effect on the encoded value predictors, Vi. In the REDRL model, 1668 

optimistic (τ > 0.5; blue) and pessimistic (τ < 0.5; purple) predictors are identified with D1 and 1669 

D2 MSNs, respectively. However, since the encoding of D2 MSNs is flipped, inhibition actually 1670 

drives these Vi’s positive relative to their baseline (grey). The right column illustrates the effect 1671 

this change in Vi has on the encoded mean (blue and purple horizontal dashed lines), relative to 1672 

the unperturbed distribution (grey histogram, with mean shown in black). The ground-truth 1673 

distributions shown reflect the versions used in the manipulation experiments, where the 1674 

Variable condition consisted of equally probable 0 and 8 μL rewards. d, Same as c, but for 1675 

optogenetic excitation (triangles) rather than inhibition. e, Summary of REDRL model 1676 

predictions. Each point was computed as the difference in the implied mean between the 1677 

Manipulation and No Manipulation conditions, computed separately for inhibition (left) and 1678 

excitation (right). f, Difference in Late Trace period anticipatory licking between lAcbSh 1679 

Manipulation and No Manipulation trials, computed within-session and then averaged across-1680 

session and within-mice (thin lines). Thick lines and shaded regions show the mean ± 95% 1681 

confidence interval across mice. To emphasize the concordance with REDRL predictions, D1 1682 

and D2 manipulations are now colored blue and purple, respectively. Colored asterisks with 1683 

horizontal lines denote significant differences in the effect of manipulation between trial types 1684 

within the indicated genotype (D1 inhibition: p < 0.001 Nothing vs. Fixed, p < 0.001 Nothing vs. 1685 

Variable; D1 excitation: p < 0.001 Nothing vs. Fixed, p < 0.001 Nothing vs. Variable; D2 1686 

excitation: p = 0.007, Nothing vs. Fixed). Colored asterisks over single trial types indicate 1687 

significant differences relative to zero for that genotype (D2 inhibition: p < 0.001 Nothing, p = 1688 

0.002 Fixed, p < 0.001 Variable; D1 excitation: p < 0.001 Nothing; D2 excitation, p = 0.032 1689 

Nothing). Black asterisks over single trial types indicate significant differences between 1690 

genotypes (inhibition: p = 0.001 Fixed, p = 0.005 Variable; excitation: p < 0.001 Nothing). g, 1691 

Summary panel showing the mean coefficient of determination for each model, used to predict 1692 

the average difference in licking for each trial type without any intercept term.  1693 
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Extended Data Fig. 1 | Behavioral classification analysis. a, Odors corresponding to the same 1694 

distribution were treated as the same class. This is illustrated for the case of Fixed vs. Variable 1695 

classification, with the background shading (yellow vs. grey) indicating the target for the 1696 

classifier.  b, Schematic of behavioral classification. On each validation fold, whisking, running, 1697 

pupil area, licking, and the top 50 face motion energy PCs in the training set were z-scored and 1698 

then passed to a support vector classifier (SVC) with a linear kernel, which predicts the 1699 

associated distribution. c, Schematic of orthogonality analysis. The weights learned by the SVC 1700 

define a vector orthogonal to the hyperplane that best separates distributions. A separate vector 1701 

can be defined by regressing the mean reward (“Value direction”) of each trial against their 1702 

corresponding behavioral regressors. While the SVC hyperplane considers only four odors at a 1703 

time, the regression direction takes into account all six odors. d, Cosine similarity between the 1704 

classifier weight vector and the Value direction. Any differences in behavior between Fixed and 1705 

Variable trials are orthogonal to Value (relative to chance level of 0: p < 0.001 for Nothing vs. 1706 

Fixed, p < 0.001 for Nothing vs. Variable, p = 0.154 for Fixed vs. Variable). e, Spatial masks 1707 

corresponding to face motion energy PCs in an example session, sorted by variance explained. 1708 

Successive PCs emphasize finer and finer aspects of mouse whisking, sniffing, and licking 1709 

behavior.  1710 
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Extended Data Fig. 2 | Value and RPE coding across the striatum. a, Serial coronal sections 1711 

showing recording sites of probe insertions (white dotted lines), registered to the Allen Common 1712 

Coordinate Framework. b, Top, heatmaps showing average z-scored firing rate in response to 1713 

each odor for each neuron. Neurons were sorted according to the time of peak activity when 1714 

averaged on half of Variable 2 odor trials, and then plotted in this same order for the remainder 1715 

of trials, grouped by trial type. The seventh and final trial type corresponds to Unexpected 1716 

rewards, which were not preceded by an odor. Bottom, grand average z-scored firing rate across 1717 

all neurons. c, Fraction of neurons that significantly correlate with mean reward, computed 1718 

separately in non-overlapping 250 ms time bins. Each mouse is shown in a different color, with 1719 

the mean ± 95% confidence interval across mice shown in solid black. Dashed line is the average 1720 

across mice after shuffling the mapping between odors and distributions, thereby accounting for 1721 

pure odor coding. d, Average percentage of significant cells during the Late Trace period (p < 1722 

0.001, paired samples t-test). e, Left, cross-validated R2 predicting the mean reward on each trial 1723 

as a function of striatal subregion, computed separately in non-overlapping 250 ms time bins. To 1724 

ensure fair comparison across subregions, we for each animal generated multiple pseudo-1725 

populations of 40 neurons each by repeatedly sampling without replacement neural 1726 

subpopulation across session boundaries until there were fewer than 40 neurons remaining. 1727 

Animals with fewer than 40 neurons in the given region were excluded. Lines show averages 1728 

across mice for each subregion. Right, average R2 over the Late Trace period. Smaller dots show 1729 
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averages across pseudo-populations for each mouse with at least 40 neurons in that region. f, 1730 

Same as c, except showing the fraction of neurons that significantly correlate with reward 1731 

prediction error (RPE), defined as the difference between actual and expected reward. g, Same as 1732 

d, except showing the average percentage of significant cells during the Outcome period, 0–1 s 1733 

after reward delivery (p < 0.001). h, The actual fraction of cells in each mouse that significantly 1734 

correlated with both mean value and RPE was compared to the product of the individual 1735 

fractions for mean and RPE-coding cells (the predicted fraction assuming independence; p < 1736 

0.001, paired samples t-test).    1737 
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Extended Data Fig. 3 | Odor and residual variance coding in the striatum. a, Decoding 1738 

accuracy across time of a multinomial logistic regression classifier decoding odor identity. b, 1739 

Quantification of a during the Odor period (p < 0.001 relative to chance level of 1/6). c, 1740 

Confusion matrix for odor decoding during the odor period shows high decoding accuracy for all 1741 

odors, with relatively higher confusability for odors with the same mean. d, Cross-temporal 1742 

decoding reveals that odor decoding is stable across time, allowing a classifier trained e.g. on 1743 

Late Trace period activity to generalize well above chance to the Odor period, and vice versa (all 1744 

p’s < 0.001 relative to chance level of 1/6). e, Pseudo-population odor decoding across 1745 

subregions (see Methods section titled “Comparisons across subregions, hemispheres, and 1746 

genotypes”). OT,  olfactory tubercle; VP, ventral pallidum; mAcbSh, medial nucleus accumbens 1747 

shell; lAcbSh, lateral nucleus accumbens shell; core, nucleus accumbens core; VMS, 1748 

ventromedial striatum; VLS, ventrolateral striatum; DMS, dorsomedial striatum; DLS, 1749 
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dorsolateral striatum (N = 1 mouse for mAcbSh, p = 0.006 for VMS, all other p’s < 0.001). f, 1750 

Same as Extended Data Fig. 2c, except showing the fraction of neurons that significantly 1751 

correlate with variance, after regressing out the contribution of mean reward coding separately 1752 

for each time bin. g, Average percentage of significant Residual Variance cells during the Late 1753 

Trace period is less than would be predicted from odor coding alone (p < 0.001, paired samples 1754 

t-test). h, Same as Fig. 3m, except for Residual Variance coding. Fraction is lower than chance 1755 

for both positive- and negative-coding cells (p < 0.001, paired samples t-test). i-k, Same as f-h, 1756 

but for conditional value at risk (CVaR), a common risk measure used in finance and 1757 

reinforcement learning126,176,177, defined as the expected value within the lower α-quantile of a 1758 

probability distribution. For our distributions, this will be equivalent to the mean for α > 0.5 and 1759 

equivalent to the minimum value for α < 0.5, which differs only for the Variable distribution, 1760 

where it is 2. The latter is what we plot here, after regressing out mean coding. Again, there are 1761 

fewer Residual CVaR cells than would be expected from odor coding alone (p < 0.001, paired 1762 

samples t-test) and this is true for both positive- and negative-coding cells (p = 0.009 and p < 1763 

0.001, respectively, paired samples t-test).   1764 
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Extended Data Fig. 4 | Sampling-based codes are inconsistent with striatal activity patterns. 1765 

a, Illustration of how the mean-matched Fano factor was computed178. Spike counts were 1766 

computed in 100 ms bins for each trial. The mean and variance (across trials) of that count then 1767 

contributed one data point to the scatter plot. Grey dots depict all neurons from an example 1768 

session, time bin (centered 200 ms after odor onset), and odor (Variable 2). The grey line is the 1769 

regression fit to all data, constrained to pass through zero and weighted according to the 1770 

estimated s.e.m. of each variance measurement. Black dots are the data points preserved by mean 1771 

matching at each time point, to eliminate the possibility that differences across time are driven by 1772 

differences in firing rates, which could in principle violate the Poisson assumption. This 1773 

transforms the distribution of mean counts from the grey to the black distribution. The regression 1774 

slope for the mean matched data is plotted as the black line. Finally, the Poisson expectation of 1775 

equal mean and variance is plotted in orange, with a slope of one. This procedure was performed 1776 

independently on each session, time bin, and trial type. b, Time course of the computed mean-1777 

matched Fano factor (± 95% confidence interval) for the example session shown in a. That is, the 1778 

slope of black line in a is the height of the light blue, Variable 2 line in b 200 ms after CS onset. 1779 

c, Quantification of mean matched Fano factor across second-long time periods. Consistent with 1780 

cortical observations178, we see a quenching of variability upon CS onset (Baseline: p = 0.002, 1781 

0.001, < 0.001, < 0.001 relative to Odor, Early Trace, Late Trace, and Reward periods), and 1782 

another one upon reward delivery (Reward: p < 0.001, = 0.002, 0.006, 0.053 for Baseline, Odor, 1783 

Early, and Late Trace periods). d, Quantification of mean matched Fano factor across trial types, 1784 

shown separately for each time period. In general, there is no tendency for Variable odors to 1785 

elicit strong and sustained increases in variability, as would be predicted by sampling-based 1786 

codes (Baseline, Odor, Early and Late Trace: all p’s > 0.05, except Nothing 1 vs. Variable 1 for 1787 

Odor: p = 0.032 uncorrected). However, reward delivery specifically drives yet another decrease 1788 

in variability (Nothing 1: p = 0.570 for Nothing 2; p < 0.001 for Fixed odors; p = 0.002 for 1789 

Variable odors).  1790 
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Extended Data Fig. 5 | Distributional coding is robust, orthogonal to value, and consistent 1791 

across time. a, Schematic of pairwise decoding analysis. Linear SVCs were trained on 1792 

individual Fixed and Variable odors, two at a time. This resulted in six possible dichotomies, 1793 

four of which encompassed one Fixed and one Variable odor (green arrows; “Across 1794 

distribution”) and two of which compared odors cuing the same exact distribution (orange 1795 

arrows; “Within distribution”). b, Pairwise decoding during the Late Trace period was 1796 

significantly better for across- than within-distribution pairs, consistent with distributional but 1797 

not traditional RL (p = 0.001). c, Schematic of congruency analysis, which considered all four 1798 

Fixed and Variable odors simultaneously. In the Congruent grouping, both Fixed odors were 1799 

assigned to one class (yellow background) and both Variable odors were assigned to the other 1800 

class (grey background), just as was done for behavioral decoding. By contrast, in the 1801 

Incongruent groupings, class assignments cut across Fixed and Variable distributions. d, 1802 

Classifier accuracy in the Late Trace period was higher for Congruent than Incongruent pairs, 1803 

again consistent with distributional but not traditional RL (Congruent: p = 0.028 vs. Incongruent 1804 

1, p < 0.001 vs. Incongruent 2). e, Schematic illustrating the classifier weight vector (normal to 1805 

the separating hyperplane for across- or within-distribution classifications) and the regression 1806 

weight vector (for Value or Variance). f, Quantification of cosine similarity between the 1807 

classifier weight vector and the Value direction shows that the vectors are not significantly 1808 

different from orthogonal (CCGP: p = 0.071 relative to chance value of 0; Pairwise: p = 0.797 1809 
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Across- vs. Within-distribution absolute cosine similarity; Congruency: p = 0.493 Across- vs. 1810 

Within-distribution absolute cosine similarity). g, Same as f, but for Variance rather than Value 1811 

direction (p < 0.001 for all comparisons). h-j, Cross-temporal decoding for the pairwise, 1812 

congruency, and CCGP analyses. Distributional RL is favored during every time period between 1813 

odor onset and reward delivery, and decoders trained during one period almost always generalize 1814 

to other time periods.  1815 
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Extended Data Fig. 6 | Distributional coding is strongest in the lAcbSh. a, Pseudo-population 1816 

CCGP across subregions (relative to chance level of 0.5: p = 0.059, 0.473, 0.044, 0.017, 0.088, 1817 

0.346, 0.257, 0.407, and 0.133 for OT, VP, mAcbSh, lAcbSh, core, VMS, VLS, DMS, and DLS, 1818 

respectively. Same order applies to all statistics in this figure). Pseudo-populations were 1819 

constructed as in Extended Data Fig. 3e. b, Pseudo-population pairwise decoding across 1820 

subregions (Across- vs. Within-distribution: p = 0.861, 0.344, 0.883, 0.010, 0.409, 0.040, 0.882, 1821 

0.482, 0.106). c, Pseudo-population congruency analysis across subregions (Congruent vs. 1822 

Incongruent 1: p = 0.097, 0.817, 0.744, 0.007, 0.832, 0.047, 0.523, 0.138, 0.523; Congruent vs. 1823 
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Incongruent 2: p = 0.306, 0.760, 0.815, 0.010, 0.473, 0.177, 0.316, 0.486, 0.985). d, Parallelism 1824 

score across subregions (relative to chance level of 0: p = 0.300, 0.878, 1.00, 0.001, 0.229, 0.243, 1825 

0.273, 0.615, 0.764). e, Left, fraction of neurons with classifier coefficients above the percentile 1826 

cutoff for all three (CCGP, pairwise, and congruency) analyses. Horizontal dotted line indicates 1827 

level at which 2.5% of null coefficients fell above the cutoff; this was the 73rd percentile 1828 

(vertical dotted line), and retained 11.43% of neurons. Right, ratio of data to null coefficients 1829 

falling above the cutoff (log scale). f, Fraction of distribution-coding cells in each subregion. 1830 

This fraction is significantly higher in the lAcbSh than in more dorsal subregions (relative to 1831 

lAcbSh: p = 0.339, 0.285, 0.473, 0.274, 0.071, 0.038, 0.001 for OT, VP, mAcbSh, core, VMS, 1832 

VLS, and DLS, respectively; p < 0.001 for DMS).   1833 
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Extended Data Fig. 7 | Artificial neural network-based distribution decoding captures 1834 

information beyond the mean. a, ANN schematic. Single-trial spike counts from the 1835 

distribution-coding subpopulation r were linearly mapped into 16 dimensions by the trainable 1836 

matrix W and then fed through the network (see Methods). After a final layer, a softmax function 1837 

transformed activations into a properly-normalized probability distribution, whose 1-Wasserstein 1838 

distance to ground truth was minimized with stochastic gradient descent. b, Example decoded 1839 

distributions from the test set, shown as line plots to distinguish individual pseudo-trials. c, 1840 

Wasserstein distance relative to reference for the ANN trained on all six trial types, with and 1841 

without shuffling odor-distribution mappings (p < 0.001 ordered vs. shuffled; p < 0.001 ordered 1842 

relative to chance value of 1; p = 0.350 shuffled relative to chance value of 1). d, Same as c, but 1843 
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for ANN trained on only the Rewarded odors, which shared the same mean (p < 0.001 ordered 1844 

vs. shuffled, ordered relative to chance value of 1, and shuffled relative to chance value of 1). e, 1845 

Schematic depicting setup for transfer analysis. Four trial types, including both Nothing odors, 1846 

were used for training (green background), and the other two were used for testing (orange 1847 

background). Matched pairings veridically assigned odors to distributions, while mismatched 1848 

pairings used either only Fixed or only Variable odors for training while assigning one member 1849 

per training pair and one member per testing pair to the opposite distribution (indicated by the 1850 

exclamation mark). There were four possible ways to draw the matched dichotomies, all of 1851 

which are shown (rows). For the mismatched dichotomies, the test labels could be flipped 1852 

arbitrarily, so only one possibility (the F2 and V1 distributions swapped for testing) is shown for 1853 

each training set. f, Wasserstein distance relative to reference for standard, matched, and 1854 

mismatched settings. Standard is identical to analysis shown in c, except that for this decoder, 1855 

neurons from all mice were pooled. Matched transfer yields distributions that are nearly as 1856 

accurate as training with all six trial types (p < 0.001 for matched vs. mismatched and standard 1857 

vs. mismatched, independent samples t-test; p = 0.043 for standard vs. matched, independent 1858 

samples t-test; p < 0.001 for standard and matched relative to chance value of 1, one-sample t-1859 

test; p = 0.836 for mismatched relative to chance value of 1, one-sample t-test).   1860 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2024. ; https://doi.org/10.1101/2024.01.02.573966doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.02.573966
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Extended Data Fig. 8 | Additional detail for distributional model comparisons. a, Schematic 1861 

showing converged expectile code for each distribution (Nothing, Fixed, and Variable) learned 1862 

by EDRL, as in Fig. 3b. The activation of each value predictor is shown as a function of τ, the 1863 

level of pessimism or optimism. Together, they encompass the complete reward distribution. b, 1864 

Same as a, but for quantiles rather than expectiles. c, Same as b, but for a reflected quantile code 1865 

in which pessimistic (D2, green) neurons correlate negatively with Vi (grey). Optimistic (D1, 1866 

yellow) neurons are identical to Vi, as in REDRL. d, Same as a, but showing the converged value 1867 

predictors for the Distributed Actor Uncertainty model175. In it, D1 and D2 MSNs learn 1868 

exclusively from positive and negative RPEs, respectively, such that their difference at each 1869 
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level of τ (grey dots) approximates each expectile, and their sum relates to the spread of the 1870 

distribution. This drives maximal activity in response to Variable odors, which is why they 1871 

separate out most clearly along PC 1. e, Same as d, but for a reduced version in which only a 1872 

single pair of value predictors are learned with balanced positive and negative learning rates66 (τ 1873 

= 0.5). f, Same as a, but for a categorical code in which distributions are encoded as a 1874 

histogram71. Each neuron is imagined to correspond to a single reward bin, with its firing rate 1875 

proportional to the height of that bin. g, Same as f, but for a Laplace code83. In the limit of 1876 

infinitely steep reward sensitivities for the teaching signal, these value predictors converge to the 1877 

probability that the reward delivered exceeds some threshold reward amount, the “exceedance 1878 

probability.” This is simply 1 minus the CDF of the probability distribution in question. Neural 1879 

activities are taken to be proportional to this 1 – CDF value. h, Same as g, but for a population of 1880 

neurons that flips the encoding, and so is directly proportional to the CDF. i, A hypothetical 1881 

“distributional” code in which each neuron’s firing rate linearly correlates with either reward 1882 

mean (left) or variance (right). j, Each trial type, replotted in mean–variance space. From this 1883 

picture, it is clear that for this particular set of reward distributions, Fixed odors will be located at 1884 

the midpoint between Nothing and Variable odors along PC 1, though altering the ratio of mean- 1885 

to variance-coding neurons will move Fixed odors left or right along PC 1. Different sets of 1886 

reward distributions could lead to different geometries. k-m, Qualitative features of each code in 1887 

a–i plus random noise. REDRL predictions from Fig. 3 are included in the box on the second-to-1888 

last line, for comparison. k, PCA projection for each code. Only quantile-like codes give rise to 1889 

the pattern observed in the data. l, Percentage of simulated predictors that significantly correlate 1890 

with mean reward either positively (blue) or negatively (purple) for each code type. Only the 1891 

reflected and categorical codes have a substantial fraction of both types of cells. In practice the 1892 

positive-coding predictors are optimistic and the negative-coding predictors are pessimistic. m, 1893 

Hypothetical activity in response to each distribution, averaged separately over optimistic (blue) 1894 

and pessimistic (purple) predictors for each code type. Only the reflected codes and AU model 1895 

predict a noticeable uptick in Variable relative to Fixed odors.    1896 
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Extended Data Fig. 9 | Quantification of 6-OHDA lesion extent, location, and behavior. a, 1897 

Consensus heat map of all five animals’ lesion locations. 6-OHDA was injected in the lAcbSh 1898 

but diffused into the VLS, so we considered both regions to be lesioned. We excluded OT,  1899 

despite the fact that it was often lesioned, because it is not physically contiguous and showed 1900 

weaker evidence of distributional coding in control animals. b, Behavioral decoding analysis 1901 

comparing fully intact animals (N = 3) and unilaterally lesioned (N = 9) animals across time. For 1902 

this analysis, animals were considered lesioned if they had received any 6-OHDA injection, even 1903 

if that hemisphere was never recorded or was mistargeted relative to Neuropixels recording 1904 

location. c, Quantification of behavioral classifier accuracy during the Late Trace period. While 1905 

across-mean behavioral decoding was stronger in the control than the lesioned animals (effect of 1906 

lesion: p = 0.006, 0.001, 0.173 for Nothing vs. Fixed, Nothing vs. Variable, and Fixed vs. 1907 

Variable, respectively), both groups of animals clearly learned the task and had above-chance 1908 

across-mean decoding (p < 0.001 compared to chance level of 50% for both Nothing vs. Fixed 1909 

and Nothing vs. Variable in control as well as lesioned animals). Interestingly, Fixed vs. Variable 1910 

classification was also weakly significant (p = 0.032 relative to chance level of 50%) for fully 1911 

intact control animals, providing behavioral evidence that they did in fact learn this distinction.   1912 
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Extended Data Fig. 10 | Additional data for two-photon calcium imaging. a, D1 MSN 1913 

activity. Top, heatmaps showing average z-scored deconvolved calcium activity in response to 1914 

each odor for each neuron, as in Extended Data Fig. 2b. Unexpected reward trials were cropped 1915 

on the left to include only continuous acquisitions. Bottom, grand average z-scored deconvolved 1916 

calcium activity across all neurons. b, Same as a, but for D2 MSN activity. c, Fraction of 1917 

neurons whose Late Trace activity increased (top) or decreased (bottom) relative to Baseline, 1918 

shown separately for D1 (left) and D2 (right) MSNs and Unrewarded (Nothing) versus 1919 

Rewarded (Fixed and Variable) odors (x-axis); these trial types were pooled before analysis. As 1920 

expected, a larger fraction of D1 MSNs increases to Rewarded rather than Unrewarded odors (p 1921 

= 0.006), while there is no difference in the fractions that decrease (p = 0.423). Meanwhile, for 1922 

D2 MSNs, a significantly greater fraction of neurons change their activity on Rewarded 1923 

compared to Unrewarded trials, by either increasing (p = 0.022) or decreasing (p = 0.016) their 1924 

activity relative to Baseline. Asterisks and p-values report the results of paired t-tests on 1925 

Rewarded vs. Unrewarded fractions across mice.  1926 
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Extended Data Fig. 11 | Additional detail for distributional model manipulations. a, 1927 

Schematic showing how optogenetic perturbations were simulated for an expectile code (from 1928 

EDRL). Optimistic (blue) or pessimistic (purple) predictors were shifted from their original 1929 

values (semi-transparent grey circles) and clamped to low or high values to mimic inhibition 1930 

(left, “x”s) or excitation (right, triangles), respectively. Panels on the right depict the ground-1931 

truth reward distribution, its mean (black line), and the means of the manipulated sets of value 1932 

predictors (blue or purple dashed lines). b, Same as a, but for a quantile rather than expectile 1933 

code. c, Same as b, but for a reflected quantile code. The additional, leftmost panel for each 1934 

distribution depicts the activity of D1 (yellow) and D2 (green) MSNs at baseline (semi-1935 

transparent circles) and after manipulations (opaque “x”s and triangles). These are what are 1936 

directly clamped by the simulated optogenetic inhibition or excitation. As a result, the effect on 1937 

the implied value predictors (middle panel) corresponding to D2 MSNs are of opposite sign, as is 1938 

the change in predicted mean (right panel). d, Same as c, but for the Distributed Actor 1939 

Uncertainty (AU) model. Since D1 and D2 MSN activities in this model can exceed the 1940 

maximum reward value, the left panel shows that perturbations were simulated by adding or 1941 

subtracting a fixed amount from each activity level (opaque “x”s and triangles) relative to 1942 

baseline (semi-transparent circles). The middle panel plots the resulting value predictors, 1943 

computed as the pointwise differences between D1 and D2 MSN activities, for pessimistic 1944 

(purple) and optimistic (blue) manipulations in comparison to baseline (grey semi-transparent 1945 

circles). e, Same as d, except that only the optimistic or pessimistic half of MSNs were 1946 

manipulated to simulate perturbations of D1 or D2 MSNs, respectively. f, Same as d, except for 1947 

the original Actor Uncertainty (AU) model in which there is only one pair of value predictors 1948 
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with balanced learning rates (τ = 0.5). g, Schematic showing how optogenetic perturbations were 1949 

simulated for a categorical code (from CDRL), which effectively represents the reward 1950 

distribution using a histogram. Pessimistic (0, 2 μL; purple) or optimistic (6, 8 μL; blue) bins 1951 

were clamped to 0 or 1 to simulate inhibition or excitation, respectively, relative to baseline 1952 

(grey). The resulting distributions were normalized to sum to one (see Methods). Dashed vertical 1953 

lines show the means of the ground-truth (black) and manipulated distributions. h, Same as g, 1954 

except for a Laplace code83 in which each neuron corresponds to the height of 1 – CDF at a 1955 

particular point. While the baseline case is always monotonically decreasing, simulated 1956 

excitation or inhibition can change this. Means were computed by differentiating and then 1957 

normalizing (see Methods). i, Same as h, except for a cumulative code where each neuron 1958 

corresponds to the height of the CDF at a particular point.  1959 
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Extended Data Fig. 12 | Summary of alternative model predictions. a-i, Predicted difference 1960 

in mean reward due to inhibition (left) and excitation (right) for each of the alternative models in 1961 

Extended Data Fig. 11. j, REDRL model predictions for mean reward, copied from Fig. 6e, for 1962 

comparison. k, Actual differences in licking, copied from Fig. 6f, for comparison. 1963 
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