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Abstract

This study delves into the categorical aspects of colour perception, employing
the odd-one-out paradigm on artificial neural networks. We reveal a significant
alignment between human data and unimodal vision networks (e.g., ImageNet
object recognition). Vision-language models (e.g., CLIP text-image matching)
account for the remaining unexplained data even in non-linguistic experiments.
These results suggest that categorical colour perception is a language-independent
representation, albeit partly shaped by linguistic colour terms during its devel-
opment. Exploring the ubiquity of colour categories in Taskonomy unimodal
vision networks highlights the task-dependent nature of colour categories, pre-
dominantly in semantic and 3D tasks, with a notable absence in low-level tasks.
To explain this difference, we analysed kernels’ responses before the winner-
taking-all, observing that networks with mismatching colour categories align in
continuous representations. Our findings quantify the dual influence of visual sig-
nals and linguistic factors in categorical colour perception, thereby formalising a
harmonious reconciliation of the universal and relative debates.

Keywords: colour categories, colour naming, colour perception, deep neural networks,
artificial psychophysics

1 Introduction

The electromagnetic spectrum of light reaching our eyes presents a seamless contin-
uum, devoid of any apparent discontinuities. However, our visual system transforms
this continuous spectrum into distinct colour categories, as exemplified by the cap-
tivating hues of the rainbow. This prompts a fundamental question: why does our
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perceptual system organise a continuous function into discrete colour categories? If
this discretisation were merely a computational expedient, colour categories would
be uniformly distributed. Yet, there is a large variation among the volume occupied
by colour categories, for instance, green and blue dominate extensive segments, while
yellow and brown occupy more confined spaces.

Numerous studies in the literature have delved into this phenomenon, proposing
two competing theories. Universalists [6] argue that the mechanism underpinning cat-
egorical colour perception is an inherent aspect of physiological processes. Conversely,
relativists [13] posit that language and culture play a pivotal role in shaping colour
categories. Universalists bolster their argument by citing the overlap in focal colours
across diverse cultures [33] and experiments utilising nonverbal paradigms [22]. Rela-
tivists highlight the challenges children encounter in acquiring colour names [35] and
the variations in colour terms across languages [36]. Scientific consensus has oscillated
between these perspectives, eventually settling on a compromise position of moderate
universality: universal patterns beyond superficial discrepancies across different cul-
tures (see the review by Kay and Regier [24]). Nonetheless, two open questions persist
in this position. First, isolating the primary driving force behind the emergence of
colour categories is unfeasible given the intricate interplay between linguistic and per-
ceptual processing. Second, if the universalism theory is favoured, it is unclear why
our visual system adopts a categorical colour representation—is this due to the neural
circuitry of our system or linked to the visual tasks we perform?

This article addresses these inquiries by harnessing the capabilities of artificial neu-
ral networks (ANNs), which possess sufficient complexity to emulate the ecological
validity of human observers while remaining amenable to controlled experiments. Pre-
vious studies have utilised unimodal ANNs to investigate colour categories. Chaabouni
et al. [10] demonstrated that the accuracy-complexity trade-off in human colour terms
emerges in two artificial agents playing a communication game. This finding aligns with
efficient communication theory, which asserts that human colour categories closely
approach the theoretically optimal limit [50, 20], thereby reinforcing the pivotal role
of language in shaping colour categories. In a contrasting approach, de Vries et al.
[14] illustrated that colour boundaries reported by human observers manifest in object
recognition networks trained on natural images without any language component. This
observation aligns with categorical perception theory, asserting that perceptual colour
space is warped by stretching at category boundaries or by within-category compres-
sion [8, 48, 45]. Consequently, this finding suggests that colour categories may develop
independently of language. In this study, we employ linear probes [5] to (1) compare
multimodal vision-language and unimodal vision deep neural networks, thereby dis-
secting the contribution of each modality, and (2) scrutinise the representation in an
identical architecture (ResNet50) trained on different visual tasks to explore whether
the system’s functional role influences categorical colour representation.

Our investigation has yielded insightful findings. Firstly, we offer a resolution to
the enduring debate between universalists and relativists. Unimodal vision models,
exemplified by ImageNet object recognition networks, explain over eighty per cent
of human data, leaving the remaining unexplained portion attributed to multimodal
vision-language models, such as CLIP text-image matching networks. This underscores
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Fig. 1 The Psychophysical Framework for Assessing Colour Categories in Artificial Neural Networks.
Panel a: Linear classifier trained on features from a frozen pretrained network for a four-part odd-
one-out task. Panel b: Vision layer assessment using conflicting odd images—test colour presented
alongside two focal colours, category determined by the non-selected focal colour, systematically
repeated for all pairs of focal colours to eliminate bias. Panel c: Language model colour category
testing through zero-shot evaluation. Network prompted with eight phrases, the category based on
the term with the highest probability. Panel d: Displaying 320 Munsell chips as test colours. Panel e:
Comparison of colour categories between one example network and human data [6, 41]. Filled cells
represent network outputs, mismatches indicated by a cross coloured based on human data. White
cells lack a unique colour category from the eight terms examined.

that categorical colour perception constitutes a language-independent representation,
despite the discernible influence exerted by linguistic colour terms on its develop-
mental trajectory. Secondly, our findings reveal that human-like colour categories
predominantly emerge in models trained on semantic visual tasks, including image
segmentation, object recognition, and scene classification. Networks optimised for 3D
tasks exhibit moderately human-like colour categories, while those focused on 2D low-
level tasks, such as autoencoding and denoising, fall short of reproducing human-like
colour categories. Lastly, our investigation underscores that networks with distinct
discrete colour categories may possess a highly similar underlying continuous rep-
resentation of how colour is partitioned in space. However, following the process of
discretisation (winner-take-all), the output categories do not align.

2 Results

We systematically investigated the categorical colour representation within artificial
neural networks, utilising Munsell chips (see insert d in Fig. 1). This set gained promi-
nence through its inclusion in the World Colour Survey (WCS) [23] and is frequently
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employed in colour category literature (e.g., [34, 29, 50, 10]). In our analysis, we com-
pared the outputs of artificial networks with human data from [6, 41], concentrating
on eight chromatic colour categories: red, orange, yellow, brown, green, blue, purple,
and pink. To enhance the reliability of our findings, each Munsell chip was tested as
the surface colour of 2904 superellipse shapes (see Fig. A1). To investigate the role of
language and visual signals in categorical colour perception, we examined two types
of networks: unimodal vision and multimodal language-vision models.

For the language layers of the CLIP models, we conducted direct psychophysical
experiments without intermediary steps (see insert c in Fig. 1). Each Munsell chip
underwent evaluation through eight phrases corresponding to different colour terms.
We used the template “This is a {colour} shape.”, where “{colour}” is one of the eight
colour terms. The network’s output, representing the probability score for each phrase
matching the image, determined the final colour category. This process was repeated
for all 2904 shapes, resulting in a total of 23,232 trials for each Munsell chip (2904×8).

Directly querying a pretrained vision model about colour categories is not feasible.
To address this, we extracted features from a frozen pretrained network and trained a
linear classifier for a four-part colour discrimination task (see insert a in Fig. 1). During
testing, conflicting odd images were introduced to assess the categorical perception
of vision models (see insert b in Fig. 1). The test colour (Munsell chip) was paired
with two focal colours (e.g., orange and red). The network’s choice of the odd image
determined the category of the test colour; for example, if the red focal colour is
selected as the odd image, it indicates that the network grouped the test-Munsell chip
into the orange colour category. Recognising the possibility that the test-Munsell chip
could be neither red nor orange, we systematically tested it against all twenty-eight
pairs of focal colours ( 8×7

2 ). This procedure was repeated for all 2904 shapes, and the
positions of focal colours were swapped to ensure unbiased results. In total, 162,624
trials were conducted for each Munsell chip (2904× 2× 28).

2.1 Role of language

In our investigation, we analysed four pretrained networks resulting from a combina-
tion of two tasks, CLIP (text-image matching) [31] and ImageNet (object recognition)
[15], and two architectures: Vision Transformer (ViT-B32) [16] and Convolutional Net-
work (ResNet50) [21]. We examined the networks at six different layers to elucidate
the role of low-, mid-, and high-level visual representation in explaining categorical
colour perception. Fig. 2 illustrates the accuracy of predicting human data, measured
by assigning the same colour category for each Munsell chip. Our findings reveal that
unimodal vision models can explain up to 76% of human data. In contrast, multi-
modal language-vision models achieve higher accuracy, reaching up to 95% with their
language component and notably 89% even without the language component when
exclusively testing the vision layers. These results underscore the dual role that lan-
guage plays in categorical colour perception: a significant portion of human data
is explained independently of language, while language-vision models show a 16%
improvement in explaining human data, even when tested exclusively with their vision
modality (similar to nonverbal psychophysics). Interestingly, testing with the language
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Fig. 2 The Influence of Language on Colour Categories. Panel a: Shows accuracy in matching
human data across six layers of four networks. Blue curves include all results, while purple curves
indicate outcomes thresholded at 90% confidence. Transparent regions depict one standard deviation
among five instances of linear classifiers trained with the same pretrained network (see Methods).
The green horizontal line marks the accuracy when testing the network with the language module.
Dashed horizontal lines represent colour categories based on Euclidean distance in RGB (networks’
input colour space). Panel b: Displays a rainbow image with continuous hue arches on the left. On
the right, colour categories are obtained from an example network at three different layers.

module (similar to verbal psychophysics) increases accuracy by a moderate 5%, sug-
gesting that language shapes the development of colour categories, but the resulting
representation is language-independent.

To contextualise the accuracy of networks, we compared them to the RGB baseline.
Given that the input colour space to networks is RGB, we defined a categorical model
that computes the Euclidean distance to focal colours, with the smallest distance
assigning the category of a Munsell chip. This baseline achieved a high accuracy of 68%
in explaining human data, equivalent to the accuracy achieved by ImageNet ResNet50.
However, when we applied a threshold to the results for higher confidence, the RGB
accuracy substantially dropped to a third, whereas the accuracy of the networks did
not change considerably (compare the purple and blue curves in Fig. 2). These results
indicate that the input colour space is not the primary determinant of categorical
colour perception.

Undertaking a qualitative analysis, the right panel of Fig. 2 presents the outcomes
of a network prediction on a rainbow image. The arches of the rainbow, sharing identi-
cal values in saturation and value, display a continuous increase in hue by one degree.
Despite the absence of any physical discontinuity in the rainbow arches, we distinctly
perceive them in different colour bands. How do artificial networks interpret this

5

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2024. ; https://doi.org/10.1101/2024.01.25.577209doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.25.577209
http://creativecommons.org/licenses/by-nc/4.0/


231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

image? In this experiment, we evaluated networks utilising nine colour terms, includ-
ing the teal/turquoise category, given its qualitative visibility in the rainbow image
and widespread usage [28]. Our observations reveal that the early layer differs signif-
icantly from our human colour perception, as it categorises bluish pixels as red and
brown. In contrast, the intermediate representation closely mirrors how humans would
categorise the rainbow image, except for the purple/pink split, almost entirely classi-
fied as purple. The language layer resolves this discrepancy by adjusting the purple
and pink categories, perfectly aligning with our perception of the rainbow image.

2.2 Effect of visual task

The Taskonomy dataset [49] consists of twenty-four pretrained networks with an iden-
tical encoder architecture (ResNet50), trained on the same set of images for various
visual tasks, spanning from low-level edge detection to mid-level depth estimation and
high-level object classification. This dataset offers a unique opportunity to investi-
gate the impact of a network’s functional role (the visual task a network is optimised
towards) on its categorical colour representation. Employing the same analysis as
detailed earlier, we scrutinised the networks at six different layers.

A significant disparity is evident among networks in predicting human data—
assigning the same colour category for each Munsell chip (see the left panel of Fig. 3).
The networks are ranked based on their peak accuracy across six layers, highlight-
ing a substantial gap between the best-performing network, achieving 82% accuracy,
and the least-performing one, attaining 16% accuracy. On one end of the spectrum,
networks optimised for high-level semantic tasks, like “Object Classification”, con-
sistently demonstrate human-like categorical representations. Conversely, networks
performing 2D visual tasks, such as “2D Edge Detection”, consistently fall short of
achieving human-like colour categories. Their predictive capability essentially hovers
around chance levels across all layers, markedly lower than the baseline (Euclidean dis-
tance in RGB, the network’s input colour space). This implies that categorical colour
representation is not a beneficial representation for networks trained on 2D visual
tasks.

The taxonomy we adopted to classify these networks into four groups (2D, 3D,
geometric, and semantic) relies on established criteria from prior literature, including
methods such as representational similarity analysis (RSA) [18] and feature transfer
learning [49]. Remarkably, our analysis yields similar clusters: along the spectrum of
explaining human data, 2D tasks are situated on the left, 3D tasks in the middle,
and semantic tasks on the right. This distinction holds true even for equivalent per-
ceptual tasks in different dimensions. For example, the network trained on “3D Edge
Detection” achieves human-like colour categories, whereas its corresponding 2D net-
works do not (as observed in the right panel of Fig. 3). This pattern extends to other
corresponding 2D/3D tasks, such as keypoint detection. Collectively, these findings
suggest that the nature of the visual tasks a system is designed to perform strongly
influences its representation of colour categories. It can be hypothesised that our cat-
egorical colour perception has evolved due to living in a three-dimensional space and
tackling semantic tasks.
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Fig. 3 Effect of Visual Task on Colour Categories. Left: Ranks Taskonomy networks by their peak
accuracy in explaining human colour categories. Right: shows accuracy in matching human data
across six layers of four Taskonomy networks (see Fig. A3 for all twenty-four networks). Blue curves
include all results, while purple curves indicate outcomes thresholded at 80% confidence. Dashed
horizontal lines depict colour categories based on Euclidean distance in RGB (networks’ input colour
space). Networks names are colour-coded by task types [17]: 2D, geometric, 3D, and semantic.

2.3 Internal representation

The comparison of networks/layers to human data has revealed a distinct division.
Some networks/layers closely approximate human colour categories, while others fail to
align with them. This raises the question of whether there is a fundamental difference
in how these two groups of layers/networks represent colours. It is important to note
that networks’ colour categories are determined through a winner-take-all operation
on an eight-class distribution. This is essentially a discrete procedure where one colour
wins the category while the rest are silenced. However, before the discretisation stage,
the underlying representation is a continuous distribution of the winning ratio among
pairs of colour categories, which is a matrix of size 8 × 8 (refer to Fig. A2 in the
supplementary material). To compare the internal representations of colour categories
in networks/layers, we calculated the average Spearman correlation coefficients on this
eight-class confusion matrix for each Munsell chip.

The left insert in Fig. 4 presents a pairwise comparison of all probed layers in
CLIP and ImageNet networks. Notably, the continuous representation (upper tri-
angle) exhibits better agreement across networks/layers compared to the discrete
categories (lower triangle). The average correlation in categorical distributions (contin-
uous) across all layers of CLIP/ImageNet ViT-B32/ResNet50 networks is 0.63± 0.12.
In contrast, the percentage of matching colour categories (discrete) shows both a lower
average and higher standard deviation (0.54 ± 0.18), indicating that the underlying
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Fig. 4 Comparison of Continuous and Discrete Representations. On the left, the upper triangular
cells present Spearman correlations in the categorical distribution between pairs of layers, while the
lower triangle indicates the percentage of matching colour categories. The dark-bordered squares
represent layers within a single network. Cells are colour-coded, with green indicating 1 and purple
indicating 0. On the right, the same format is applied to Taskonomy networks. The values in each
cell are averages across the corresponding six layers in the networks. Network names are colour-coded
based on task types [17]: 2D, geometric, 3D, and semantic. The dark-bordered squares delineate
networks within a specific task type.

continuous representations are significantly more similar than the discrete colour cat-
egories. This heightened correlation in the underlying continuous representation is
particularly evident within the layers of a single network (depicted by dark-bordered
squares; rs = 0.72± 0.04), and it is notably pronounced in ViT networks.

The right insert in Fig. 4 illustrates a parallel analysis conducted for the Taskonomy
networks. The presented comparisons between networks are averaged over layerwise
values (i.e., six layers). The first notable observation is the low ratio of matching
colour categories across all 24 Taskonomy networks (purple cells in the lower triangle).
This observation is not surprising, given the substantial variation in accuracy when
explaining human data across different tasks (see Fig. 3 in the main text and Fig. A3
in the supplementary material). A second noteworthy pattern is the moderate green
cells in the upper triangle, indicating a decent correlation (rs = 0.65) in the categorical
distribution of most visual tasks, except the networks trained on 2D tasks (blue labels).
This strongly suggests that although the winner colour categories for these networks
are notably different, the underlying representation is not significantly dissimilar.

We further scrutinised the networks’ continuous representation in relation to
human colour naming consistencies data for British and German adults [46]. The lan-
guage layers in CLIP networks exhibited a high correlation coefficient score (rs = 0.65)
aligning closely with the correlation between British and German speakers (rs = 0.67).
The vision layers in multimodal language-vision networks (CLIP) showed a similar
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correlation coefficient (maximum rs = 0.63), while unimodal vision networks (Ima-
geNet) showed a significantly lower correlation (rs = 0.35). In fact, a strong correlation
(rs = 0.86) emerges between similarity to human colour naming consistency and accu-
racy in matching human colour categories. This comprehensive analysis suggests a
meaningful relationship between networks’ continuous representation, human colour
naming consistencies, and accuracy in replicating human colour categories.

3 Discussion

Communication plays an integral role in categorical colour perception, evident in our
frequent use of colour names, even during inner speech. Recent studies, supporting the
universalists’ standpoint, propose that efficient communication underlies the forma-
tion of colour categories [10, 42, 50]. This concept is also seen in the animal kingdom,
where colour categories are intertwined with nonverbal communication needs like sex-
ual mating [9]. Even in nonverbal human experiments indicating the emergence of
colour categories independent of language, such as those involving stroke patients [39]
and prelinguistic infants [40], the correlation between language and vision is insepa-
rable, due to the nature of our brain. In the realm of artificial agents, this inherent
language-vision correlation can be eliminated, allowing for models without language
and communication components. This advantage has been leveraged in artificial neural
networks for object recognition, revealing that human-like colour categories emerge to
a considerable extent based solely on their utility for a particular vision task [14]. Our
results advance this understanding by quantifying the contributions of each essential
component—visual signals and linguistic factors. Notably, we find that a significant
portion (about 80%) of human colour categories emerge in unimodal vision mod-
els. Nevertheless, a small yet important portion (about 20%) remains unexplainable
purely on the basis of visual signals, which is clarified by the inclusion of multimodal
language-vision models, underscoring the intricate interplay of these components in
the development of categorical colour perception.

The utility of colour naming in communication is evident, as it is unfeasible to ref-
erence every discriminable tristimulus value with a unique colour name [26]. Hence,
using distinct colour names for a broader range of hues proves efficient. However, the
direct relevance of colour categories to a visual system is less apparent in the absence
of communication or language interactions. To explore this, we examined Taskonomy
networks, encompassing twenty-four distinct functional roles (i.e., visual tasks defin-
ing the optimisation loss) using an identical neural circuitry (i.e., ResNet50 encoder
architecture) and training environment (i.e., exposed to the same set of images). The
results resonate with the idea that the primary function of colour is to provide infor-
mation relevant to behavioural tasks in the natural environment [11] by revealing
the task-dependent nature of colour categories [44, 25] in a dualistic manner. While
human-like categorical colour representation does not emerge in networks trained on
2D tasks, it is not scarce in other functional roles. This challenges the proposition of a
unique connection between object recognition and colour categorisation [14]. Indeed,
our findings suggest that, besides semantic tasks, 3D tasks such as shade parametrisa-
tion, depth estimation, and 3D edge detection yield human-like colour categories. The
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exact benefits of colour categories for specific functional roles, as opposed to others,
remain to be investigated. However, categorical colour representation might be associ-
ated with foreground-background segmentation [20], a fundamental task continuously
performed by infants in their daily lives, potentially explaining the early development
of categorical colour perception in prelinguistic infants [27].

The first and second stages of colour processing, involving cone activation to dif-
ferent wavelengths of light and the antagonistic combination into colour opponency,
are well-established [19] and reported to manifest in artificial neural networks [32, 3].
While these low-level mechanisms account for colour discrimination thresholds, they
prove insufficient in explaining colour categories [37, 47]. Our experiments affirm this
limitation; irrespective of the network’s architecture, modality, or training dataset, the
initial layer does not exhibit any categorical effect. It has been postulated that, given
the inadequacy of low-level mechanisms in elucidating colour categories, higher-level
cognitive processes influenced by linguistic terms mediate categorical colour percep-
tion [37]. Our results challenge this notion by demonstrating that beneath different
colour categories, a similar continuous colour representation may exist. This obser-
vation is independent of language modulation and consistently emerges in unimodal
vision models. The involvement of high-level visual processes in categorical colour
encoding remains uncertain [12, 7, 48]. However, our findings do not support this
perspective in artificial networks, as the peak accuracy in matching human colour
categories is never observed in the final layer. Conceptually, this aligns with the idea
that high-level concepts should not strongly associate their representation with colour
categories (e.g., recognising an apple based on its shape rather than its colour), and
low-level processes should favour generic features in a continuous colour representation
(e.g., detecting edges based on fine details of pixel values rather than coarser colour
categories).

The connection between continuous colour perception and discrete colour cate-
gories remains a major challenge in the field of colour science [45, 38]. We posit that
a meticulous analysis of intermediate layers in artificial networks can offer valuable
insights into this intricate issue. In our experiments, Taskonomy networks (ResNet50
architecture) consistently show categorical colour representation emerging early in
area 1, with peak accuracy sustained at mid-level representation (usually areas 1-2),
followed by a rapid decline in deeper layers. Similar patterns are observed in ImageNet
and CLIP networks (across both ResNet50 and ViT-B32 architectures). However, lan-
guage models experience a more moderate drop in deeper layers, likely attributed to
language modulation interacting directly with the final visual layer. These findings
suggest that categorical colour representation is a mid-level feature in artificial neural
networks, loosely aligning with the observation in rhesus monkeys that mechanisms
for encoding colour categorically should occur earlier than visual area V4 [43]. The
investigation into why mid-level mechanisms favour a categorical colour representation
remains a subject for future exploration, yet insights from artificial neural networks
propose that they may hold the key to advancing our understanding of categorical
colour perception [30].
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4 Methods

All research materials, including the source code for training/testing artificial neural
networks and analysing the data, are openly accessible on our GitHub project page:
https://arashakbarinia.github.io/projects/colourcats/.

4.1 Stimuli

The stimulus consists of uniformly coloured foreground and background images (see
Fig. 1), offering the flexibility to dynamically adjust their surface colours for testing
each Munsell chip. Foreground shapes are systematically selected from a set of 2904
geometrical shapes (refer to Appendix A.1 for details). The images are sized at 224×
224 pixels, consistent with the image resolution utilised during the pretrained stage of
all the examined networks.

We compared the colour categories of the networks to the human data from [6, 41].
The reported accuracies are the average over the union of ground-truths provided by
these two studies, which encompassed 209 Munsell chips.

4.2 Pretrained networks

We investigated twenty-eight artificial neural networks trained on three distinct
datasets:

• ImageNet [15]: containing 1.5 million images spanning over 1000 object categories.
We investigated two architectures, namely ResNet50 [21] (a convolutional network)
and ViT-B32 [16] (a transformer network). The pretrained network weights for both
architectures were obtained from torchvision1.

• CLIP (Contrastive Language-Image Pretraining) [31]: comprising multimodal
language-vision networks. These models contain a transformer text encoder and an
image encoder that are jointly optimised to predict correct pairings of image-text
batches. Our exploration involved two types of image encoders within the CLIP
framework, namely CLIP ResNet50 and CLIP ViT-B32.

• Taskonomy [49]: encompassing around four million images, predominantly depict-
ing indoor scenes, with labels for 24 computer vision tasks. The dataset provides
pretrained weights of an encoder-decoder for all visual tasks. We focused our inves-
tigation on the encoder modules, which maintain an identical ResNet50 architecture
across all tasks.

4.3 Colour-discriminator linear classifier

We applied the linear probing technique [5] to evaluate the categorical representation of
colours in unimodal vision networks. This method enables the execution of psychophys-
ical experiments with artificial neural networks, employing paradigms similar to human
studies [4]. Furthermore, it permits the extraction of features at any layer, thereby
providing a means to investigate intermediate features. The implementation utilised
the osculari Python package [2] for a four-part odd-one-out colour discrimination task

1https://pytorch.org/vision/stable/models.html
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(see insert a in Fig. 1). Throughout training, four images were individually input into
a frozen pretrained network (i.e., unaltered weights). Extracted features were then
concatenated into a single vector and fed into a linear classifier. This classifier was
trained to distinguish the odd image, identical to the other three in all aspects except
for its foreground colour. To eliminate colour bias in the linear classifier, foreground
colours were randomly selected from a uniform RGB distribution, while the back-
ground was uniformly chosen from achromatic colours (i.e., R = G = B). Stochastic
gradient descent (SGD) optimised the linear classifier over 150,000 iterations.

For each architecture, we assessed colour categories at six distinct layers, compris-
ing five intermediate layers and the final layer. In ResNet50, the intermediate layers
are defined as areas 0 to 4, while in ViT-B32, they correspond to blocks 1, 4, 7, 10,
and 11. Although we endeavoured to align the intermediate layers across architectures
by selecting layers at similar depths, it is important to note that an exact match is
unattainable due to the inherent differences in their architectures.

To bolster the robustness of our findings, we trained five instances of the colour-
discriminator linear classifier, utilising the identical features extracted from the
pretrained networks. The resulting colour categories from these five instances exhibit
remarkable consistency (refer to the almost imperceptible standard deviations in
insert a of Fig. 2). This observation strongly implies that the colour categories
assigned by artificial networks are predominantly shaped by features acquired during
their pretraining phase, with minimal influence from the colour-discriminator linear
classifier.

During testing, we assessed the categorical characteristics of pretrained networks
by introducing conflicting odd images (see insert b in Fig. 1). In this scenario, the
background colour is always mid-grey (i.e., R = G = B = 128). Two of the four images
are identical, featuring the test colour in their foreground, while the other two images
display the focal colour of two distinct categories in their foregrounds. The unselected
focal colour indicates the colour category of the test colour from the perspective of the
network. To mitigate bias associated with our categorical colour perception, this pro-
cedure is repeated for all twenty-eight pairs of colour categories (8∗72 ). This procedure
was repeated for all 2904 shapes, and the positions of focal colours were swapped to
ensure unbiased results. In total, 162,624 trials were conducted for each Munsell chip
(2904× 2× 28).
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Fig. A1 Example of thirty-six superellipse shapes obtained by keeping a = b = 0.5 and systemati-
cally varying the m and n values in Eq. A1.

Appendix A Extended data

A.1 Stimuli shapes

To create the test shapes in our study, we employed the superellipse, defined in the
Cartesian coordinate system as the set of all points (x, y) satisfying the equation∣∣∣x

a

∣∣∣m +
∣∣∣y
b

∣∣∣n = 1, (A1)

where a, b, m and n are positive numbers. Fig. A1 depicts thirty-six examples of these
superellipse shapes. The selection of a systematic geometrical shape serves the purpose
of exploring the interaction between object shape and colour perception, although this
aspect falls outside the scope of the current article.

A.2 Raw experimental data

The exhaustive examinations conducted to evaluate the categorical representation of
colours in vision layers through linear probing yield an 8 × 8 multi-class confusion
matrix, as illustrated in Fig. A2. Several noteworthy aspects of this matrix warrant
attention:

• Higher values indicate a robust category effect, while values close to 0.5 (chance
level) suggest an absence of categorical representation.

• The summation of winning ratios for a specific pair of colours may not necessarily
equate to 1.0. For example, in Fig. A2, the sum of winning ratios for the orange-red
colour categories is 0.99. The remaining percentage pertains to scenarios where the
test colour has been selected as the odd image. This can be construed as noise in
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Fig. A2 Distribution of Winning Colour Categories (Derived from Block-10 of CLIP Vit-B32). Each
cell denotes the percentage of a category selected as the colour for the illustrated test-Munsell chip.
The values in the upper and lower triangles may not necessarily add up to 1; the remaining percentage
(typically minimal) indicates instances where neither category is chosen. The numbers reflect the
average across 5810 tests. Cells are colour-coded, with green representing 1 and purple representing 0.

the linear classifier. Overall, the magnitude of this noise is minimal, accounting for
only 0.02 across all layers.

• The relationship between colour categories is not entirely transitive. In Fig. A2,
although orange prevails over red 78% of the time, when compared to brown and
purple categories, red obtains a marginally higher winning ratio (1% more, i.e., 100
versus 99). Whether this discrepancy is attributable to noise in the linear classifier or
signifies the non-transitive nature of colour categories remains unclear. Nevertheless,
similar to the aforementioned point, the impact is exceedingly marginal.

A.3 Taskonomy results

Fig. A3 illustrates the accuracy in matching with human colour categories for all
twenty-four Taskonomy networks across six layers. The networks are arranged in
ascending order based on their peak accuracy in explaining human data. Notably,
in the top two rows, all networks grouped under the 2D task type [17] demonstrate
inferior performance compared to the RGB baseline. This observation implies that
categorical colour representation is inconsequential to their functional role.
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Fig. A3 Results of Taskonomy Networks. Accuracy matching human data in six layers of 24 Taskon-
omy networks. Blue curves include all results, while purple curves indicate outcomes thresholded at
80% confidence. Dashed horizontal lines depict colour categories based on Euclidean distance in RGB
(networks’ input colour space). Networks names are colour-coded by task types [17]: 2D, geometric,
3D, and semantic.
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