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Abstract 
Accurate predicQon of the funcQonal impact of missense variants is important for disease gene 
discovery, clinical geneQc diagnosQcs, therapeuQc strategies, and protein engineering. Previous 
efforts have focused on predicQng a binary pathogenicity classificaQon, but the funcQonal 
impact of missense variants is mulQ-dimensional. Pathogenic missense variants in the same 
gene may act through different modes of acQon (i.e., gain/loss-of-funcQon) by affecQng different 
aspects of protein funcQon. They may result in disQnct clinical condiQons that require different 
treatments. We developed a new method, PreMode, to perform gene-specific mode-of-acQon 
predicQons. PreMode models effects of coding sequence variants using SE(3)-equivariant graph 
neural networks on protein sequences and structures. Using the largest-to-date set of missense 
variants with known modes of acQon, we showed that PreMode reached state-of-the-art 
performance in mulQple types of mode-of-acQon predicQons by efficient transfer-learning. 
AddiQonally, PreMode’s predicQon of G/LoF variants in a kinase is validated with inacQve-acQve 
conformaQon transiQon energy changes. Finally, we show that PreMode enables efficient study 
design of deep mutaQonal scans and opQmizaQon in protein engineering. 
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Main 
Accurate and comprehensive predicQon of variant effects has been a long-standing fundamental 
problem in geneQcs and protein biology. Single amino acid (missense) variants are the most 
common type of coding variants that contribute to many human diseases and condiQons1-5. The 
funcQonal impact of most missense variants remains uncertain. At the molecular level, missense 
variants  in only 40 human genes have been screened in saturated mutagenesis experiments6. 
At the geneQc level, only about 2% of clinically observed missense variants are classified as 
pathogenic or benign, while the majority remain of uncertain clinical significance7. Such 
limitaQons make it challenging for accurate clinical diagnosis and Qmely clinical intervenQons. 
Furthermore, understanding the funcQonal impact of mutaQons is important to protein 
engineering, especially in directed evoluQon methods, where proteins are iteraQvely mutated to 
opQmize funcQon or fitness8. Such efforts were oden limited by the high cost and explosion of 
sequence space. It remains a challenge to understand and predict the fitness landscape of 
mutants to reduce the search space and improve the efficiency of engineering9; 10. 
 
In the past decade, many computaQonal methods have been developed11-22 to predict variant 
effects in a binary manner aiming at disQnguishing pathogenic and benign variants. These 
methods showed that pathogenicity can be predicted by manually encoded or self-learned 
features based on sequence conservaQon, protein structures, and populaQon allele frequency. 
Moreover, recently developed methods based on protein language models, leveraging 
Transformer architectures and self-supervised training on billions of protein sequences from 
UniProt23, have demonstrated their capability to serve as versaQle predictors of various protein 
features24-26. The embeddings from these models can offer zero-shot predicQve potenQal for 
variant pathogenicity27; 28. While those methods are helpful in geneQc analyses, pathogenicity 
does not capture the complexity of funcQonal and geneQc effects of variants. For example, gain 
of funcQon variants in SCN2A lead to infanQle epilepQc encephalopathy29; 30 while loss of 
funcQon variants in the same gene lead to auQsm or intellectual disability29; 30. Such limitaQon 
reduced the uQlity of the methods in geneQc analysis and clinical applicaQons. 
 
We use "mode-of-acQon" as a generic term to encapsulate the mulQ-dimensional molecular and 
geneQc mechanisms through which pathogenic variants impact protein funcQonality and 
increase the risk of diseases, respecQvely. More specifically, at molecular level, pathogenic 
variants can change the biochemical properQes of a protein in different ways. For example, 
decreasing/maintaining protein stability31; 32, enzymaQc acQvity32; 33, regulatory funcQons, and 
interacQon34; 35. At geneQcs level, variants are oden categorized into two major types, gain or 
loss of funcQon (G/LoF). GoF variants encompass alteraQons that perturb the protein from its 
normal funcQons via increased or novel acQviQes36; 37. GoF variants are oden found to be driver 
mutaQons in oncogenes38. LoF variants damage protein funcQon via decreased acQviQes, which 
are oden found in tumor suppressors in cancer39 and other geneQc diseases40. Gain and loss of 
funcQon variants usually result in markedly different clinical phenotypes36; 41-44, necessitaQng 
enQrely disQnct therapeuQc approaches29; 35; 36; 45.  
 
While numerous methods have demonstrated the potenQal to predict pathogenicity on a 
genome-wide scale, the effort in G/LoF predicQon has been limited. Stein et al afempted to 
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predict genome-wide G/LoF variants via assembly of human curated features46. However, we 
note that mode-of-acQon centers around how a variant disrupts the normal funcQon of a 
protein. Given the inherent diversity of protein funcQons, afempQng to define a universally 
applicable predicQve task for all G/LoF variants across all proteins could lead to conceptual 
ambiguity. Therefore, we propose that such predicQve tasks should be defined within the 
context of individual proteins or protein families that share similar funcQons, like what Heyne et 
al did in predicQng G/LoF variants in Na+/Ca2+ ion channel genes36. The main challenge is the 
limited availability of data for most genes and protein families.  
 
We developed a new method, PreMode (Pretrained Model for PredicQng Mode-of-acQon), to 
address these challenges with deep learning models through genome-wide pretrain and 
protein-specific transfer learning. PreMode is designed to capture the variant impact on protein 
funcQon with regard to its structural properQes and evoluQonal informaQon. We built PreMode 
with SE(3)-equivariant graph afenQon transformers, uQlizing protein language model 
embeddings25 and protein structures24 as inputs. We curated the largest-to-date labeled 
missense variants with mode-of-acQon annotaQons from clinical databases, geneQc inference, 
and experimental assays. We applied PreMode to mode-of-acQon predicQons of 17 genes. 
PreMode reached state-of-the-art performance at mode-of-acQon predicQons compared to 
exisQng models. We further demonstrate PreMode’s pracQcal uQlity in both improving data 
analysis in deep mutaQonal scan experiments and assisQng protein engineering by significantly 
reducing the size of mutants for screening via acQve learning. 
 
Result 
Overview 
We proposed a framework for predicQng the mode-of-acQon at the molecular level and geneQc 
level. Molecularly, the effect of a missense variant is about the change in biochemical properQes 
of a protein, such as enzyme acQvity, stability, and the regulatory processes upon protein-
protein interacQons (Figure 1a). These changes can be measured by deep mutaQonal scan 
experiments (Figure 1a). GeneQcally, the overall outcome of molecular effects results in 
different types of missense variants. One common categorizaQon is "loss of funcQon" (LoF) and 
"gain of funcQon" (GoF) variants (Figure 1a). To conceptualize this framework to variant effect 
predicQon models, we introduced two parameters: "distance from wild type" (denoted as '𝑟') 
and the "direcQon of change" (notated as '𝜃'). The distance parameter disQnguishes between 
pathogenic and benign variants (Figure 1a) and is shared across all genes. The direcQon 
parameter takes on different meanings both molecularly and geneQcally within various genes. 
Therefore, we proposed that a mode-of-acQon predictor would make separate predicQons of 𝑟 
and 𝜃 uQlizing different datasets. It would first learn 𝑟 predicQon using labeled pathogenic and 
benign variants for all genes, just like convenQonal variant effect predictors, then learn 𝜃 
predicQon using protein or protein family specific datasets via transfer learning (Figure 1b).  
 
Cura1on and characteriza1on of mode-of-ac1on labeled missense variants  
We curated the largest-to-date mode-of-acQon labeled missense variants datasets annotated at 
both molecular and geneQc levels, including 41,081 missense variants in eight genes with mulQ-
dimensional measurements of different biochemical properQes by deep mutaQonal scan 
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experiments curated from MAVEDB6, 2083 gain- and 7910 loss-of-funcQon missense variants in 
~1300 genes. The gain and loss of funcQon-labeled variants were collected from literature 
searches38; 44; 47; 48, cancer hotspots49-51 and published databases52 (Methods).  
 
We first invesQgated global properQes of GoF and LoF variants using the curated data set. GoF 
variants are more likely to be located in regions with lower AlphaFold2 predicQon confidence 
(pLDDT) than LoF variants and are more likely to be on protein surfaces (Figure 2a). In contrast, 
LoF variants have an overall bigger impact on protein folding energy than GoF variants (Figure 
2a), although both types of variants confer a greater folding energy change to protein folding 
than benign variants (Figure 2a). As expected, both LoF and GoF variants are more likely to be in 
conserved regions than non-conserved regions, as shown in the density plot of conservaQon 
represented by entropy of amino acid frequencies across species in mulQple sequence 
alignments (MSA) (Figure 2a), while benign variants are mostly located in non-conserved 
regions (Figure 2a). AddiQonally, GoF variants in general are more likely to be located in 
disordered regions without specific secondary structures than LoF variants (Figure 2b). 
However, we note this pafern is different across protein families. For example, in Na+/Ca2+ 
channel genes, GoF variants are more enriched in alpha helixes that are criQcal for ion transport 
and selecQvity domains than LoF variants (Figure 2b). Finally, the number of GoF and LoF 
variants are not evenly distributed across genes, with only a few of the genes having more than 
15 GoF and LoF variants (Figure 2c). Overall, those results showed that protein structure, 
energy, and evoluQonary features could help predict G/LoF variants while underscoring the 
necessity for the development of protein- and protein family-specific predicQve models using 
limited data.  
 
A deep learning model for mode-of-ac1on predic1ons 
We developed PreMode, a model pre-trained on pathogenicity predicQon task and opQmized 
for transfer learning to mode-of-acQon predicQon tasks. PreMode takes input features derived 
from amino acid biochemical properQes, protein contexts, and cross-species conservaQon. 
PreMode models protein 3D context structure with SE(3)-equivariant graph neural networks 
(Figure 3a). PreMode was designed to not only capture the relaQve importance between 
residues by taking both backbone torsion angles and side chain direcQons into consideraQon, 
but also maintaining awareness of geometric equivariance so that rotaQon of the atom 
coordinates does not affect the predicQons. PreMode’s SE(3)-equivariant learning ability was 
achieved by using a graph representaQon of protein 3D structures, where each residue was 
represented as nodes with features that explicitly represent local biochemical properQes and 
evoluQonary conservaQon including secondary structures53; 54, pLDDT24, amino acid frequencies 
in MSA55, and relaQve coordinates of all atoms in sidechain with respect to alpha carbons 
(Methods). We also included protein sequence language model (ESM2) embeddings25 into node 
embeddings, which implicitly capture similar structural and evoluQon informaQon. Such implicit 
representaQon could serve as a compensaQon of possible missing informaQon limited by 
secondary structure annotaQon or MSA generaQon algorithms. For each edge connecQng two 
residues, the features include Euclidean vector of two corresponding beta-carbons (for glycine 
we use alpha-carbon instead) to encapsulate staQc contacts. AddiQonally, we incorporate co-
evoluQonal strength calculated from MSA and contact strength predicQons from MSA 
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transformer56 to represent potenQal dynamic contacts57 or inter-homopolymer contacts that are 
missed in a staQc structure (Methods). PreMode applies SE(3)-equivariant mechanisms on edge 
features and node features first through a star-graph that connects variant site with all other 
residues to capture the direct impacts of amino acid alteraQons on other residues, then through 
the k-nearest neighbor (KNN)-graph that connects each residue with its closest neighbor 
residues to capture the second order impacts, finally through a star-graph module to aggregate 
the impacts (Supplementary Figure 1). 
 
We pretrained PreMode on the pathogenicity predicQon task to let the model learn general 
representaQon of the variant effects. We collected 83,844 benign variants from ClinVar and 
PrimateAI17 in 13,748 genes, and 64,480 likely pathogenic variants from ClinVar with at least 
one star confidence and HGMD in 3703 genes. We randomly selected 5% of the variants as a 
validaQon dataset and trained 20 epochs on the rest of the training data unQl validaQon loss 
stopped dropping (Supplementary Figure 2). While predicQng pathogenicity is not the designed 
goal of PreMode, we can sQll use pathogenicity predicQon performance to invesQgate the 
contribuQon from various components of the model. As PreMode was pre-trained on human-
curated ClinVar data, using variants from the same resource as tesQng data can result in inflated 
performances. Instead, we used independent tesQng data for which the pathogenicity label was 
enQrely based on staQsQcal evidence, that is, 533 pathogenic missense variants in cancer 
hotspots from cBioportal49; 51; 58 and same number of benign variants in the same genes 
randomly selected from common variants in primates17. 
 
PreMode reached similar levels of performance as exisQng methods including AlphaMissense20 
and gMVP19 on the tesQng dataset with AUROC of 0.928 (Figure 3b). We performed ablaQon 
analysis to assess the contribuQon of language model embeddings, structural informaQon and 
MSA informaQon to the predicQon. Replacing ESM2 embeddings with one-hot encodings of 
amino acids resulted in a drop of AUROC to 0.907. Similarly, removing the MSA will drop the 
AUROC to 0.907 (Figure 3c). Removing the structure module will drop the performance slightly 
to 0.922 (Figure 3c). This showed that ESM2 embeddings, MSA module and SE(3)-equivariant 
module on AlphaFold2 predicted protein structures together provide non-redundant 
informaQon for pathogenicity predicQon. 
 
PreMode reaches state-of-the-art in molecular mode-of-ac1on predic1ons and facilitates 
interpreta1on of deep muta1onal scan experiments 
We first invesQgated the uQlity of PreMode in predicQng modes of acQon at the molecular level. 
We obtained DMS data on eight genes (PTEN, SNCA, CCR5, CXCR4, NUDT15, CYP2C9, GCK, ASPA) 
from MAVEDB6 with mulQple assays of different biochemical properQes. Typically, these assays 
span at least two aspects, the stability and funcQon. These two assays are moderately 
correlated as protein funcQon usually depends on protein stability (Supplementary Figure 3).  
 
We split the data of each gene into 80% of training and 20% of tesQng data five Qmes under 
different seeds and ran PreMode on each of them via transfer learning. While most other 
methods for pathogenicity predicQon does not provide model weights for us to do transfer 
learning, we compared PreMode against four models (Augmented ESM1b, Augmented 
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EVmutaQon, Augmented Unirep, Augmented EVE, Methods) with top transfer learning 
performances described in Hsu, et al.59, and a baseline model uQlizing ESM2 embeddings and a 
single layer perceptron (SLP, Methods) as approximated transfer learning with ESM2. PreMode 
outperformed all methods with higher spearman correlaQon (Figure 4a) on SNCA, CCR5, CXCR4, 
CYP2C9, GCK, ASPA, and has similar performances to other methods in PTEN and NUDT15. 
Overall, ader transfer learning, PreMode is able to predict both the mulQ-dimensional protein 
stability and funcQonal fitness with a spearman correlaQon of 0.6 with experimental results, 
befer than all other methods (Figure 4b). Furthermore, we invesQgated the mulQ-dimensional 
transfer learning ability of PreMode under smaller sample sizes, where we randomly 
subsampled the training data and compared the performances in same tesQng dataset. We 
found that PreMode is befer than all other methods in transfer learning with ≥40% training 
data, while all methods didn’t show much difference under lower data sizes (Figure 4c). Overall, 
PreMode is able to accurately predict variant effects of all missense variants with around 40% 
(~2000) of variants measured inside one gene, ader which increasing the number of data points 
will have minimal improvement on the performance in the tesQng dataset (Figure 4c). 
 
We further invesQgated the uQlity of PreMode to improve the analysis of experimental readouts 
in two applicaQons. First, we hypothesized that PreMode could examine the abnormal 
measurements in each experiment by transfer learning as it had implicitly modeled the fitness 
of variants in all proteins during pretraining. We used the stability DMS experiment31 of PTEN as 
an example and trained PreMode on one of the eight biological replicates. We then compared 
the differences between PreMode’s predicQons and the experimental readouts. We showed 
that this difference value is highly correlated to the difference between the readout of the 
single biological replicate and average readouts in all experiments (Supplementary Figure 5a). 
The experimental readouts with large deviaQon from PreMode’s predicQons are more likely to 
be abnormal measurements (Supplementary Figure 5b). Next, we hypothesized models trained 
on stability in a subset of genes are generalizable to other genes. We applied PreMode to the 
largest stability measurement experiments in MAVEDB across >30 genes. We trained PreMode 
on 80% of the data and tested on the other 20% of variants in completely different genes from 
training. PreMode outperformed all other methods (Supplementary Figure 6). 
 
PreMode is state-of-the-art in gene1c mode-of-ac1on predic1ons 
We grouped the gain / loss of funcQon variants dataset by genes and only kept those with ≥15 
G/LoF variants (Figure 2c, Methods). We performed transfer learning on the selected genes 
using the pretrained model parameters as iniQal weights (Methods). We note there are two 
reasons to perform transfer-learning in individual genes rather than across all genes. First, G/LoF 
mechanisms are intrinsically different across genes, as they have different funcQons. Second, 
the number of G/LoF variants are extremely unbalanced across genes. A deep neural network 
model with transfer-learning across genes will potenQally reach a local minimum where gene-
properQes dominate its predicQons that are befer at predicQng likely G/LoF genes but do not 
disQnguish G/LoF variants in the same gene (Supplementary Figure 7).  
 
For each gene, we randomly split the gain and loss of funcQon variants into training and tesQng. 
The total amount of data for training and tesQng in each gene is shown in Supplementary Table 
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1. There were nine genes (ABCC8, BRAF, CACNA1A, FGFR2, KCNJ11, RET, SCN2A, SCN5A, TP53; 
Figure 2c) in total. We compared PreMode against several baseline methods trained and tested 
on the same training/tesQng datasets. Overall, PreMode performed befer in all the genes than 
baseline methods. It reached average AUC of 0.8~0.9 in genes CACNA1A, KCNJ11, and RET,  and 
average AUCs of 0.7~0.8 in ABCC8, BRAF, and TP53 (Figure 5a). Pretrained PreMode is befer 
than non-pretrained model for all genes. Low-capacity models such as random forest and single 
layer perceptron fine-tuned ESM model is inferior to pretrained PreMode except for SCN2A 
(Figure 5a). We also compared it to LoGoFunc46, a method trained on G/LoF variants across 
genes. As the training and tesQng split informaQon were not available for LoGoFunc, we 
removed the data curated from LoGoFunc in tesQng datasets for fair comparison. PreMode was 
slightly worse than LoGoFunc in SCN5A and SCN2A but befer in all other genes (Supplementary 
Figure 8a). PreMode’s performances in SCN5A and SCN2A could be improved if we increase the 
window size of 251 amino acids to 1251 amino acids (Supplementary Figure 8a). We noQced 
that PreMode is also befer in all three genes SCN2A, SCN5A, CACNA1A, and all ion channel 
genes when using the same training tesQng data split as FunCion36 (Supplementary Figure 8b).  
 
We next did ablaQon analysis on PreMode to idenQfy the important features for Gain/Loss of 
funcQon predicQons. Removing ESM or MSA informaQon decreased PreMode’s overall 
performances in 9 genes (Figure 5b). Removing structural input decreased the performance in 
five out of nine genes except for SCN2A, SCN5A, RET and FGFR2 (Supplementary Figure 9). The 
LoF variants in those genes were located in slightly lower pLDDT region (Figure 5c). We further 
found that adding post-translaQonal-modificaQon (PTM) informaQon (PhosphoSitePlus60) into 
the model input can improve the predicQons in most genes but decreased the performance in 
CACNA1A and BRAF (Supplementary Figure 9). In these two genes, the GoF variants are closer 
to the PTM sites than LoF variants while the trend is opposite in the other genes (Figure 5d). 
Overall, PreMode with PTM informaQon reached highest performance in the weighted sum of 
AUC across genes, followed by default seung PreMode and other methods (Figure 5b).  
 
Next, we hypothesized that the gain and loss of funcQon mechanisms are similar in the same 
domain across genes, and can use this to further improve the GoF/LoF predicQons in each gene. 
We split the data in each gene by domains and only selected the domains with ≥15 G/LoF 
variants for evaluaQon. We performed PreMode transfer learning within the domain using 
either gene-specific data or data across genes while tested on the same data within one gene. 
We observed increased performance in all of the domains when using data across genes rather 
than using the gene alone (Supplementary Figure 10).  
 
To be effecQve in applicaQons in geneQc analysis, a machine learning method should be able to 
perform transfer learning with limited amount of data, as in most of the genes there are fewer 
than 10 known G/LoF variants (Figure 2c). We therefore examined PreMode’s performance with 
subsampled training data in ABCC8, BRAF, CACNA1A, KCNJ11, RET, TP53, where PreMode 
reached ≥0.75 AUC with full training data. We found that PreMode could reach an AUC above 
0.75 with less than 10 G/LoF variants data in ABCC8, KCNJ11 and RET (Figure 5e). For the other 
three genes, low-capacity methods like random forest will reach equal performance as PreMode 
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under the low training sample size. Overall, this result suggested that PreMode is sQll useful in 
genes with small sample sizes. 
 
PreMode predicted mode-of-ac1on landscapes in individual proteins through in silico 
saturated mutagenesis. 
We further applied PreMode to infer the mode-of-acQon of all possible variants in BRAF, TP53, 
PTEN, RET, and KCNJ11. We used a gradient boosQng tree to combine the predicQon scores of 
all five models that trained on different subsets of data and applied to the other variants in 
corresponding gene.  
 
In BRAF, PreMode idenQfied two regions that enriched GoF variants. One closer to the N-
terminal at a phorbol-ester/DAG-type zinc-finger domain and the other on the kinase domain 
which includes the well-known V600 GoF posiQon61; 62 (Figure 6a). The variants on the two 
domains act through different gain/loss of funcQon mechanisms. The phorbol-ester/DAG-type 
zinc-finger domain auto-inhibits BRAF acQvity through binding with 14-3-363 while also 
cooperaQng with Ras-binding domain (RBD) to bind with Ras and acQvate BRAF acQvity64. To 
validate PreMode’s predicQons, we obtained B-Raf/14-3-3 and B-Raf/K-Ras binding structures 
from PDB (7MFD) and AlphaFold2 (Colabfold65 implementaQon) predicQons, respecQvely (Figure 
6b). We then calculated the energy change on both structures upon mutaQons using FoldX66. 
We found that the LoF variants predicted by PreMode confer large energy changes that make 
BRAF binding to both 14-3-3 and K-Ras unstable, while GoF variants only destabilize B-Raf 
binding to 14-3-3 and maintain the binding stability to K-Ras at similar level as benign variants 
(Figure 6c). The ddG landscape suggested that the GoF variants in this region mostly act by 
abolishing its inhibitory regulaQon67. We further invesQgated the G/LoF variants predicted by 
PreMode in the kinase domain. The kinase domain has both acQve (PDB: 4MNE) and inacQve 
(PDB: 4EHE) conformaQons with large and small enzyme pocket sizes, respecQvely68 (Figure 6d). 
The FoldX ddG results were consistent with previous findings that GoF variants V600E/D can 
destabilize the inacQve state while stabilizing the acQve state69 (Figure 6e). Similarly, we found 
that the PreMode predicted LoF variants destabilize both conformaQons as well as the complex 
of BRAF-MEK1 while GoF variants only destabilize the inacQve conformaQon (Figure 6e, 
Supplementary Figure 11).  
 
TP53 is a tumor suppressor gene, and most of the pathogenic variants act through LoF. 
However, there are a few regions enriched with GoF variants idenQfied by PreMode, all on the 
DNA binding domain of the p53 protein (Supplementary Figure 12a). Among those regions, 
sites 291 and 292 are essenQal post-translaQonal modificaQon sites for p53 ubiquiQnaQon and 
subsequent degradaQon70. A previous study showed the variants at sites 121 and 290-292 
increased the ability to induce apoptosis in cultured cells71 (Supplementary Figure 12a).  
 
PreMode also idenQfied several GoF enriched regions in RET and KCNJ11 (Supplementary Figure 
12b, 12c). In RET, PreMode idenQfied GoF enriched regions both in the kinase domain and 
regulatory signaling domain near the extracellular binding sites. In KCNJ11, the regions are 
located at transmembrane domains and cytoplasmic domains (44-60, 160-190, 200-210,225-
230,291-296, 320-340, PDB: 6C3O). The region spanning posiQons 160-179 forms the core part 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.02.20.581321doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.20.581321


of potassium channel in the tetramer (Supplementary Figure 13), especially residues L164 and 
F168 that form the inner helix gate72, and the regions spanning posiQon 44-54, 179-185, 328-
340 forms the ATP/ADP binding pocket (Supplementary Figure 13).  
 
PTEN is a tumor suppressor gene and an essenQal gene in fetal development. Loss of funcQon in 
PTEN can lead to mulQple syndromes. As shown by deep mutaQonal scan experiments33; 73, 
some variants in PTEN can have different impacts on stability and enzyme acQviQes. We applied 
PreMode on 80% of the data from both funcQonal assays to predict the effect of all possible 
variants in PTEN. Although most of variants decrease both the protein stability and enzyme 
funcQon, PreMode idenQfied variants that only disrupt stability but not enzyme funcQon 
(Supplementary Figure 14a, blue), and such variants are located all over the protein. Similarly, 
PreMode idenQfied variants that only disrupt enzyme funcQon but not stability, all located in 
the phosphatase domain (Supplementary Figure 14a, red). These variants may have dominant 
negaQve effects. In fact, three known dominant negaQve variants in PTEN (C124S, G129E and 
R130G)73; 74 were successfully predicted by PreMode to maintain stability while causing loss of 
enzyme funcQon, among which G129E was not in the training data. PreMode idenQfied 4 
regions enriched for such variants (Supplementary Figure 14a, pink). Further analysis showed 
those regions are spaQally close to each other and form the enzyme pocket around the 
phosphatase site (Supplementary Figure 14b). Notably, PreMode can idenQfy similar dominant-
negaQve variants enriched in a region with only 20% (398 points) of the dataset (Supplementary 
Figure 15). 
 
PreMode trained with ac1ve learning allows efficient few-shot transfer.  
Deep mutaQonal scan and directed evoluQon-based protein design experiments oden incur 
expensive Qme costs upon scaling up. We asked if PreMode can be used to help with 
experimental design by acQve learning75. In an acQve learning framework, PreMode was 
iteraQvely trained on a set of experimental data and prioriQzed the variants to be measured in 
the next rounds of experiments (Methods). We applied this framework to the protein design of 
green fluorescence protein (GFP) on fluorescence strength. PreMode was able to predict the 
fitness landscape of GFP with spearman correlaQon above state-of-the-art performance (0.69)76; 

77 to the experimental data using only 40% of the training data by adapQve learning, which is 
much more efficient than randomly subsampling data (Supplementary Figure 16)  
 
Discussion 
Previous methods for predicQng the effect of missense variant have been focused on 
pathogenicity, which is a binary label. However, different pathogenic variants in the same gene 
can have different modes of acQon, i.e., change the protein funcQon in different or someQmes 
opposite ways. It is challenging to predict mode-of-acQon because it is gene specific that varies 
across genes depending on the funcQons of encoded proteins, yet there is very limited amount 
of data in individual genes. In this study, we addressed this issue with a new deep learning 
method, PreMode, that enables pretraining on large pathogenic datasets across genes and then 
transfer learning in specific genes that have small number of variants with known mode-of-
acQon. 
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To generate the training data for PreMode as well as understand the biochemical and 
evoluQonary differences of gain/loss-of-funcQon variants, we curated and characterized the 
largest-to-date missense variants that are known to act through different modes. Gain of 
funcQon variants tend to be located in low pLDDT regions and surfaces in Alphafold2 predicted 
structures. Those regions are likely to be intrinsically disordered78 which implies conformaQonal 
heterogeneity and dynamics that could be associated with protein binding and regulatory 
acQviQes. On the contrary, loss of funcQon variants tend to increase protein folding energy, 
suggesQng that some of these variants destabilize protein structures, while gain-of-funcQon 
variants tend to preserve protein folding integrity35. Overall, these findings showed how variant 
effects are associated with the protein structures and funcQons qualitaQvely. Gain-of-funcQon 
variants oden act through preserving overall protein structure while operaQng through diverse 
mechanisms by targeQng specific structural domains, whereas LoF variants oden destabilize 
protein structures and tend to be distributed across structured regions. However, this overall 
trend does not apply to some protein families, for examples GoF variants are more enriched in 
alpha helixes that forms the transmembrane domain in the ion channel proteins. This highlights 
the need for protein-specific rather than genome-wide Mode-of-AcQon predicQons. 
AddiQonally, available data are heavily uneven across genes, making deep learning algorithms 
easily stuck at local minimum and gene properQes to disQnguish genes that tend to act through 
G/LoF mechanisms while hard to disQnguish G/LoF variants within same gene.  
 
We proposed a framework to predict mode-of-acQon and selected 17 genes with sufficient deep 
mutaQon scan data or labeled gain/loss-of-funcQon missense variants for model development 
and evaluaQon. The input features of PreMode include both protein language model 
embeddings and representaQons of protein structure. PreMode performed gene-specific mode-
of-acQon predicQons through a genome-wide pretrain stage and a gene-specific transfer 
learning stage. This model architecture is based on the hypothesis that the sequence and 
structural context that are informaQve for pathogenicity should also be informaQve for mode-of-
acQon predicQons. At the molecular level, PreMode can simultaneously predict the mulQ-
dimensional biochemical impact of single missense variants, which can reveal potenQal 
dominant negaQve variants that reduce protein funcQon but maintain stability. We showed that 
PreMode is efficient at transfer learning and that it can capture the fitness landscape of all 
possible variants within one protein using around 40% of mutagenesis data. At geneQc level, 
PreMode can efficiently uQlize a small amount labeled data (a few dozens) to accurately 
disQnguish G/LoF variants with an AUC of around 0.75 in most proteins. AddiQonally, we 
showed PreMode’s uQlity in deep mutaQonal scan experiments and protein engineering. First, 
PreMode can improve efficiency of deep mutaQonal scan experiments by detecQng noisy data 
points in single measurements. Second, PreMode can be applied to unmeasured genes by fine 
tuning on the stability deep mutaQonal experiments. Finally, PreMode can facilitate 
mutagenesis-based protein directed evoluQon through adapQve learning by efficiently lowering 
library sizes.  
 
PreMode currently predicts a binary label as gain or loss of funcQon. This is a limitaQon as it 
does not capture the complexity of protein funcQonal changes. For instance, ion channel 
proteins undergo complex conformaQon changes and regulaQon to perform normal 
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physiological funcQons29. Large scale funcQonal studies of these genes may provide addiQonal 
data that enable training of improved models. Furthermore, gain/loss of funcQon could be 
further divided into amorph, hypomorph, hypermorph, anQmorph and neomorph according to 
muller’s morphs79. Accordingly, addiQonal labeled data may facilitate the training of more 
accurate and comprehensive models. 
 
PreMode can be potenQally improved in two aspects. First, increasing data set size in the 
pretrain stage might improve the pathogenicity predicQon as well as the transfer learning 
performances in molecular mode-of-acQon predicQons. Second, PreMode might benefit from 
protein dynamics features, as ablaQon experiments showed it has lower performance for genes 
where both G/LoF variants are located in regions with relaQvely low pLDDT values. A staQc 
protein structure is not sufficient to model the variant effects in those regions.  
 
Overall, our work suggested a potenQal direcQon for this new era of variant effect predictor 
development. PreMode has the potenQal to accelerate our understanding of mode-of-acQons, 
contribute to befer clinical diagnosis, therapeuQc development and more broadly, arQficial GoF 
engineering of proteins. 
 
 
 
Data and code availability 
Data and code used in model training and analysis could be found at GitHub: 
hfps://github.com/ShenLab/PreMode  
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Methods 
 
Training and tes1ng datasets  
We curated labeled pathogenic/benign variants, gain/loss of funcQon variants, deep mutaQonal 
scan experiments from public databases and publicaQons.  
 
For gain/loss of funcQon predicQon tasks, we collected: 765 gain and 4,571 loss of funcQon 
missense variants from Barak, et al44; 669 gain and 1,232 loss of funcQon variants from Clinical 
Knowledge Base52; 199 gain and 1,506 loss of funcQon variants from cBioportal cancer 
hotspots49; 56 gain and 57 loss of funcQon variants in ABCC8, GCK, KCNJ11 from Flanagan, et 
al.47; 45 gain and 7 loss of funcQon variants in STAT1 from Kagawa, et al.48, 537 gain and 349 loss 
of funcQon variants from Heyne, et al36. More specifically, for variants in cBioportal, we first 
calculate cancer hotspots based on exisQng algorithms58, then annotate 199 variants in hotspots 
of 27 oncogenic genes as gain of funcQon and 1506 variants in 248 tumor suppressor genes as 
loss of funcQon based on COSMIC database50. We excluded genes with mulQple cancer roles.  
 
As the gain and loss of funcQon variants were extremely biased across genes, we didn’t split the 
training and tesQng dataset in common machine learning manner but split by protein-wise 
manner with the following steps:  
1. For each gene, we select 20% of GoF and 20% of LoF variants as tesQng. We use the rest 
variants in the same gene as training. 
2. We only kept genes with more than 15 GoF variants and 15 LoF variants for model evaluaQon. 
 
For predicQng pathogenicity, we collected 148,324 variants for training, including: 51,494 
benign variants from PrimateAI17 and 32,350 non-overlapping benign variants from ClinVar with 
at least one-star non-conflict submits that labeled as “benign” or “likely-benign”; 64,480 
pathogenic variants from ClinVar database with at least one-star non-conflict submits7, non-
overlapping variants from HGMD40. We collected 1,066 variants for tesQng, including 533 
pathogenic missense variants from somaQc missense hotspots in 153 cancer driver genes that 
not annotated above; and 533 benign variants from the same genes randomly selected from 
ClinVar and PrimateAI not overlapped with training dataset.  
 
For deep mutaQonal scan assays, we collected datasets of PTEN, SNCA, CCR5, CXCR4, NUDT15, 
CYP2C9, GCK, ASPA from MAVEDB6 (Supplementary Table 2). 
 
Input features 
For a missense variant of interest, PreMode considers a 250 amino acid window flanking the 
variant posiQon and the residues as nodes, and constructs two graphs based on its protein 
context; the first graph 𝒢! is a non-directed star graph that connect only the variant node and 
the other nodes. The second graph 𝒢" is a non-directed K-nearest neighbor graph that connect 
each node with its neighbors based on 3D Euclidean distance of the alpha carbon atoms.  
 
Each node has a set of invariant features and structure features. The invariant features include: 
Embeddings from the last layer of ESM2 (650M)25 (d=1280); Dssp53; 54 annotated secondary 
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structure and torsion angles from the AlphaFold2 predicted protein structures (d=12); pLDDT24 
for the AlphaFold2 predicQon; Amino acid frequencies from MSA of 199 species that reflects 
evoluQonary conservaQon (d=20). The variant node has addiQonal invariant feature of the 
embedding of alternate amino acid. The structure features include a set of Euclidean vectors 
from the alpha carbon to all other non-hydrogen atoms of side chain (d=3x35). If an atom does 
not exist in the side chain, then it is set as 0. 
 
Each edge has a set of invariant features and structure features. The invariant features include,  
weighted covariance matrix between the amino acid frequencies of two residue sites in mulQple 
sequence alignments (MSA) of 199 species19 (ALGORITHM 1); Euclidean distances of beta 
carbons between two residues (For glycine we use alpha carbon), transformed by exponenQal 
smearing funcQons (ALGORITHM 2); The contact strength predicted by MSA transformer. The 
structure features include the Euclidean vector of beta carbons between two residues.  
 
ALGORITHM 1: Weighted MSA Encoder 

 

Input: For node 𝑖, let 𝑀#  be a one hot matrix with shape (199,21) indicaQng the amino  
acids for each species on the index 𝑖 of the aligned protein sequences; 𝑊$ is a 
learnable parameter of length 199 that weight the importance of species. 

Output: A vector 𝐶#%  that reflects the co-evoluQonal strength between node 𝑖, 𝑗 
1 𝑊*$ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊$) 
2 For each node 𝑖 do: 
3  𝑀*# = 𝑀# ∗ 𝑊*$ 
4 For each edge (𝑖, 𝑗) do: 

5  𝐶#%! =6 𝑊*$" ∗ 𝑀#& ∗ 𝑀%&
&

 

6  𝐶#%# =6 𝑀*#& ∗ 𝑀*%&
&

 

7  𝐶#% = 𝐶#%! − 𝐶#%#  

8  𝐶#% = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐶#% , :∑𝐶#%") 

 
ALGORITHM 2: Edge Feature Encoder 

 
Input: For node 𝑖, let 𝑀#  be a one hot MSA matrix defined in ALGORITHM 1; 𝐶'$  be the  

coordinates of beta carbon; 𝐶𝑜𝑛𝑡#%  be the contact strength define.  
Output: Edge invariant features	𝐸#%, structure features 𝐷??⃑ #%. 

1 For each edge (𝑖, 𝑗) do: 
2  𝐶#% = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑀𝑆𝐴𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑀# , 𝑀%)  
3  𝐷??⃑ #% = 𝐶'% − 𝐶'$ 	 

4  𝐷#% = 𝑒
()&*+

'()*+,,,⃑ $%*#,')-
#

 
5  𝐸#% = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐶#% , 𝐷#% , 𝐶𝑜𝑛𝑡#%) 

 
Model architectures 
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PreMode is an SE(3)-equivariant graph afenQon neural network with 4 layers. 
First layer is a feature embedding layer that encodes the input features into latent dimensions. 
This layer was designed separately for invariant features and structure features. For invariant 
features, PreMode uses GeLU80 as the acQvaQon funcQon and linear layer of 512 dimensions 
with weights 𝑊#  and bias	𝐵#  as output. The variant node has an addiQonal embedding layer with 
weights 𝑊.  and bias	𝐵.  to incorporate with the alternate amino acid embeddings (ALGORITHM 
3). For structure features, PreMode uses a linear layer with weights 𝑊/ but without bias term to 
ensure the equivariance. The latent dimension is 32 (Supplementary Figure 1). For edge 
features, PreMode encodes the pairwise MSA, Euclidean distances, contact predicQons, relaQve 
posiQons into a 444-dim invariant feature vector.  
 
ALGORITHM 3: Feature Embedding Layer 

 
Input: For node 𝑖, let 𝐼#  be the input node invariant features; let 𝐼#  be the input node  

structural features. Let 𝐼.  be the center node invariant features. 
Output: Node invariant features 𝑋#, structural features 𝑆#. 

1 For each node 𝑖 do: 
2  If (node 𝑖 is variant node) do: 
3   𝐼# = 𝐺𝑒𝐿𝑈(𝐼.𝑊. + 𝐵.) 
4  𝑋# = 𝐺𝑒𝐿𝑈(𝐼#𝑊# + 𝐵#) 
5  𝑆# = 𝐼#𝑊/ 

 
Second and third layers are equivariant graph afenQon layers. We calculate the afenQon values 
only between the connected nodes in star or KNN graphs defined in the features secQon. We 
used a modified SE(3)-equivariant afenQon mechanism inspired from torchmd-net81 and 
gMVP19 to calculate the afenQon values that takes co-evoluQonal evoluQon, structure features 
into consideraQon. The invariant and structure features were updated separately but share 
informaQon across each other based on the afenQon values to maintain equivariance 
(ALGORITHM 4). Those two layers were designed to capture the biochemical context for the 
residue of interest, where the second layer focuses more on the first order impact of amino acid 
change to all other residues, and the third layer implicitly models the second order 
consequences.  
 
The last layer is a graph afenQon layer that designed to summarize the overall impact of the 
variant to protein. It only takes the invariant embeddings output from the third layer to 
calculate the afenQon values between center node to other nodes while don’t take structural 
features.  
 
ALGORITHM 4: SE(3)-equivariant Graph AfenQon Transformer Layer 

 

Input: A graph 𝒢. For node 𝑖, let 𝑋#  be the invariant features, 𝑆#  be its structure  
features; For edge between node 𝑖, 𝑗. Let 𝐸#%  be the invariant features, 𝐷??⃑ #%  be 
structure features. 

Output: A graph 𝒢 with updated 𝑋#  and 𝑆#  
1 For each edge (𝑖, 𝑗) do: 
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2  𝑄# = 𝑋#𝑊0 + 𝐵0  
3  𝐾% = 𝑋%𝑊& + 𝐵%  
4  𝑉% = 𝑋%𝑊1 + 𝐵%  
5  𝑑𝐾#% = 𝑆𝑖𝐿𝑈Q𝐸#%𝑊2& + 𝐵2&R 
6  𝑑𝑉#% = 𝑆𝑖𝐿𝑈Q𝐸#%𝑊21 + 𝐵21R 
7  𝐴#% = 𝑆𝑖𝐿𝑈Q𝑄# ∙ 𝐾% ∙ 𝑑𝐾#%R 
8 For each node 𝑖 do: 

9  𝑂# =6 𝐴#% ∗ 𝑉%
%

 

10  𝑇?⃑ # =6 Q𝑋%𝑊3! + 𝐵3!R ∗ 𝑆% + Q𝑋%𝑊3# + 𝐵3#R ∗ 𝐷??⃑ #%
%

 

11  𝑑𝑋# = Q𝑉?⃑ #𝑊1!R ∙ Q𝑉?⃑ #𝑊1#R ∗ Q𝑂#𝑊4! + 𝐵4!R + Q𝑂#𝑊4# + 𝐵4#R 

12  𝑑𝑆????⃑ # = 𝑉?⃑ #𝑊1. ∗ Q𝑂#𝑊4. + 𝐵4.R + 𝑉?⃑ #  
13  𝑋# = 𝑋# + 𝑑𝑟𝑜𝑝_𝑜𝑢𝑡(𝑑𝑋#) 
14  𝑆# = 𝑆# + 𝑑𝑟𝑜𝑝_𝑜𝑢𝑡(𝑑𝑆????⃑ #) 

 
Model training and tes1ng 
We trained PreMode with Adam82 algorithm. For predicQng pathogenicity, we set learning rate 
to 1e-4, batch size to 256 and trained 20 epochs. We randomly selected 5% of training data as 
validaQon and calculated the loss on it every 250 steps. We decrease the learning rate by 0.8 if 
observed a plateau on the validaQon loss unQl the minimum learning rate 1e-6. For transfer 
learning on gene and protein family specific tasks, we set the batch size to 8, evaluate validaQon 
loss every 100 batches and set the minimum learning rate to 1e-7. For pretrain pathogenicity 
task, we used 4 NVIDIA A40 GPUs, and it took about 50h. For gene specific mode-of-acQon 
tasks, we used 1 NVIDIA A40 GPU, and it took 0.5~6h depending on the data sizes.  
 
We selected the model saved at the batch or epoch with minimum validaQon loss for tesQng. 
We calculated the AUROC (area under recall receiver operaQng characterisQc curve) to assess 
the performances of models. For pretrain on the pathogenicity task, we only calculated one 
AUROC value. For transfer learning tasks, we calculated AUROC for all five random 
training/tesQng splits and calculated the average and standard deviaQon.  
 
Baseline Methods and abla1on analysis 
For both molecular and geneQcs level mode-of-acQon predicQons, we created several baseline 
methods to compare PreMode with. First, we built a single layer perceptron (SLP) model on top 
of the ESM embeddings (ESM + SLP). This model took all invariant features (ESM2 embeddings, 
amino acid changes, conservaQon in MSA) that same as PreMode as inputs, followed by one 
linear layer and GeLU acQvaQon layer. Next, we implemented several ablaQon analyses on 
PreMode. For structure feature ablaQon, we replaced all structural features with zeros, and 
constructed the star and KNN graphs based on the 1D-distance on the sequences. For ESM 
embedding feature ablaQon, we replaced the ESM embeddings with one-hot encodings of 20 
amino acids. For MSA feature ablaQon, we replaced all MSA features with zeros. All the models 
above were trained under same training configuraQons as PreMode at both pretrain and 
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transfer learning stages. Lastly, we implemented low-capacity machine learning models using 
only biochemical properQes as inputs, including conservaQon, secondary structure, reference, 
and alternate amino acid idenQQes, pLDDT and ddG. For molecular-level mode-of-acQon 
predicQons, we implemented it with elasQc net linear regression model while for geneQcs-level 
mode-of-acQon predicQons, we implemented it with random forest classificaQon model. 
 
Cura1on of predic1on scores from other methods 
In the pathogenicity predicQon comparison, we directly obtained the predicQon scores for 
PrimateAI, EVE, REVEL from dbNSFP (v4.4a)83. For gMVP, AlphaMissense, ESM1b, we obtained 
the predicQon scores from their original publicaQons19; 20; 28.  
 
In the molecular mode-of-acQon predicQon comparison, we selected three models with top 
performances reported in Hsu, et al.59, Augmented ESM1b, Augmented EVmutaQon and 
Augmented Unirep. We didn’t compare with Augmented DeepSequence due to errors in the 
publicly available codes. Instead, we trained the augmented model using evoluQonary density 
score from EVE16, as both models were based on variaQonal autoencoders on MSA. We trained 
and tested those models using the same MSA and protein sequence inputs as well as same 
training and tesQng data as PreMode.  
 
In the geneQc mode-of-acQon predicQon comparison, we obtained LoGoFunc predicQon scores 
from hfps://itanlab.shinyapps.io/goflof/. For FunCion, we obtained their codes and 
training/tesQng split informaQon from their github page 
(hfps://github.com/heyhen/funNCion). We compared PreMode and their model’s performance 
using their training/tesQng split as well as ours. For FuNCion, their original implementaQon of 
gradient boosQng machine learning method in R “caret” package will raise errors under small 
sample sizes, we reimplemented the gradient boosQng method in python “sklearn” package and 
reported both AUCs. 
 
Subsample of datasets 
For deep mutaQonal scan datasets, we subsampled the data to invesQgate how many points 
were required for sufficient adaptaQon to the tasks in transfer learning. For each of the mulQ-
dimensional assays, we randomly subsampled training data to 10%, 20%, 40%, 60%, 80% of 
whole datasets 5 Qmes with different random seeds and tesQng on the same 20% of whole 
datasets. We performed PreMode on each of the training data and evaluate the performance.  
 
In silico saturated mutagenesis experiments 
We did in silico saturated mutagenesis experiments for BRAF, TP53, KCNJ11, RET, and PTEN. For 
each gene, we calculate two predicQons 𝑟 (pathogenicity score) and 𝜃 (Gain/Loss of funcQon 
score) with pretrained model and corresponding transfer-learning models, respecQvely. For 𝜃, 
there are 5 predicted scores from models trained on 5 training/tesQng splits under different 
random seeds. We selected the models with minimum validaQon loss under each 
training/tesQng split and ensembled the predicQons by voQng with a simple random forest 
model.  
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Ac1ve Learning experiments 
We split the deep mutaQonal scan experiment datasets to 80% of training data and 20% of 
tesQng data. Within the 80% of training data, we first performed PreMode transfer learning on 
10% of the randomly selected data, then evaluated PreMode on the rest of 70% data. PreMode 
will output both predicted values as well as model confidence values. Then we selected the top 
10% of data among the rest of training data where PreMode was most unconfident and added 
them to the next round of training. We repeated this procedure unQl all the training data were 
used. 
 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.02.20.581321doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.20.581321


Figure and Figure Legends 

 
Figure 1. Mode-of-acQon definiQon and PreMode framework. A) Mode-of-acQon definiQon at 
molecular level and geneQc levels. B) PreMode framework. Blue arrows show the data flow and 
at pretrain stage for pathogenicity predicQon, green arrows show transfer-learning stage for 
mode-of-acQon predicQon. 
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Figure 2. CharacterizaQon of gain-/loss-of-funcQon variants. A) Genome wide comparison of 
gain- and loss-of-funcQon variant sites pLDDT (AlphaFold2 predicQon confidence), protein fold 
energy change, relevant solvent accessibility, and conservaQon. B) Protein family wise 
comparison of gain- and loss-of-FuncQon variants enriched secondary structures. C). Gene wise 
comparison of gain- and loss-of-FuncQon missense variants numbers. 
  

    *    
   *     *  

 * 

*

0.0

0.2

0.4

0.6

0.8

3−10
helix

Alpha
helix

(4−12)

Bend Beta
Sheet

Isolated
beta−bridge

residue

none Pi
helix

Turn

secondary structures

fra
c_

m
ut

at
io

n

label
GOF

LOF

Na+/Ca2+ Channel Genes

*

0.0

0.2

0.4

0.6

0.8

3−10
helix

Alpha
helix

(4−12)

Bend Beta
Sheet

Isolated
beta−bridge

residue

none Pi
helix

Turn

secondary structures

fra
c_

m
ut

at
io

n

label
GOF

LOF

Other Genes

Mann−Whitney test G/LoF p=1.2e−78

0.00

0.02

0.04

0.06

25 50 75 100
pLDDT

de
ns

ity

LABEL
Benign

GOF

LOF

Mann−Whitney test G/LoF p=6.2e−38

0.0

0.5

1.0

1.5

2.0

2.5

0 25 50 75
FoldXddG

de
ns

ity

LABEL
Benign

GOF

LOF

Mann−Whitney test G/LoF p=3.6e−15

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
rsa

de
ns

ity

LABEL
Benign

GOF

LOF

Mann−Whitney test G/LoF p=2.4e−16

0

1

2

3

4

0.25 0.50 0.75 1.00
conservation.entropy

de
ns

ity

LABEL
Benign

GOF

LOF

a

b

BRAF

FGFR2

RET

TP53

ABCC8
CACNA1A

KCNJ11 SCN2A

SCN5A

5

10

20

40
60
80
100

200

400

5 10 20 30 4050 75
GoF

Lo
F

transfer.learning

a
a

Selected

NA

c

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.02.20.581321doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.20.581321


 
Figure 3. PreMode, a pretrained model for mode-of-acQon predicQons. A) PreMode framework. 
PreMode takes amino acid changes, protein language model embeddings, alphafold2 predicted 
structures, mulQple sequence alignments as inputs and outputs two parameters. PreMode first 
predicts pathogenicity (𝑟) for all genes during pretrain, next predicts the mode-of-acQon 
parameters (𝜃) via transfer learning. B) AUROC of PreMode and other methods in pathogenicity 
predicQon task. C) AUROC of PreMode in ablaQon analysis. 
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Figure 4. PreMode and other methods’ performances in molecular mode-of-acQon predicQon 
tasks. A) Spearman correlaQons of PreMode in mulQplexed deep mutaQonal scan experiments 
of 8 genes compared to other methods. B) Comparison of weighted average of spearman 
correlaQons across experiments based on dataset sizes. C) Comparison of weighted average of 
spearman correlaQons of PreMode and other methods under sub-sampled data. 
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Figure 5. PreMode performances in geneQc mode-of-acQon predicQon tasks. A) Performances of 
PreMode and baseline methods on gain- and loss-of-funcQon predicQons in 9 genes. B) AblaQon 
analysis of PreMode on gain- and loss-of-funcQon predicQons in 9 genes, for each model, AUC in 
9 genes were weighted summed by the dataset sizes. C) Comparison of variant site pLDDT on 
BRAF, TP53, ABCC8, KCNJ11, CACNA1A (led) versus SCN2A, FGFR2, RET, SCN5A (right). D) 
Comparison of distances between variant site to the closest PTM site on SCN2A, FGFR2, RET, 
SCN5A, TP53, ABCC8, KCNJ11 (led) versus BRAF, CACNA1A (right). E) Few-shot transfer learning 
of PreMode and base line method on 6 genes. 
  



 
Figure 6. PreMode in-silico mutagenesis mode-of-acQon predicQons on BRAF. A) PreMode 
predicQons visualized with BRAF protein domains, x-axis are annotaQons and amino acid 
changes, y-axis are amino acid posiQons. The first few columns indicate Alphafold2 pLDDT, 
relevant solvent accessibility, secondary structures, protein domains, respecQvely. The led panel 
showed PreMode’s pathogenicity predicQons and labels used in training, pink indicates 
predicted pathogenic, light blue indicates predicted benign, red indicates pathogenic and blue 
indicates benign in training data, white indicates reference amino acid. The right panel showed 
PreMode’s G/LoF predicQons and labels used in training, pink indicates predicted GoF, light blue 
indicates predicted LoF, white indicates predicted benign. Red indicates GoF and blue indicates 
LoF in training data. B) Braf binding to 14-3-3 (led) and Kras (right) structures. Red is Braf 
phorbol-ester/DAG-type zinc finger domain, green is Braf Ras binding domain (RBD), light blue is 
the rest of Braf, pink and white are two 14-3-3 proteins, yellow is Kras. C) Energy change upon 
mutaQons of Braf phorbol-ester/DAG-type zinc finger domain on the inacQve state (Braf-14-3-3 
binding, y-axis) versus acQve state (Braf-Kras binding, x-axis), colored by PreMode predicQons 
(led panel) and labels in training (right panel). D) Braf kinase domain inacQve state 
conformaQon (led panel) and acQve state conformaQon (right panel), red is the acQve site, blue 
shows the flexible region, light blue shows the rest of kinase domain. E) Energy change upon 
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mutaQons of Braf kinase domain on the inacQve state (y-axis) versus acQve state (x-axis), colored 
by PreMode predicQons (led panel) and labels in training (right panel). 
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