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Abstract

Accurate prediction of the functional impact of missense variants is important for disease gene
discovery, clinical genetic diagnostics, therapeutic strategies, and protein engineering. Previous
efforts have focused on predicting a binary pathogenicity classification, but the functional
impact of missense variants is multi-dimensional. Pathogenic missense variants in the same
gene may act through different modes of action (i.e., gain/loss-of-function) by affecting different
aspects of protein function. They may result in distinct clinical conditions that require different
treatments. We developed a new method, PreMode, to perform gene-specific mode-of-action
predictions. PreMode models effects of coding sequence variants using SE(3)-equivariant graph
neural networks on protein sequences and structures. Using the largest-to-date set of missense
variants with known modes of action, we showed that PreMode reached state-of-the-art
performance in multiple types of mode-of-action predictions by efficient transfer-learning.
Additionally, PreMode’s prediction of G/LoF variants in a kinase is validated with inactive-active
conformation transition energy changes. Finally, we show that PreMode enables efficient study
design of deep mutational scans and optimization in protein engineering.
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Main

Accurate and comprehensive prediction of variant effects has been a long-standing fundamental
problem in genetics and protein biology. Single amino acid (missense) variants are the most
common type of coding variants that contribute to many human diseases and conditions'=. The
functional impact of most missense variants remains uncertain. At the molecular level, missense
variants in only 40 human genes have been screened in saturated mutagenesis experiments®.
At the genetic level, only about 2% of clinically observed missense variants are classified as
pathogenic or benign, while the majority remain of uncertain clinical significance’. Such
limitations make it challenging for accurate clinical diagnosis and timely clinical interventions.
Furthermore, understanding the functional impact of mutations is important to protein
engineering, especially in directed evolution methods, where proteins are iteratively mutated to
optimize function or fitness®. Such efforts were often limited by the high cost and explosion of
sequence space. It remains a challenge to understand and predict the fitness landscape of
mutants to reduce the search space and improve the efficiency of engineering® 1°,

In the past decade, many computational methods have been developed-?? to predict variant
effects in a binary manner aiming at distinguishing pathogenic and benign variants. These
methods showed that pathogenicity can be predicted by manually encoded or self-learned
features based on sequence conservation, protein structures, and population allele frequency.
Moreover, recently developed methods based on protein language models, leveraging
Transformer architectures and self-supervised training on billions of protein sequences from
UniProt?3, have demonstrated their capability to serve as versatile predictors of various protein
features?*26, The embeddings from these models can offer zero-shot predictive potential for
variant pathogenicity?” 22, While those methods are helpful in genetic analyses, pathogenicity
does not capture the complexity of functional and genetic effects of variants. For example, gain
of function variants in SCN2A lead to infantile epileptic encephalopathy?® 3° while loss of
function variants in the same gene lead to autism or intellectual disability?® 3°. Such limitation
reduced the utility of the methods in genetic analysis and clinical applications.

We use "mode-of-action" as a generic term to encapsulate the multi-dimensional molecular and
genetic mechanisms through which pathogenic variants impact protein functionality and
increase the risk of diseases, respectively. More specifically, at molecular level, pathogenic
variants can change the biochemical properties of a protein in different ways. For example,
decreasing/maintaining protein stability3¥ 32, enzymatic activity3% 33, regulatory functions, and
interaction3% 3%, At genetics level, variants are often categorized into two major types, gain or
loss of function (G/LoF). GoF variants encompass alterations that perturb the protein from its
normal functions via increased or novel activities®*® 37, GoF variants are often found to be driver
mutations in oncogenes3®, LoF variants damage protein function via decreased activities, which
are often found in tumor suppressors in cancer®® and other genetic diseases®. Gain and loss of
function variants usually result in markedly different clinical phenotypes3® 4144 necessitating
entirely distinct therapeutic approaches?? 3% 36:45,

While numerous methods have demonstrated the potential to predict pathogenicity on a
genome-wide scale, the effort in G/LoF prediction has been limited. Stein et al attempted to
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predict genome-wide G/LoF variants via assembly of human curated features*®. However, we
note that mode-of-action centers around how a variant disrupts the normal function of a
protein. Given the inherent diversity of protein functions, attempting to define a universally
applicable predictive task for all G/LoF variants across all proteins could lead to conceptual
ambiguity. Therefore, we propose that such predictive tasks should be defined within the
context of individual proteins or protein families that share similar functions, like what Heyne et
al did in predicting G/LoF variants in Na+/Ca2+ ion channel genes®®. The main challenge is the
limited availability of data for most genes and protein families.

We developed a new method, PreMode (Pretrained Model for Predicting Mode-of-action), to
address these challenges with deep learning models through genome-wide pretrain and
protein-specific transfer learning. PreMode is designed to capture the variant impact on protein
function with regard to its structural properties and evolutional information. We built PreMode
with SE(3)-equivariant graph attention transformers, utilizing protein language model
embeddings?® and protein structures?* as inputs. We curated the largest-to-date labeled
missense variants with mode-of-action annotations from clinical databases, genetic inference,
and experimental assays. We applied PreMode to mode-of-action predictions of 17 genes.
PreMode reached state-of-the-art performance at mode-of-action predictions compared to
existing models. We further demonstrate PreMode’s practical utility in both improving data
analysis in deep mutational scan experiments and assisting protein engineering by significantly
reducing the size of mutants for screening via active learning.

Result

Overview

We proposed a framework for predicting the mode-of-action at the molecular level and genetic
level. Molecularly, the effect of a missense variant is about the change in biochemical properties
of a protein, such as enzyme activity, stability, and the regulatory processes upon protein-
protein interactions (Figure 1a). These changes can be measured by deep mutational scan
experiments (Figure 1a). Genetically, the overall outcome of molecular effects results in
different types of missense variants. One common categorization is "loss of function" (LoF) and
"gain of function" (GoF) variants (Figure 1a). To conceptualize this framework to variant effect
prediction models, we introduced two parameters: "distance from wild type" (denoted as 'r')
and the "direction of change" (notated as '6'). The distance parameter distinguishes between
pathogenic and benign variants (Figure 1a) and is shared across all genes. The direction
parameter takes on different meanings both molecularly and genetically within various genes.
Therefore, we proposed that a mode-of-action predictor would make separate predictions of r
and @ utilizing different datasets. It would first learn r prediction using labeled pathogenic and
benign variants for all genes, just like conventional variant effect predictors, then learn
prediction using protein or protein family specific datasets via transfer learning (Figure 1b).

Curation and characterization of mode-of-action labeled missense variants

We curated the largest-to-date mode-of-action labeled missense variants datasets annotated at
both molecular and genetic levels, including 41,081 missense variants in eight genes with multi-
dimensional measurements of different biochemical properties by deep mutational scan
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experiments curated from MAVEDB®, 2083 gain- and 7910 loss-of-function missense variants in
~1300 genes. The gain and loss of function-labeled variants were collected from literature
searches3® 444748 cancer hotspots**>! and published databases®? (Methods).

We first investigated global properties of GoF and LoF variants using the curated data set. GoF
variants are more likely to be located in regions with lower AlphaFold2 prediction confidence
(pLDDT) than LoF variants and are more likely to be on protein surfaces (Figure 2a). In contrast,
LoF variants have an overall bigger impact on protein folding energy than GoF variants (Figure
2a), although both types of variants confer a greater folding energy change to protein folding
than benign variants (Figure 2a). As expected, both LoF and GoF variants are more likely to be in
conserved regions than non-conserved regions, as shown in the density plot of conservation
represented by entropy of amino acid frequencies across species in multiple sequence
alignments (MSA) (Figure 2a), while benign variants are mostly located in non-conserved
regions (Figure 2a). Additionally, GoF variants in general are more likely to be located in
disordered regions without specific secondary structures than LoF variants (Figure 2b).
However, we note this pattern is different across protein families. For example, in Na+/Ca2+
channel genes, GoF variants are more enriched in alpha helixes that are critical for ion transport
and selectivity domains than LoF variants (Figure 2b). Finally, the number of GoF and LoF
variants are not evenly distributed across genes, with only a few of the genes having more than
15 GoF and LoF variants (Figure 2c). Overall, those results showed that protein structure,
energy, and evolutionary features could help predict G/LoF variants while underscoring the
necessity for the development of protein- and protein family-specific predictive models using
limited data.

A deep learning model for mode-of-action predictions

We developed PreMode, a model pre-trained on pathogenicity prediction task and optimized
for transfer learning to mode-of-action prediction tasks. PreMode takes input features derived
from amino acid biochemical properties, protein contexts, and cross-species conservation.
PreMode models protein 3D context structure with SE(3)-equivariant graph neural networks
(Figure 3a). PreMode was designed to not only capture the relative importance between
residues by taking both backbone torsion angles and side chain directions into consideration,
but also maintaining awareness of geometric equivariance so that rotation of the atom
coordinates does not affect the predictions. PreMode’s SE(3)-equivariant learning ability was
achieved by using a graph representation of protein 3D structures, where each residue was
represented as nodes with features that explicitly represent local biochemical properties and
evolutionary conservation including secondary structures®3 >4, pLDDT?4, amino acid frequencies
in MSA>>, and relative coordinates of all atoms in sidechain with respect to alpha carbons
(Methods). We also included protein sequence language model (ESM2) embeddings?® into node
embeddings, which implicitly capture similar structural and evolution information. Such implicit
representation could serve as a compensation of possible missing information limited by
secondary structure annotation or MSA generation algorithms. For each edge connecting two
residues, the features include Euclidean vector of two corresponding beta-carbons (for glycine
we use alpha-carbon instead) to encapsulate static contacts. Additionally, we incorporate co-
evolutional strength calculated from MSA and contact strength predictions from MSA
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transformer®® to represent potential dynamic contacts®’ or inter-homopolymer contacts that are
missed in a static structure (Methods). PreMode applies SE(3)-equivariant mechanisms on edge
features and node features first through a star-graph that connects variant site with all other
residues to capture the direct impacts of amino acid alterations on other residues, then through
the k-nearest neighbor (KNN)-graph that connects each residue with its closest neighbor
residues to capture the second order impacts, finally through a star-graph module to aggregate
the impacts (Supplementary Figure 1).

We pretrained PreMode on the pathogenicity prediction task to let the model learn general
representation of the variant effects. We collected 83,844 benign variants from ClinVar and
PrimateAl'’ in 13,748 genes, and 64,480 likely pathogenic variants from ClinVar with at least
one star confidence and HGMD in 3703 genes. We randomly selected 5% of the variants as a
validation dataset and trained 20 epochs on the rest of the training data until validation loss
stopped dropping (Supplementary Figure 2). While predicting pathogenicity is not the designed
goal of PreMode, we can still use pathogenicity prediction performance to investigate the
contribution from various components of the model. As PreMode was pre-trained on human-
curated ClinVar data, using variants from the same resource as testing data can result in inflated
performances. Instead, we used independent testing data for which the pathogenicity label was
entirely based on statistical evidence, that is, 533 pathogenic missense variants in cancer
hotspots from cBioportal®® >%>8 and same number of benign variants in the same genes
randomly selected from common variants in primates?’.

PreMode reached similar levels of performance as existing methods including AlphaMissense?®
and gMVP?'? on the testing dataset with AUROC of 0.928 (Figure 3b). We performed ablation
analysis to assess the contribution of language model embeddings, structural information and
MSA information to the prediction. Replacing ESM2 embeddings with one-hot encodings of
amino acids resulted in a drop of AUROC to 0.907. Similarly, removing the MSA will drop the
AUROC to 0.907 (Figure 3c). Removing the structure module will drop the performance slightly
to 0.922 (Figure 3c). This showed that ESM2 embeddings, MSA module and SE(3)-equivariant
module on AlphaFold2 predicted protein structures together provide non-redundant
information for pathogenicity prediction.

PreMode reaches state-of-the-art in molecular mode-of-action predictions and facilitates
interpretation of deep mutational scan experiments

We first investigated the utility of PreMode in predicting modes of action at the molecular level.
We obtained DMS data on eight genes (PTEN, SNCA, CCR5, CXCR4, NUDT15, CYP2C9, GCK, ASPA)
from MAVEDB® with multiple assays of different biochemical properties. Typically, these assays
span at least two aspects, the stability and function. These two assays are moderately
correlated as protein function usually depends on protein stability (Supplementary Figure 3).

We split the data of each gene into 80% of training and 20% of testing data five times under
different seeds and ran PreMode on each of them via transfer learning. While most other
methods for pathogenicity prediction does not provide model weights for us to do transfer
learning, we compared PreMode against four models (Augmented ESM1b, Augmented
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EVmutation, Augmented Unirep, Augmented EVE, Methods) with top transfer learning
performances described in Hsu, et al.>°, and a baseline model utilizing ESM2 embeddings and a
single layer perceptron (SLP, Methods) as approximated transfer learning with ESM2. PreMode
outperformed all methods with higher spearman correlation (Figure 4a) on SNCA, CCR5, CXCR4,
CYP2(C9, GCK, ASPA, and has similar performances to other methods in PTEN and NUDT15.
Overall, after transfer learning, PreMode is able to predict both the multi-dimensional protein
stability and functional fitness with a spearman correlation of 0.6 with experimental results,
better than all other methods (Figure 4b). Furthermore, we investigated the multi-dimensional
transfer learning ability of PreMode under smaller sample sizes, where we randomly
subsampled the training data and compared the performances in same testing dataset. We
found that PreMode is better than all other methods in transfer learning with 240% training
data, while all methods didn’t show much difference under lower data sizes (Figure 4c). Overall,
PreMode is able to accurately predict variant effects of all missense variants with around 40%
(~2000) of variants measured inside one gene, after which increasing the number of data points
will have minimal improvement on the performance in the testing dataset (Figure 4c).

We further investigated the utility of PreMode to improve the analysis of experimental readouts
in two applications. First, we hypothesized that PreMode could examine the abnormal
measurements in each experiment by transfer learning as it had implicitly modeled the fitness
of variants in all proteins during pretraining. We used the stability DMS experiment3! of PTEN as
an example and trained PreMode on one of the eight biological replicates. We then compared
the differences between PreMode’s predictions and the experimental readouts. We showed
that this difference value is highly correlated to the difference between the readout of the
single biological replicate and average readouts in all experiments (Supplementary Figure 5a).
The experimental readouts with large deviation from PreMode’s predictions are more likely to
be abnormal measurements (Supplementary Figure 5b). Next, we hypothesized models trained
on stability in a subset of genes are generalizable to other genes. We applied PreMode to the
largest stability measurement experiments in MAVEDB across >30 genes. We trained PreMode
on 80% of the data and tested on the other 20% of variants in completely different genes from
training. PreMode outperformed all other methods (Supplementary Figure 6).

PreMode is state-of-the-art in genetic mode-of-action predictions

We grouped the gain / loss of function variants dataset by genes and only kept those with 215
G/LoF variants (Figure 2c, Methods). We performed transfer learning on the selected genes
using the pretrained model parameters as initial weights (Methods). We note there are two
reasons to perform transfer-learning in individual genes rather than across all genes. First, G/LoF
mechanisms are intrinsically different across genes, as they have different functions. Second,
the number of G/LoF variants are extremely unbalanced across genes. A deep neural network
model with transfer-learning across genes will potentially reach a local minimum where gene-
properties dominate its predictions that are better at predicting likely G/LoF genes but do not
distinguish G/LoF variants in the same gene (Supplementary Figure 7).

For each gene, we randomly split the gain and loss of function variants into training and testing.
The total amount of data for training and testing in each gene is shown in Supplementary Table
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1. There were nine genes (ABCC8, BRAF, CACNA1A, FGFR2, KCNJ11, RET, SCN2A, SCN5A, TP53;
Figure 2c) in total. We compared PreMode against several baseline methods trained and tested
on the same training/testing datasets. Overall, PreMode performed better in all the genes than
baseline methods. It reached average AUC of 0.8~0.9 in genes CACNA1A, KCNJ11, and RET, and
average AUCs of 0.7~0.8 in ABCC8, BRAF, and TP53 (Figure 5a). Pretrained PreMode is better
than non-pretrained model for all genes. Low-capacity models such as random forest and single
layer perceptron fine-tuned ESM model is inferior to pretrained PreMode except for SCN2A
(Figure 5a). We also compared it to LoGoFunc*®, a method trained on G/LoF variants across
genes. As the training and testing split information were not available for LoGoFunc, we
removed the data curated from LoGoFunc in testing datasets for fair comparison. PreMode was
slightly worse than LoGoFunc in SCN5A and SCN2A but better in all other genes (Supplementary
Figure 8a). PreMode’s performances in SCN5A and SCN2A could be improved if we increase the
window size of 251 amino acids to 1251 amino acids (Supplementary Figure 8a). We noticed
that PreMode is also better in all three genes SCN2A, SCN5A, CACNA1A, and all ion channel
genes when using the same training testing data split as FunCion3® (Supplementary Figure 8b).

We next did ablation analysis on PreMode to identify the important features for Gain/Loss of
function predictions. Removing ESM or MSA information decreased PreMode’s overall
performances in 9 genes (Figure 5b). Removing structural input decreased the performance in
five out of nine genes except for SCN2A, SCN5A, RET and FGFR2 (Supplementary Figure 9). The
LoF variants in those genes were located in slightly lower pLDDT region (Figure 5c). We further
found that adding post-translational-modification (PTM) information (PhosphoSitePlus®®) into
the model input can improve the predictions in most genes but decreased the performance in
CACNA1A and BRAF (Supplementary Figure 9). In these two genes, the GoF variants are closer
to the PTM sites than LoF variants while the trend is opposite in the other genes (Figure 5d).
Overall, PreMode with PTM information reached highest performance in the weighted sum of
AUC across genes, followed by default setting PreMode and other methods (Figure 5b).

Next, we hypothesized that the gain and loss of function mechanisms are similar in the same
domain across genes, and can use this to further improve the GoF/LoF predictions in each gene.
We split the data in each gene by domains and only selected the domains with 215 G/LoF
variants for evaluation. We performed PreMode transfer learning within the domain using
either gene-specific data or data across genes while tested on the same data within one gene.
We observed increased performance in all of the domains when using data across genes rather
than using the gene alone (Supplementary Figure 10).

To be effective in applications in genetic analysis, a machine learning method should be able to
perform transfer learning with limited amount of data, as in most of the genes there are fewer
than 10 known G/LoF variants (Figure 2c). We therefore examined PreMode’s performance with
subsampled training data in ABCC8, BRAF, CACNA1A, KCNJ11, RET, TP53, where PreMode
reached 20.75 AUC with full training data. We found that PreMode could reach an AUC above
0.75 with less than 10 G/LoF variants data in ABCC8, KCNJ11 and RET (Figure 5e). For the other
three genes, low-capacity methods like random forest will reach equal performance as PreMode
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under the low training sample size. Overall, this result suggested that PreMode is still useful in
genes with small sample sizes.

PreMode predicted mode-of-action landscapes in individual proteins through in silico
saturated mutagenesis.

We further applied PreMode to infer the mode-of-action of all possible variants in BRAF, TP53,
PTEN, RET, and KCNJ11. We used a gradient boosting tree to combine the prediction scores of
all five models that trained on different subsets of data and applied to the other variants in
corresponding gene.

In BRAF, PreMode identified two regions that enriched GoF variants. One closer to the N-
terminal at a phorbol-ester/DAG-type zinc-finger domain and the other on the kinase domain
which includes the well-known V600 GoF position®? 2 (Figure 6a). The variants on the two
domains act through different gain/loss of function mechanisms. The phorbol-ester/DAG-type
zinc-finger domain auto-inhibits BRAF activity through binding with 14-3-3% while also
cooperating with Ras-binding domain (RBD) to bind with Ras and activate BRAF activity®*. To
validate PreMode’s predictions, we obtained B-Raf/14-3-3 and B-Raf/K-Ras binding structures
from PDB (7MFD) and AlphaFold2 (Colabfold®> implementation) predictions, respectively (Figure
6b). We then calculated the energy change on both structures upon mutations using FoldX®®.
We found that the LoF variants predicted by PreMode confer large energy changes that make
BRAF binding to both 14-3-3 and K-Ras unstable, while GoF variants only destabilize B-Raf
binding to 14-3-3 and maintain the binding stability to K-Ras at similar level as benign variants
(Figure 6¢). The ddG landscape suggested that the GoF variants in this region mostly act by
abolishing its inhibitory regulation®’. We further investigated the G/LoF variants predicted by
PreMode in the kinase domain. The kinase domain has both active (PDB: 4MNE) and inactive
(PDB: 4EHE) conformations with large and small enzyme pocket sizes, respectively®® (Figure 6d).
The FoldX ddG results were consistent with previous findings that GoF variants V600E/D can
destabilize the inactive state while stabilizing the active state® (Figure 6e). Similarly, we found
that the PreMode predicted LoF variants destabilize both conformations as well as the complex
of BRAF-MEK1 while GoF variants only destabilize the inactive conformation (Figure 6e,
Supplementary Figure 11).

TP53 is a tumor suppressor gene, and most of the pathogenic variants act through LoF.
However, there are a few regions enriched with GoF variants identified by PreMode, all on the
DNA binding domain of the p53 protein (Supplementary Figure 12a). Among those regions,
sites 291 and 292 are essential post-translational modification sites for p53 ubiquitination and
subsequent degradation’®. A previous study showed the variants at sites 121 and 290-292
increased the ability to induce apoptosis in cultured cells’* (Supplementary Figure 12a).

PreMode also identified several GoF enriched regions in RET and KCNJ11 (Supplementary Figure
12b, 12c). In RET, PreMode identified GoF enriched regions both in the kinase domain and
regulatory signaling domain near the extracellular binding sites. In KCNJ11, the regions are
located at transmembrane domains and cytoplasmic domains (44-60, 160-190, 200-210,225-
230,291-296, 320-340, PDB: 6C30). The region spanning positions 160-179 forms the core part
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of potassium channel in the tetramer (Supplementary Figure 13), especially residues L164 and
F168 that form the inner helix gate’?, and the regions spanning position 44-54, 179-185, 328-
340 forms the ATP/ADP binding pocket (Supplementary Figure 13).

PTEN is a tumor suppressor gene and an essential gene in fetal development. Loss of function in
PTEN can lead to multiple syndromes. As shown by deep mutational scan experiments3% 73,
some variants in PTEN can have different impacts on stability and enzyme activities. We applied
PreMode on 80% of the data from both functional assays to predict the effect of all possible
variants in PTEN. Although most of variants decrease both the protein stability and enzyme
function, PreMode identified variants that only disrupt stability but not enzyme function
(Supplementary Figure 14a, blue), and such variants are located all over the protein. Similarly,
PreMode identified variants that only disrupt enzyme function but not stability, all located in
the phosphatase domain (Supplementary Figure 14a, red). These variants may have dominant
negative effects. In fact, three known dominant negative variants in PTEN (C124S, G129E and
R130G)’% 7% were successfully predicted by PreMode to maintain stability while causing loss of
enzyme function, among which G129E was not in the training data. PreMode identified 4
regions enriched for such variants (Supplementary Figure 14a, pink). Further analysis showed
those regions are spatially close to each other and form the enzyme pocket around the
phosphatase site (Supplementary Figure 14b). Notably, PreMode can identify similar dominant-
negative variants enriched in a region with only 20% (398 points) of the dataset (Supplementary
Figure 15).

PreMode trained with active learning allows efficient few-shot transfer.

Deep mutational scan and directed evolution-based protein design experiments often incur
expensive time costs upon scaling up. We asked if PreMode can be used to help with
experimental design by active learning’®. In an active learning framework, PreMode was
iteratively trained on a set of experimental data and prioritized the variants to be measured in
the next rounds of experiments (Methods). We applied this framework to the protein design of
green fluorescence protein (GFP) on fluorescence strength. PreMode was able to predict the
fitness landscape of GFP with spearman correlation above state-of-the-art performance (0.69)’¢
7 to the experimental data using only 40% of the training data by adaptive learning, which is
much more efficient than randomly subsampling data (Supplementary Figure 16)

Discussion

Previous methods for predicting the effect of missense variant have been focused on
pathogenicity, which is a binary label. However, different pathogenic variants in the same gene
can have different modes of action, i.e., change the protein function in different or sometimes
opposite ways. It is challenging to predict mode-of-action because it is gene specific that varies
across genes depending on the functions of encoded proteins, yet there is very limited amount
of data in individual genes. In this study, we addressed this issue with a new deep learning
method, PreMode, that enables pretraining on large pathogenic datasets across genes and then
transfer learning in specific genes that have small number of variants with known mode-of-
action.
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To generate the training data for PreMode as well as understand the biochemical and
evolutionary differences of gain/loss-of-function variants, we curated and characterized the
largest-to-date missense variants that are known to act through different modes. Gain of
function variants tend to be located in low pLDDT regions and surfaces in Alphafold2 predicted
structures. Those regions are likely to be intrinsically disordered’® which implies conformational
heterogeneity and dynamics that could be associated with protein binding and regulatory
activities. On the contrary, loss of function variants tend to increase protein folding energy,
suggesting that some of these variants destabilize protein structures, while gain-of-function
variants tend to preserve protein folding integrity3>. Overall, these findings showed how variant
effects are associated with the protein structures and functions qualitatively. Gain-of-function
variants often act through preserving overall protein structure while operating through diverse
mechanisms by targeting specific structural domains, whereas LoF variants often destabilize
protein structures and tend to be distributed across structured regions. However, this overall
trend does not apply to some protein families, for examples GoF variants are more enriched in
alpha helixes that forms the transmembrane domain in the ion channel proteins. This highlights
the need for protein-specific rather than genome-wide Mode-of-Action predictions.
Additionally, available data are heavily uneven across genes, making deep learning algorithms
easily stuck at local minimum and gene properties to distinguish genes that tend to act through
G/LoF mechanisms while hard to distinguish G/LoF variants within same gene.

We proposed a framework to predict mode-of-action and selected 17 genes with sufficient deep
mutation scan data or labeled gain/loss-of-function missense variants for model development
and evaluation. The input features of PreMode include both protein language model
embeddings and representations of protein structure. PreMode performed gene-specific mode-
of-action predictions through a genome-wide pretrain stage and a gene-specific transfer
learning stage. This model architecture is based on the hypothesis that the sequence and
structural context that are informative for pathogenicity should also be informative for mode-of-
action predictions. At the molecular level, PreMode can simultaneously predict the multi-
dimensional biochemical impact of single missense variants, which can reveal potential
dominant negative variants that reduce protein function but maintain stability. We showed that
PreMode is efficient at transfer learning and that it can capture the fitness landscape of all
possible variants within one protein using around 40% of mutagenesis data. At genetic level,
PreMode can efficiently utilize a small amount labeled data (a few dozens) to accurately
distinguish G/LoF variants with an AUC of around 0.75 in most proteins. Additionally, we
showed PreMode’s utility in deep mutational scan experiments and protein engineering. First,
PreMode can improve efficiency of deep mutational scan experiments by detecting noisy data
points in single measurements. Second, PreMode can be applied to unmeasured genes by fine
tuning on the stability deep mutational experiments. Finally, PreMode can facilitate
mutagenesis-based protein directed evolution through adaptive learning by efficiently lowering
library sizes.

PreMode currently predicts a binary label as gain or loss of function. This is a limitation as it
does not capture the complexity of protein functional changes. For instance, ion channel
proteins undergo complex conformation changes and regulation to perform normal
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physiological functions?®. Large scale functional studies of these genes may provide additional
data that enable training of improved models. Furthermore, gain/loss of function could be
further divided into amorph, hypomorph, hypermorph, antimorph and neomorph according to
muller’s morphs’®. Accordingly, additional labeled data may facilitate the training of more
accurate and comprehensive models.

PreMode can be potentially improved in two aspects. First, increasing data set size in the
pretrain stage might improve the pathogenicity prediction as well as the transfer learning
performances in molecular mode-of-action predictions. Second, PreMode might benefit from
protein dynamics features, as ablation experiments showed it has lower performance for genes
where both G/LoF variants are located in regions with relatively low pLDDT values. A static
protein structure is not sufficient to model the variant effects in those regions.

Overall, our work suggested a potential direction for this new era of variant effect predictor
development. PreMode has the potential to accelerate our understanding of mode-of-actions,
contribute to better clinical diagnosis, therapeutic development and more broadly, artificial GoF
engineering of proteins.

Data and code availability
Data and code used in model training and analysis could be found at GitHub:
https://github.com/ShenLab/PreMode
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Methods

Training and testing datasets
We curated labeled pathogenic/benign variants, gain/loss of function variants, deep mutational
scan experiments from public databases and publications.

For gain/loss of function prediction tasks, we collected: 765 gain and 4,571 loss of function
missense variants from Barak, et al**; 669 gain and 1,232 loss of function variants from Clinical
Knowledge Base®%; 199 gain and 1,506 loss of function variants from cBioportal cancer
hotspots*?; 56 gain and 57 loss of function variants in ABCC8, GCK, KCNJ11 from Flanagan, et
al.*’; 45 gain and 7 loss of function variants in STAT1 from Kagawa, et al.*8, 537 gain and 349 loss
of function variants from Heyne, et al3®. More specifically, for variants in cBioportal, we first
calculate cancer hotspots based on existing algorithms®8, then annotate 199 variants in hotspots
of 27 oncogenic genes as gain of function and 1506 variants in 248 tumor suppressor genes as
loss of function based on COSMIC database®. We excluded genes with multiple cancer roles.

As the gain and loss of function variants were extremely biased across genes, we didn’t split the
training and testing dataset in common machine learning manner but split by protein-wise
manner with the following steps:

1. For each gene, we select 20% of GoF and 20% of LoF variants as testing. We use the rest
variants in the same gene as training.

2. We only kept genes with more than 15 GoF variants and 15 LoF variants for model evaluation.

For predicting pathogenicity, we collected 148,324 variants for training, including: 51,494
benign variants from PrimateAl*” and 32,350 non-overlapping benign variants from ClinVar with
at least one-star non-conflict submits that labeled as “benign” or “likely-benign”; 64,480
pathogenic variants from ClinVar database with at least one-star non-conflict submits’, non-
overlapping variants from HGMD?. We collected 1,066 variants for testing, including 533
pathogenic missense variants from somatic missense hotspots in 153 cancer driver genes that
not annotated above; and 533 benign variants from the same genes randomly selected from
ClinVar and PrimateAl not overlapped with training dataset.

For deep mutational scan assays, we collected datasets of PTEN, SNCA, CCR5, CXCR4, NUDT15,
CYP2C9, GCK, ASPA from MAVEDB® (Supplementary Table 2).

Input features

For a missense variant of interest, PreMode considers a 250 amino acid window flanking the
variant position and the residues as nodes, and constructs two graphs based on its protein
context; the first graph G, is a non-directed star graph that connect only the variant node and
the other nodes. The second graph G, is a non-directed K-nearest neighbor graph that connect
each node with its neighbors based on 3D Euclidean distance of the alpha carbon atoms.

Each node has a set of invariant features and structure features. The invariant features include:
Embeddings from the last layer of ESM2 (650M)?> (d=1280); Dssp>% >* annotated secondary
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structure and torsion angles from the AlphaFold2 predicted protein structures (d=12); pLDDT?*
for the AlphaFold2 prediction; Amino acid frequencies from MSA of 199 species that reflects
evolutionary conservation (d=20). The variant node has additional invariant feature of the
embedding of alternate amino acid. The structure features include a set of Euclidean vectors
from the alpha carbon to all other non-hydrogen atoms of side chain (d=3x35). If an atom does
not exist in the side chain, then it is set as 0.

Each edge has a set of invariant features and structure features. The invariant features include,
weighted covariance matrix between the amino acid frequencies of two residue sites in multiple
sequence alignments (MSA) of 199 species!® (ALGORITHM 1); Euclidean distances of beta
carbons between two residues (For glycine we use alpha carbon), transformed by exponential
smearing functions (ALGORITHM 2); The contact strength predicted by MSA transformer. The
structure features include the Euclidean vector of beta carbons between two residues.

ALGORITHM 1: Weighted MSA Encoder
Input: For node i, let M; be a one hot matrix with shape (199,21) indicating the amino
acids for each species on the index i of the aligned protein sequences; W, is a
learnable parameter of length 199 that weight the importance of species.
Output: A vector (;; that reflects the co-evolutional strength between node i, j

1 Wy = softmax(Wy)
2 For each node i do:

3 Mi = Mi k WM
4 For each edge (i, j) do:
7 Cij = Cij1 - Cijz

ALGORITHM 2: Edge Feature Encoder
Input: For node i, let M; be a one hot MSA matrix defined in ALGORITHM 1; CBl. be the

coordinates of beta carbon; Cont;; be the contact strength define.
Output: Edge invariant features E;;, structure features Bij.

1 For each edge (i, j) do:
2 C;j = WeightedMSAEncoder (M;, M;)
Dyj = Cp; — Cp,
_ 2
. _Wﬁ<e-Wa||Dij||2+Ba>
Dij =e
5 E;; = concat(Cyj, D;j, Cont;;)

Model architectures
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PreMode is an SE(3)-equivariant graph attention neural network with 4 layers.

First layer is a feature embedding layer that encodes the input features into latent dimensions.
This layer was designed separately for invariant features and structure features. For invariant
features, PreMode uses GeLU® as the activation function and linear layer of 512 dimensions
with weights W; and bias B; as output. The variant node has an additional embedding layer with
weights W, and bias B, to incorporate with the alternate amino acid embeddings (ALGORITHM
3). For structure features, PreMode uses a linear layer with weights W, but without bias term to
ensure the equivariance. The latent dimension is 32 (Supplementary Figure 1). For edge
features, PreMode encodes the pairwise MSA, Euclidean distances, contact predictions, relative
positions into a 444-dim invariant feature vector.

ALGORITHM 3: Feature Embedding Layer
Input: For node i, let I; be the input node invariant features; Ietfi be the input node
structural features. Let I. be the center node invariant features.
Output: Node invariant features X;, structural features §l-.
For each node i do:
If (node i is variant node) do:
I; = GeLU(I.W,. + B,)
X; = GeLU(I;W; + B;)
Si = LW,

u B WN R

Second and third layers are equivariant graph attention layers. We calculate the attention values
only between the connected nodes in star or KNN graphs defined in the features section. We
used a modified SE(3)-equivariant attention mechanism inspired from torchmd-net®! and
gMVP?Y to calculate the attention values that takes co-evolutional evolution, structure features
into consideration. The invariant and structure features were updated separately but share
information across each other based on the attention values to maintain equivariance
(ALGORITHM 4). Those two layers were designed to capture the biochemical context for the
residue of interest, where the second layer focuses more on the first order impact of amino acid
change to all other residues, and the third layer implicitly models the second order
consequences.

The last layer is a graph attention layer that designed to summarize the overall impact of the
variant to protein. It only takes the invariant embeddings output from the third layer to
calculate the attention values between center node to other nodes while don’t take structural
features.

ALGORITHM 4: SE(3)-equivariant Graph Attention Transformer Layer
Input: A graph G. For node i, let X; be the invariant features, §l- be its structure
features; For edge between node i, j. Let E;; be the invariant features, Bij be
structure features.
Output: A graph G with updated X; and §i
1 For each edge (i,j) do:
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2 Qi = XlVVq + Bq

3 K; = X;W, + B;

5 dK;; = SiLU(E;jWax + Bax)

6 dVi; = SiLU(E;jWa, + Bgy)

8 For each node i do:

9 0; = z A *V;
j

10 T = Z (XWe, + Be,) % Sj + (XjWe, + Br,) * D
j

11 dX; = (Vi) - (ViW,) * (0:Wo, + Bo,) + (0:Wo, + Bo,)

12 ds; = ViW,, * (0;W,, + Bo,) + Vi

13 X; = X; + drop_out(dX;)

14 S; = S; + drop_out(dS;)

Model training and testing

We trained PreMode with Adam®? algorithm. For predicting pathogenicity, we set learning rate
to le-4, batch size to 256 and trained 20 epochs. We randomly selected 5% of training data as
validation and calculated the loss on it every 250 steps. We decrease the learning rate by 0.8 if
observed a plateau on the validation loss until the minimum learning rate 1le-6. For transfer
learning on gene and protein family specific tasks, we set the batch size to 8, evaluate validation
loss every 100 batches and set the minimum learning rate to 1le-7. For pretrain pathogenicity
task, we used 4 NVIDIA A40 GPUs, and it took about 50h. For gene specific mode-of-action
tasks, we used 1 NVIDIA A40 GPU, and it took 0.5~6h depending on the data sizes.

We selected the model saved at the batch or epoch with minimum validation loss for testing.
We calculated the AUROC (area under recall receiver operating characteristic curve) to assess
the performances of models. For pretrain on the pathogenicity task, we only calculated one
AUROC value. For transfer learning tasks, we calculated AUROC for all five random
training/testing splits and calculated the average and standard deviation.

Baseline Methods and ablation analysis

For both molecular and genetics level mode-of-action predictions, we created several baseline
methods to compare PreMode with. First, we built a single layer perceptron (SLP) model on top
of the ESM embeddings (ESM + SLP). This model took all invariant features (ESM2 embeddings,
amino acid changes, conservation in MSA) that same as PreMode as inputs, followed by one
linear layer and GeLU activation layer. Next, we implemented several ablation analyses on
PreMode. For structure feature ablation, we replaced all structural features with zeros, and
constructed the star and KNN graphs based on the 1D-distance on the sequences. For ESM
embedding feature ablation, we replaced the ESM embeddings with one-hot encodings of 20
amino acids. For MSA feature ablation, we replaced all MSA features with zeros. All the models
above were trained under same training configurations as PreMode at both pretrain and
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transfer learning stages. Lastly, we implemented low-capacity machine learning models using
only biochemical properties as inputs, including conservation, secondary structure, reference,
and alternate amino acid identities, pLDDT and ddG. For molecular-level mode-of-action
predictions, we implemented it with elastic net linear regression model while for genetics-level
mode-of-action predictions, we implemented it with random forest classification model.

Curation of prediction scores from other methods

In the pathogenicity prediction comparison, we directly obtained the prediction scores for
PrimateAl, EVE, REVEL from dbNSFP (v4.4a)%3. For gMVP, AlphaMissense, ESM1b, we obtained
the prediction scores from their original publications®: 2% 28,

In the molecular mode-of-action prediction comparison, we selected three models with top
performances reported in Hsu, et al.>°, Augmented ESM1b, Augmented EVmutation and
Augmented Unirep. We didn’t compare with Augmented DeepSequence due to errors in the
publicly available codes. Instead, we trained the augmented model using evolutionary density
score from EVE'®, as both models were based on variational autoencoders on MSA. We trained
and tested those models using the same MSA and protein sequence inputs as well as same
training and testing data as PreMode.

In the genetic mode-of-action prediction comparison, we obtained LoGoFunc prediction scores
from https://itanlab.shinyapps.io/goflof/. For FunCion, we obtained their codes and
training/testing split information from their github page
(https://github.com/heyhen/funNCion). We compared PreMode and their model’s performance
using their training/testing split as well as ours. For FuNCion, their original implementation of
gradient boosting machine learning method in R “caret” package will raise errors under small
sample sizes, we reimplemented the gradient boosting method in python “sklearn” package and
reported both AUCs.

Subsample of datasets

For deep mutational scan datasets, we subsampled the data to investigate how many points
were required for sufficient adaptation to the tasks in transfer learning. For each of the multi-
dimensional assays, we randomly subsampled training data to 10%, 20%, 40%, 60%, 80% of
whole datasets 5 times with different random seeds and testing on the same 20% of whole
datasets. We performed PreMode on each of the training data and evaluate the performance.

In silico saturated mutagenesis experiments

We did in silico saturated mutagenesis experiments for BRAF, TP53, KCNJ11, RET, and PTEN. For
each gene, we calculate two predictions r (pathogenicity score) and 8 (Gain/Loss of function
score) with pretrained model and corresponding transfer-learning models, respectively. For 6,
there are 5 predicted scores from models trained on 5 training/testing splits under different
random seeds. We selected the models with minimum validation loss under each
training/testing split and ensembled the predictions by voting with a simple random forest
model.
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Active Learning experiments

We split the deep mutational scan experiment datasets to 80% of training data and 20% of
testing data. Within the 80% of training data, we first performed PreMode transfer learning on
10% of the randomly selected data, then evaluated PreMode on the rest of 70% data. PreMode
will output both predicted values as well as model confidence values. Then we selected the top
10% of data among the rest of training data where PreMode was most unconfident and added

them to the next round of training. We repeated this procedure until all the training data were
used.
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Figure 2. Characterization of gain-/loss-of-function variants.
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Figure 5. PreMode performances in genetic mode-of-action prediction tasks. A) Performances of
PreMode and baseline methods on gain- and loss-of-function predictions in 9 genes. B) Ablation
analysis of PreMode on gain- and loss-of-function predictions in 9 genes, for each model, AUC in
9 genes were weighted summed by the dataset sizes. C) Comparison of variant site pLDDT on
BRAF, TP53, ABCC8, KCNJ11, CACNA1A (left) versus SCN2A, FGFR2, RET, SCN5A (right). D)
Comparison of distances between variant site to the closest PTM site on SCN2A, FGFR2, RET,
SCN5A, TP53, ABCC8, KCNJ11 (left) versus BRAF, CACNA1A (right). E) Few-shot transfer learning
of PreMode and base line method on 6 genes.
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Figure 6. PreMode in-silico mutagenesis mode-of-action predictions on BRAF. A) PreMode
predictions visualized with BRAF protein domains, x-axis are annotations and amino acid
changes, y-axis are amino acid positions. The first few columns indicate Alphafold2 pLDDT,
relevant solvent accessibility, secondary structures, protein domains, respectively. The left panel
showed PreMode’s pathogenicity predictions and labels used in training, pink indicates
predicted pathogenic, light blue indicates predicted benign, red indicates pathogenic and blue
indicates benign in training data, white indicates reference amino acid. The right panel showed
PreMode’s G/LoF predictions and labels used in training, pink indicates predicted GoF, light blue
indicates predicted LoF, white indicates predicted benign. Red indicates GoF and blue indicates
LoF in training data. B) Braf binding to 14-3-3 (left) and Kras (right) structures. Red is Braf
phorbol-ester/DAG-type zinc finger domain, green is Braf Ras binding domain (RBD), light blue is
the rest of Braf, pink and white are two 14-3-3 proteins, yellow is Kras. C) Energy change upon
mutations of Braf phorbol-ester/DAG-type zinc finger domain on the inactive state (Braf-14-3-3
binding, y-axis) versus active state (Braf-Kras binding, x-axis), colored by PreMode predictions
(left panel) and labels in training (right panel). D) Braf kinase domain inactive state
conformation (left panel) and active state conformation (right panel), red is the active site, blue
shows the flexible region, light blue shows the rest of kinase domain. E) Energy change upon



mutations of Braf kinase domain on the inactive state (y-axis) versus active state (x-axis), colored
by PreMode predictions (left panel) and labels in training (right panel).
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