RT Journal Article SR Electronic T1 MTAP loss correlates with an immunosuppressive profile in GBM and its substrate MTA stimulates alternative macrophage polarization JF bioRxiv FD Cold Spring Harbor Laboratory SP 329664 DO 10.1101/329664 A1 Landon J. Hansen A1 Rui Yang A1 Karolina Woroniecka A1 Lee Chen A1 Hai Yan A1 Yiping He YR 2018 UL http://biorxiv.org/content/early/2018/05/24/329664.abstract AB Glioblastoma (GBM) is a lethal brain cancer known for its potent immunosuppressive effects. Loss of Methylthioadenosine Phosphorylase (MTAP) expression, via gene deletion or epigenetic silencing, is one of the most common alterations in GBM. Here, we show that MTAP loss in GBM cells is correlated with differential expression of immune regulatory genes. In silico analysis of gene expression profiles in GBM samples revealed that low MTAP expression is correlated with reduced proportions of γδT cells, fewer activated CD4 cells, and an increased proportion of M2 macrophages. Using in vitro macrophage models, we found that methylthioadenosine (MTA), the metabolite that accumulates as a result of MTAP loss in GBM cells, promotes the immunosuppressive alternative activation (M2) of macrophages. We show that this effect of MTA on macrophages is independent of IL4/IL3 signaling, is mediated by the adenosine A2B receptor, and can be pharmacologically reversed. This study suggests that MTAP loss in GBM cells contributes to the immunosuppressive microenvironment, and that MTAP status should be a factor for consideration in understanding GBM immune states and devising immunotherapy-based approaches for treating MTAP-null GBM.MTAmethylthioadenosineMTAPmethylthioadenosine phosphorylaseGBMglioblastomaRT-qPCRreverse transcription quantitative polymerase chain reactionB. AcidBetulinic AcidLC-MS/MSLiquid chromatography tandem mass spectrometry