RT Journal Article SR Electronic T1 A capsular polysaccharide-expressing live vaccine suppresses streptococcal toxic shock-like syndrome and provides sequence type-independent protection during Streptococcus suis infection JF bioRxiv FD Cold Spring Harbor Laboratory SP 335349 DO 10.1101/335349 A1 Zhiwei Li A1 Peixi Chang A1 Jiali Xu A1 Chen Tan A1 Xiaohong Wang A1 Weicheng Bei A1 Jinquan Li YR 2018 UL http://biorxiv.org/content/early/2018/05/31/335349.abstract AB Streptococcus suis (S. suis) is an encapsulated zoonotic pathogen, which is responsible for bacterial meningitis and streptococcal toxic shock-like syndrome (STSLS). Despite many attempts to develop an effective vaccine, none is currently available. Here, a capsular polysaccharide (CPS)-expressing attenuated mutant 2015033 was constructed by deleting five virulence-associated factors (sly, scpA, ssnA, fhb, and ssads) in an outbreak S. suis strain SC19. Genes mentioned above are associated with either innate immunity-evading or tissue barrier-invading. Deletion of these genes did not impact the growth ability and CPS generation of 2015033, and the mutant exhibited no hemolytic activity to erythrocytes and no cytotoxicity to different epithelial or endothelial cells. In addition, 2015033 was more easily eliminated by whole human blood in vitro and by mouse blood in vivo. In addition, 2015033 showed a diminished invasive ability in different mouse organs (brain, lung, and liver) and avirulent properties in mice associated with weak inflammation-inducing ability. Immunization with 2015033 triggered T cell-dependent immunity and this immunity suppressed STSLS during SC19 infection by inhibiting excessive proinflammatory responses. In addition, immunization with 2015033 successfully conferred sequence type (STs)-independent protection to mice during heterogeneous infections (ST1, ST7, and ST658). This study presents the feasibility of the strategy of multi-gene deletion for the development of promising live vaccines against invasive encapsulated pathogens.IMPORTANCE S. suis is a traditional zoonotic agent causing human meningitis and STSLS, which is also a neglected emerging food-borne pathogen. Increasing antimicrobial resistance invokes reduction of preventative use of antibiotics in livestock creating an urgent need for effective vaccines. Given the expression of CPS is the basis for promising vaccines against encapsulated pathogens, and in order to find an effective and economical strategy for CPS-based vaccine development, multi-gene deletion was introduced into the design of a S. suis vaccine for the first time. From our results, CPS-expressing attenuated mutant 2015033 exhibited diminished evasive ability against the innate immune system and reduced invasive properties against different host barriers. To our knowledge, 2015033 is the first STSLS-suppressing S. suis vaccine to provide STs-independent protection during heterogeneous infections.