PT - JOURNAL ARTICLE AU - Alfredo Rago AU - Kostas Kouvaris AU - Tobias Uller AU - Richard Watson TI - How adaptive plasticity evolves when selected against AID - 10.1101/339622 DP - 2018 Jan 01 TA - bioRxiv PG - 339622 4099 - http://biorxiv.org/content/early/2018/06/05/339622.short 4100 - http://biorxiv.org/content/early/2018/06/05/339622.full AB - Adaptive plasticity allows organisms to cope with environmental change, thereby increasing the population’s long-term fitness. However, individual selection can only compare the fitness of individuals within each generation: if the environment changes more slowly than the generation time (i.e., a coarse-grained environment) a population will not experience selection for plasticity even if it is adaptive in the long-term. How does adaptive plasticity then evolve? One explanation is that, if competing alleles conferring different degrees of plasticity persist across multiple environments, natural selection between lineages carrying those alleles could select for adaptive plasticity (lineage selection).We show that adaptive plasticity can evolve even in the absence of such lineage selection. Instead, we propose that adaptive plasticity in coarse-grained environments evolves as a by-product of inefficient short-term natural selection. In our simulations, populations that can efficiently respond to selective pressures follow short-term, local, optima and have lower long-term fitness. Conversely, populations that accumulate limited genetic change within each environment evolve long-term adaptive plasticity even when plasticity incurs short-term costs. These results remain qualitatively similar regardless of whether we decrease the efficiency of natural selection by increasing the rate of environmental change or decreasing mutation rate, demonstrating that both factors act via the same mechanism. We demonstrate how this mechanism can be understood through the concept of learning rate.Our work shows how plastic responses that are costly in the short term, yet adaptive in the long term, can evolve as a by-product of inefficient short-term selection, without selection for plasticity at either the individual or lineage level.