RT Journal Article SR Electronic T1 Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias JF bioRxiv FD Cold Spring Harbor Laboratory SP 347260 DO 10.1101/347260 A1 Ming Bo Cai A1 Nicolas W. Schuck A1 Jonathan W. Pillow A1 Yael Niv YR 2018 UL http://biorxiv.org/content/early/2018/06/14/347260.abstract AB The activity of neural populations in the brains of humans and animals can exhibit vastly different spatial patterns when faced with different tasks or environmental stimuli. The degree of similarity between these neural activity patterns in response to different events is used to characterize the representational structure of cognitive states in a neural population. The dominant methods of investigating this similarity structure first estimate neural activity patterns from noisy neural imaging data using linear regression, and then examine the similarity between the estimated patterns. Here, we show that this approach introduces spurious bias structure in the resulting similarity matrix, in particular when applied to fMRI data. This problem is especially severe when the signal-to-noise ratio is low and in cases where experimental conditions cannot be fully randomized in a task. We propose Bayesian Representational Similarity Analysis (BRSA), an alternative method for computing representational similarity, in which we treat the covariance structure of neural activity patterns as a hyper-parameter in a generative model of the neural data. By marginalizing over the unknown activity patterns, we can directly estimate this covariance structure from imaging data. This method offers significant reductions in bias and allows estimation of neural representational similarity with previously unattained levels of precision at low signal-to-noise ratio. The probabilistic framework allows for jointly analyzing data from a group of participants. The method can also simultaneously estimate a signal-to-noise ratio map that shows where the learned representational structure is supported more strongly. Both this map and the learned covariance matrix can be used as a structured prior for maximum a posteriori estimation of neural activity patterns, which can be further used for fMRI decoding. We make our tool freely available in Brain Imaging Analysis Kit (BrainIAK).Author summary We show the severity of the bias introduced when performing representational similarity analysis (RSA) based on neural activity pattern estimated within imaging runs. Our Bayesian RSA method significantly reduces the bias and can learn a shared representational structure across multiple participants. We also demonstrate its extension as a new multi-class decoding tool.