RT Journal Article SR Electronic T1 The C. difficile clnRAB operon initiates adaptations to the host environment in response to LL-37 JF bioRxiv FD Cold Spring Harbor Laboratory SP 347286 DO 10.1101/347286 A1 Emily C. Woods A1 Adrianne N. Edwards A1 Shonna M. McBride YR 2018 UL http://biorxiv.org/content/early/2018/06/14/347286.abstract AB To cause disease, Clostridioides (Clostridium) difficile must resist killing by innate immune effectors in the intestine, including the host antimicrobial peptide, cathelicidin (LL-37). The mechanisms that enable C. difficile to adapt to the intestine in the presence of antimicrobial peptides are unknown. Expression analyses revealed an operon, CD630_16170-CD630_16190 (clnRAB), which is highly induced by LL-37 and is not expressed in response to other cell-surface active antimicrobials. This operon encodes a predicted transcriptional regulator (clnR) and an ABC transporter system (clnAB), all of which are required for function. Analyses of a clnR mutant indicate that ClnR is a pleiotropic regulator that directly binds to LL-37 and controls expression of numerous genes, including many involved in metabolism, cellular transport, signaling, gene regulation, and pathogenesis. The data suggest that ClnRAB is a novel regulatory mechanism that senses LL-37 as a host signal and regulates gene expression to adapt to the host intestinal environment during infection.Author Summary C. difficile is a major nosocomial pathogen that causes severe diarrheal disease. Though C. difficile is known to inhabit the human gastrointestinal tract, the mechanisms that allow this pathogen to adapt to the intestine and survive host defenses are not known. In this work, we investigated the response of C. difficile to the host defense peptide, LL-37, to determine the mechanisms underlying host adaptation and survival. Expression analyses revealed a previously unknown locus, which we named clnRAB, that is highly induced by LL-37 and acts as a global regulator of gene expression in C. difficile. Mutant analyses indicate that ClnRAB is a novel regulatory system that senses LL-37 as a host signal to regulate adaptation to the intestinal environment.