PT - JOURNAL ARTICLE AU - Elise L.V. Malavasi AU - Kyriakos D. Economides AU - Ellen Grünewald AU - Paraskevi Makedonopoulou AU - Philippe Gautier AU - Shaun Mackie AU - Laura C. Murphy AU - Hannah Murdoch AU - Darragh Crummie AU - Fumiaki Ogawa AU - Daniel L. McCartney AU - Shane T. O’Sullivan AU - Karen Burr AU - Helen S. Torrance AU - Jonathan Phillips AU - Marion Bonneau AU - Susan M. Anderson AU - Paul Perry AU - Matthew Pearson AU - Costas Constantinides AU - Hazel Davidson-Smith AU - Mostafa Kabiri AU - Barbara Duff AU - Mandy Johnstone AU - H. Greg Polites AU - Stephen Lawrie AU - Douglas Blackwood AU - Colin A. Semple AU - Kathryn L. Evans AU - Michel Didier AU - Siddharthan Chandran AU - Andrew M. McIntosh AU - David J. Price AU - Miles D. Houslay AU - David J. Porteous AU - J. Kirsty Millar TI - DISC1 regulates N-Methyl-D-Aspartate receptor dynamics: Abnormalities induced by a <em>Disc1</em> mutation modelling a translocation linked to major mental illness AID - 10.1101/349365 DP - 2018 Jan 01 TA - bioRxiv PG - 349365 4099 - http://biorxiv.org/content/early/2018/06/17/349365.short 4100 - http://biorxiv.org/content/early/2018/06/17/349365.full AB - The neuromodulatory gene DISC1 is disrupted by a t(1;11) translocation that is highly penetrant for schizophrenia and affective disorders, but how this translocation affects DISC1 function is incompletely understood. N-Methyl-D-Aspartate receptors (NMDAR) play a central role in synaptic plasticity and cognition, and are implicated in the pathophysiology of schizophrenia through genetic and functional studies. We show that the NMDAR subunit GluN2B complexes with DISC1-associated trafficking factor TRAK1, while DISC1 interacts with the GluN1 subunit and regulates dendritic NMDAR motility in cultured mouse neurons. Moreover, in the first mutant mouse that models DISC1 disruption by the translocation, the pool of NMDAR transport vesicles and surface/synaptic NMDAR expression are increased. Since NMDAR cell surface/synaptic expression is tightly regulated to ensure correct function, these changes in the mutant mouse are likely to affect NMDAR signalling and synaptic plasticity. Consistent with these observations, RNASeq analysis of translocation carrier-derived human neurons indicates abnormalities of excitatory synapses and vesicle dynamics. RNASeq analysis of the human neurons also identifies many differentially expressed genes previously highlighted as putative schizophrenia and/or depression risk factors through large-scale genome-wide association and copy number variant studies, indicating that the translocation triggers common disease pathways that are shared with unrelated psychiatric patients. Altogether our findings suggest that translocation-induced disease mechanisms are likely to be relevant to mental illness in general, and that such disease mechanisms include altered NMDAR dynamics and excitatory synapse function. This could contribute to the cognitive disorders displayed by translocation carriers.