RT Journal Article SR Electronic T1 Prioritization of enhancer mutations by combining allele-specific chromatin accessibility with deep learning JF bioRxiv FD Cold Spring Harbor Laboratory SP 2019.12.21.885806 DO 10.1101/2019.12.21.885806 A1 Zeynep Kalender Atak A1 Ibrahim Ihsan Taskiran A1 Christopher Flerin A1 David Mauduit A1 Liesbeth Minnoye A1 Gert Hulsemans A1 Valerie Christiaens A1 Ghanem-Elias Ghanem A1 Jasper Wouters A1 Stein Aerts YR 2019 UL http://biorxiv.org/content/early/2019/12/23/2019.12.21.885806.abstract AB Prioritization of non-coding genome variation benefits from explainable AI to predict and interpret the impact of a mutation on gene regulation. Here we apply a specialized deep learning model to phased melanoma genomes and identify functional enhancer mutations with allelic imbalance of chromatin accessibility and gene expression.