@article {Chuffart040113, author = {Florent Chuffart and Magali Richard and Daniel Jost and H{\'e}l{\`e}ne Duplus-Bottin and Yoshikazu Ohya and Ga{\"e}l Yvert}, title = {Exploiting single-cell quantitative data to map genetic variants having probabilistic effects}, elocation-id = {040113}, year = {2016}, doi = {10.1101/040113}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Despite the recent progress in sequencing technologies, genome-wide association studies (GWAS) remain limited by a statistical-power issue: many polymorphisms contribute little to common trait variation and therefore escape detection. The small contribution sometimes corresponds to incomplete penetrance, which may result from probabilistic effects on molecular regulations. In such cases, genetic mapping may benefit from the wealth of data produced by single-cell technologies. We present here the development of a novel genetic mapping method that allows to scan genomes for single-cell Probabilistic Trait Loci that modify the statistical properties of cellular-level quantitative traits. Phenotypic values are acquired on thousands of individual cells, and genetic association is obtained from a multivariate analysis of a matrix of Kantorovich distances. No prior assumption is required on the mode of action of the genetic loci involved and, by exploiting all single-cell values, the method can reveal non-deterministic effects. Using both simulations and yeast experimental datasets, we show that it can detect linkages that are missed by classical genetic mapping. A probabilistic effect of a single SNP on cell shape was detected and validated. The method also detected a novel locus associated with elevated gene expression noise of the yeast galactose regulon. Our results illustrate how single-cell technologies can be exploited to improve the genetic dissection of certain common traits.AUTHOR SUMMARY Genetic association studies are usually conducted on phenotypes measured at the scale of whole tissues or individuals, and not at the scale of individual cells. However, some common traits, such as cancer, can result from a minority of cells that adopted a special behavior. From one individual to another, DNA variants can modify the frequency of such cellular behaviors. The body of one of the individuals then harbours more misbehaving cells and is therefore predisposed to a macroscopic phenotypic change, such as disease. Such genetic effects are probabilistic, they contribute little to trait variation at the macroscopic level and therefore largely escape detection in classical studies. We have developed a novel statistical method that uses single-cell measurements to detect variants of the genome that have non-deterministic effects on cellular traits. The approach is based on a comparison of distributions of single-cell traits. We applied it to colonies of yeast cells and showed that it can detect mutations that change cellular morphology or molecular regulations in a probabilistic manner. This opens the way to study multicellular organisms from a novel angle, by exploiting single-cell technologies to detect genetic variants that predispose to certain diseases or common traits.}, URL = {https://www.biorxiv.org/content/early/2016/02/18/040113}, eprint = {https://www.biorxiv.org/content/early/2016/02/18/040113.full.pdf}, journal = {bioRxiv} }