TY - JOUR T1 - Integration of Dominance and Marker <em>×</em> Environment Interactions into Maize Genomic Prediction Models JF - bioRxiv DO - 10.1101/362608 SP - 362608 AU - Luis Felipe Ventorim Ferrão AU - Caillet Dornelles Marinho AU - Patricio R. Munoz AU - Marcio F. R. Resende, Jr Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/07/04/362608.abstract N2 - Hybrid breeding programs are driven by the potential to explore the heterosis phenomenon in traits with non-additive inheritance. Traditionally, progress has been achieved by crossing lines from different heterotic groups and measuring phenotypic performance of hybrids in multiple environment trials. With the reduction in genotyping prices, genomic selection has become a reality for phenotype prediction and a promising tool to predict hybrid performances. However, its prediction ability is directly associated with models that represent the trait and breeding scheme under investigation. Herein, we assess modelling approaches where dominance effects and multi-environment statistical are considered for genomic selection in maize hybrid. To this end, we evaluated the predictive ability of grain yield and grain moisture collected over three production cycles in different locations. Hybrid genotypes were inferred in silico based on their parental inbred lines using single-nucleotide polymorphism markers obtained via a 500k SNP chip. We considered the importance to decomposes additive and dominance marker effects into components that are constant across environments and deviations that are group-specific. Prediction within and across environments were tested. The incorporation of dominance effect increased the predictive ability for grain production by up to 30% in some scenarios. Contrastingly, additive models yielded better results for grain moisture. For multi-environment modelling, the inclusion of interaction effects increased the predictive ability overall. More generally, we demonstrate that including dominance and genotype by environment interactions resulted in gains in accuracy and hence could be considered for genomic selection implementation in maize breeding programs. ER -