TY - JOUR T1 - A Genetically Encoded Trimethylsilyl 1D <sup>1</sup>H-NMR Probe for Conformation Change in Large Membrane Protein Complexes JF - bioRxiv DO - 10.1101/2019.12.18.873729 SP - 2019.12.18.873729 AU - Qi Liu AU - Qing-tao He AU - Xiao-xuan Lyu AU - Fan Yang AU - Zhong-liang Zhu AU - Peng Xiao AU - Zhao Yang AU - Feng Zhang AU - Zhao-ya Yang AU - Xiao-yan Wang AU - Peng Sun AU - Qian-wen Wang AU - Chang-xiu Qu AU - Zheng Gong AU - Jing-Yu Lin AU - Zhen Xu AU - Shao-le Song AU - Shen-ming Huang AU - Sheng-chao Guo AU - Ming-jie Han AU - Kong-kai Zhu AU - Xin Chen AU - Alem W. Kahsai AU - Kun-Hong Xiao AU - Wei Kong AU - Xiao Yu AU - Ke Ruan AU - Fa-hui Li AU - Xiao-gang Niu AU - Chang-wen Jin AU - Jiangyun Wang AU - Jin-peng Sun Y1 - 2020/01/01 UR - http://biorxiv.org/content/early/2020/01/12/2019.12.18.873729.abstract N2 - While one dimensional 1H nuclear magnetic resonance (1D 1H-NMR) spectroscopy is one of the most important and convenient method for measuring conformation change in biomacromolecules, characterization of protein dynamics in large membrane protein complexes by 1D 1H-NMR remains challenging, due to the difficulty of spectra assignment, low signal-to-noise ratio (S/N) and the need for large amount of protein. Here we report the site-specific incorporation of 4-trimethylsilyl phenylalanine (TMSiPhe) into proteins, through genetic code expansion in Escherichia coli cells, and the measurement of multiple conformational states in membrane protein complex by 1D 1H-NMR. The unique up-field 1H-NMR chemical shift of TMSiPhe, highly efficient and specific incorporation of TMSiPhe enabled facile assignment of the TMSiPhe 1H-NMR signal, and characterization of multiple conformational state in a 150 kilodalton (kD) membrane protein complex, using only 5 μM of protein and 20 min spectra accumulation time. This highly efficient and convenient methods should be broadly applicable for the investigation of dynamic conformation change of protein complexes. ER -