RT Journal Article SR Electronic T1 Chromatin modifiers and recombination factors promote a telomere fold-back structure, that is lost during replicative senescence JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.01.13.904086 DO 10.1101/2020.01.13.904086 A1 Tina Wagner A1 Lara Perez-Martinez A1 René Schellhaas A1 Marta Barrientos-Moreno A1 Merve Öztürk A1 Félix Prado A1 Falk Butter A1 Brian Luke YR 2020 UL http://biorxiv.org/content/early/2020/01/13/2020.01.13.904086.abstract AB Telomeres adopt a lariat conformation and hence, engage in long and short distance intra-chromosome interactions. Budding yeast telomeres were proposed to fold back into subtelomeric regions, but a robust assay to quantitatively characterize this structure has been lacking. Therefore, it is not well understood how the interactions between telomeres and non-telomeric regions are established and regulated. We employ a telomeric chromosome conformation capture (Telo-3C) approach to directly analyze telomere folding and its maintenance in S. cerevisiae. We identify the histone modifiers Sir2, Sin3 and Set2 as critical regulators for telomere folding, which suggests that a distinct telomeric chromatin environment is a major requirement for the folding of yeast telomeres. We demonstrate that telomeres are not folded when cells enter replicative senescence, which occurs independently of short telomere length. Indeed, Sir2, Sin3 and Set2 protein levels are decreased during senescence and their absence may thereby prevent telomere folding. Additionally, we show that the homologous recombination machinery, including the Rad51 and Rad52 proteins, as well as the checkpoint component Rad53 are essential for establishing the telomere fold-back structure. This study outlines a method to interrogate telomere-subtelomere interactions at a single unmodified yeast telomere. Using this method, we provide insights into how the spatial arrangement of the chromosome end structure is established and demonstrate that telomere folding is compromised throughout replicative senescence.Author summary Telomeres are the protective caps of chromosome ends and prevent the activation of a local DNA damage response. In many organisms, telomeres engage in a loop-like structure which may provide an additional layer of end protection. As we still lack insight into the regulation of the folded telomere structure, we used budding yeast to establish a method to measure telomere folding and then study the genetic requirements for its establishment. We found that cells require the homologous recombination machinery as well as components of the DNA damage checkpoint to successfully establish a folded telomere. Through the deletion of telomerase in budding yeast, we investigated how telomere folding was regulated during replicative senescence, a process that occurs in the majority of telomerase negative human cells. During senescence, telomeres gradually shorten and erode until cells stop dividing which is a potent tumor suppressor and prevents unscheduled growth of potential cancer cells. We found, that the folded telomere structure is compromised as part of the cellular senescence response, but not due to telomere shortening per se. We think, that an altered telomeric chromatin environment during senescence is important to maintain an open state – which may be important for signaling or for repair.