PT - JOURNAL ARTICLE AU - Di Wu AU - Jennifer Koch AU - Mark Coggeshall AU - John Carlson TI - The first genetic linkage map for <em>Fraxinus pennsylvanica</em> and syntenic relationships with four related species AID - 10.1101/365676 DP - 2018 Jan 01 TA - bioRxiv PG - 365676 4099 - http://biorxiv.org/content/early/2018/07/09/365676.short 4100 - http://biorxiv.org/content/early/2018/07/09/365676.full AB - Green ash (Fraxinus pennsylvanica) is an outcrossing, diploid (2n=46) hardwood tree species, native to North America. Native ash species in North America are being threatened by the rapid invasion of emerald ash borer (EAB, Agrilus planipennis) from Asia. Green ash, the most widely distributed ash species, is severely affected by EAB infestation, yet few resources for genetic studies and improvement of green ash are available. In this study, a total of 5,712 high quality single nucleotide polymorphisms (SNPs) were discovered using a minimum allele frequency of 1% across the entire genome through genotyping-by-sequencing. We also screened hundreds of genomic- and EST-based microsatellite markers (SSRs) from previous de novo assemblies (Staton et al. 2015; Lane et al. 2016). A first genetic linkage map of green ash was constructed from 91 individuals in a full-sib family, combining 2,719 SNP and 84 SSR segregating markers among the parental maps. The consensus SNP and SSR map contains a total of 1,201 markers in 23 linkage groups spanning 2008.87cM, at an average inter-marker distance of 1.67 cM with a minimum logarithm of odds (LOD) of 6 and maximum recombination fraction of 0.40. Comparisons of the organization the green ash map with the genomes of asterid species coffee and tomato, and genomes of the rosid species poplar and peach, showed areas of conserved gene order, with overall synteny strongest with coffee.