RT Journal Article SR Electronic T1 p130Cas contributes to cellular mechanosensing and force exertion JF bioRxiv FD Cold Spring Harbor Laboratory SP 371021 DO 10.1101/371021 A1 Hedde van Hoorn A1 Dominique M. Donato A1 H. Emrah Balcioglu A1 Erik H. Danen A1 Thomas Schmidt YR 2018 UL http://biorxiv.org/content/early/2018/07/17/371021.abstract AB Cell survival, differentiation, and migration are all dependent on the cell’s interaction with its external environment. In addition to chemical cues, cells react to their physical environment, particularly the stiffness of the substrate. In order for cells to react to these elements, they must make use of cellular machinery to signal changes in their microenvironment. One such proposed machinery is the protein p130Cas, which has been shown to regulate focal adhesion turnover, actin dynamics, and cell migration. Here we show that p130Cas localizes to focal adhesions depending on substrate stiffness and subsequently modulates cellular force exertion. We compared on substrates of tunable stiffness knock-out CAS-/-cells to cells re-expressing either the full-length p130Cas or a mutant lacking the focal adhesion targeting domains. On polyacrylamide gels, we observed that p130Cas prevented focal adhesion formation at low stiffness. On structured micro-pillar arrays, p130Cas preferentially localized to sites of force exertion when the apparent Young’s modulus of the substrate was higher than E = 47 kPa. Stiffness-dependent localization of p130Cas coincided with slower, but increased force exertion for the full-length p130Cas. Cas localization to focal adhesions preceded force build-up by three minutes, suggesting a coordinating role for p130Cas in the cellular mechanoresponse. Thus, p130Cas appears to relay mechanosensory information in the cell through its ability to tune force exertion at the focal adhesion.