RT Journal Article SR Electronic T1 Loss of slc39a14 causes simultaneous manganese deficiency and hypersensitivity in zebrafish JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.01.31.921130 DO 10.1101/2020.01.31.921130 A1 Karin Tuschl A1 Richard J White A1 Leonardo E Valdivia A1 Stephanie Niklaus A1 Isaac H Bianco A1 Ian M Sealy A1 Stephan CF Neuhauss A1 Corinne Houart A1 Stephen W Wilson A1 Elisabeth M Busch-Nentwich YR 2020 UL http://biorxiv.org/content/early/2020/01/31/2020.01.31.921130.abstract AB Mutations in SLC39A14, a manganese uptake transporter, lead to a neurodegenerative disorder characterised by accumulation of manganese in the brain and rapidly progressive dystonia-parkinsonism (Hypermanganesemia with Dystonia 2, HMNDYT2). Similar to the human phenotype, zebrafish slc39a14U801-/- mutants show prominent brain manganese accumulation and abnormal locomotor behaviour. In order to identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of individual homozygous mutant and sibling slc39a14U801 zebrafish at five days post fertilisation unexposed and exposed to MnCl2. Anatomical gene enrichment analysis confirmed that differentially expressed genes map to the central nervous system and eye. Biological interpretation of differentially expressed genes suggests that calcium dyshomeostasis, activation of the unfolded protein response, oxidative stress, mitochondrial dysfunction, lysosomal disruption, apoptosis and autophagy, and interference with proteostasis are key events in manganese neurotoxicity. Differential expression of visual phototransduction genes also predicted visual dysfunction in mutant larvae which was confirmed by the absence of visual background adaptation and a diminished optokinetic reflex. Surprisingly, we found a group of differentially expressed genes in mutant larvae that normalised upon MnCl2 treatment suggesting that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. This may have important implications for treatment as manganese chelation may aggravate neurological symptoms. Our analyses show that slc39a14U801-/- mutant zebrafish present a powerful model to study the cellular and molecular mechanisms underlying disrupted manganese homeostasis.Significance statement Manganese neurotoxicity leading to progressive dystonia-parkinsonism is a characteristic feature of Hypermanganesemia with dystonia 2 (HMNDYT2) caused by mutations in SLC39A14, a manganese uptake transporter. Transcriptional profiling in slc39a14U801 loss-of-function zebrafish suggests that, in addition to manganese neurotoxicity, subcellular or cell type specific manganese deficiency contributes to the disease phenotype. Both manganese overload and deficiency appear to be associated with Ca2+ dyshomeostasis. We further demonstrate that activation of the unfolded protein response, oxidative stress, mitochondrial dysfunction, apoptosis and autophagy, and disrupted proteostasis are likely downstream events in manganese neurotoxicity. Our study shows that the zebrafish slc39a14U801 loss-of-function mutant is a powerful model to elucidate the mechanistic basis of diseases affected by manganese dyshomeostasis.