PT - JOURNAL ARTICLE AU - Matthew D. Krause AU - Ru-Ting Huang AU - David Wu AU - Tzu-Pin Shentu AU - Devin L. Harrison AU - Michael B. Whalen AU - Lindsey K. Stolze AU - Anna Di Rienzo AU - Ivan P. Moskowitz AU - Mete Civelek AU - Casey E. Romanoski AU - Yun Fang TI - A genetic variant at coronary artery disease and ischemic stroke locus 1p32.2 regulates endothelial responses to hemodynamics AID - 10.1101/377549 DP - 2018 Jan 01 TA - bioRxiv PG - 377549 4099 - http://biorxiv.org/content/early/2018/07/25/377549.short 4100 - http://biorxiv.org/content/early/2018/07/25/377549.full AB - Biomechanical cues dynamically control major cellular processes but whether genetic variants actively participate in mechano-sensing mechanisms remains unexplored. Vascular homeostasis is tightly regulated by hemodynamics. Exposure to disturbed blood flow at arterial sites of branching and bifurcation causes constitutive activation of vascular endothelium contributing to atherosclerosis, the major cause of coronary artery disease (CAD) and ischemic stroke (IS). Conversely, unidirectional flow promotes quiescent endothelium. Genome-wide association studies have identified chromosome 1p32.2 as one of the most strongly associated loci with CAD/IS; however, the causal mechanism related to this locus remains unknown. Employing statistical analyses, ATAC-seq, and H3K27ac/H3K4me2 ChIP-Seq in human aortic endothelium (HAEC), our results demonstrate that rs17114036, a common noncoding polymorphism at the 1p32.2, is located in an endothelial enhancer dynamically regulated by hemodynamics. CRISPR/Cas9-based genome editing shows that rs17114036-containing region promotes endothelial quiescence under unidirectional flow by regulating phospholipid phosphatase 3 (PLPP3). Chromatin accessibility quantitative trait locus mapping using HAECs from 56 donors, allelic imbalance assay from 7 donors, and luciferase assays further demonstrate that CAD/IS protective allele at rs17114036 in PLPP3 intron 5 confers an increased endothelial enhancer activity. ChIPPCR and luciferase assays show that CAD/IS protective allele at rs17114036 creates a binding site for transcription factor Krüppel-like factor 2, which increases the enhancer activity under unidirectional flow. These results demonstrate for the first time that a human single-nucleotide polymorphism contributes to critical endothelial mechanotransduction mechanisms and suggest that human haplotypes and related cisregulatory elements provide a previously unappreciated layer of regulatory control in cellular mechano-sensing mechanisms.Significance Statement Biomechanical stimuli control major cellular functions and play critical roles in the pathogenesis of diverse human diseases. Although recent studies have implicated genetic variation in regulating key biological processes, whether human genetic variants contribute to the cellular mechano-sensing mechanisms remains unclear. This study provides the first line of evidence supporting an underappreciated role of genetic predisposition in cellular mechanotransduction mechanisms. Employing epigenomic profiling, genome-editing, and latest human genetics approaches, our data demonstrate that rs17114036, a common noncoding polymorphism implicated in coronary artery disease and ischemic stroke by genome-wide association studies, dynamically regulates endothelial responses to blood flow (hemodynamics) related to atherosclerosis via regulation of an intronic enhancer. The results provide new molecular insights linking disease-associated genetic variants to cellular mechanobiology.