RT Journal Article SR Electronic T1 A single-cell atlas of human glioblastoma reveals a single axis of phenotype in tumor-propagating cells JF bioRxiv FD Cold Spring Harbor Laboratory SP 377606 DO 10.1101/377606 A1 Sören Müller A1 Elizabeth Di Lullo A1 Aparna Bhaduri A1 Beatriz Alvarado A1 Garima Yagnik A1 Gary Kohanbash A1 Manish Aghi A1 Aaron Diaz YR 2018 UL http://biorxiv.org/content/early/2018/07/26/377606.abstract AB Tumor-propagating glioblastoma (GBM) stem-like cells (GSCs) of the proneural and mesenchymal molecular subtypes have been described. However, it is unknown if these two GSC populations are sufficient to generate the spectrum of cellular heterogeneity observed in GBM. The lineage relationships and niche interactions of GSCs have not been fully elucidated. We perform single-cell RNA-sequencing (scRNA-seq) and matched exome sequencing of human GBMs (12 patients; >37,000 cells) to identify recurrent hierarchies of GSCs and their progeny. We map sequenced cells to tumor-anatomical structures and identify microenvironment interactions using reference atlases and quantitative immunohistochemistry. We find that all GSCs can be described by a single axis of variation, ranging from proneural to mesenchymal. Increasing mesenchymal GSC (mGSC) content, but not proneural GSC (pGSC) content, correlates with significantly inferior survival. All clonal expressed mutations are found in the GSC populations, with a greater representation of mutations found in mGSCs. While pGSCs upregulate markers of cell-cycle progression, mGSCs are largely quiescent and overexpress cytokines mediating the chemotaxis of myeloid-derived suppressor cells. We find mGSCs enriched in hypoxic regions while pGSCs are enriched in the tumor’s invasive edge. We show that varying proportions of mGSCs, pGSCs, their progeny and stromal/immune cells are sufficient to explain the genetic and phenotypic heterogeneity observed in GBM. This study sheds light on a long-standing debate regarding the lineage relationships between GSCs and other glioma cell types.