RT Journal Article SR Electronic T1 Decomposing neural responses to melodic surprise in musicians and non-musicians: evidence for a hierarchy of predictions in the auditory system JF bioRxiv FD Cold Spring Harbor Laboratory SP 786574 DO 10.1101/786574 A1 D.R. Quiroga-Martinez A1 N.C. Hansen A1 A. Højlund A1 M. Pearce A1 E. Brattico A1 P. Vuust YR 2020 UL http://biorxiv.org/content/early/2020/02/19/786574.abstract AB Neural responses to auditory surprise are typically studied with highly unexpected, disruptive sounds. Consequently, little is known about auditory prediction in everyday contexts that are characterized by fine-grained, non-disruptive fluctuations of auditory surprise. To address this issue, we used IDyOM, a computational model of auditory expectation, to obtain continuous surprise estimates for a set of newly composed melodies. Our main goal was to assess whether the neural correlates of non-disruptive surprising sounds in a musical context are affected by musical expertise. Using magnetoencephalography (MEG), auditory responses were recorded from musicians and non-musicians while they listened to the melodies. Consistent with a previous study, the amplitude of the N1m component increased with higher levels of computationally estimated surprise. This effect, however, was not different between the two groups. Further analyses offered an explanation for this finding: Pitch interval size itself, rather than probabilistic prediction, was responsible for the modulation of the N1m, thus pointing to low-level sensory adaptation as the underlying mechanism. In turn, the formation of auditory regularities and proper probabilistic prediction were reflected in later components: the mismatch negativity (MMNm) and the P3am, respectively. Overall, our findings reveal a hierarchy of expectations in the auditory system and highlight the need to properly account for sensory adaptation in research addressing statistical learning.Highlights- In melodies, sound expectedness (modeled with IDyOM) is associated with the amplitude of the N1m.- This effect is not different between musicians and non-musicians.- Sensory adaptation related to melodic pitch intervals explains better the N1m effect.- Auditory regularities and the expectations captured by IDyOM are reflected in the MMNm and P3am.- Evidence for a hierarchy of auditory predictions during melodic listening.AICAkaike information criterionBEMBoundary element methodBFBayes FactorERFEvent related fieldF0Fundamental frequencyGMSIGoldsmiths Musical Sophistication IndexICInformation contentIDyOMInformation Dynamics of MusicMAMean amplitudeMETMusical ear testMNIMontreal Neurological InstituteSSAStimulus specific adaptationWAICWidely applicable information criterion