RT Journal Article SR Electronic T1 Control of spontaneous activity patterns by inhibitory signaling in the developing visual cortex JF bioRxiv FD Cold Spring Harbor Laboratory SP 2020.02.21.959262 DO 10.1101/2020.02.21.959262 A1 Alexandra H. Leighton A1 Gerrit J. Houwen A1 Juliette E. Cheyne A1 Paloma P. Maldonado A1 Fred De Winter A1 Christian Lohmann YR 2020 UL http://biorxiv.org/content/early/2020/02/24/2020.02.21.959262.abstract AB During early development, even before the senses are active, bursts of activity travel across the nervous system. This spontaneously generated activity drives the refinement of synaptic connections, preparing young networks for patterned sensory input. Synaptic fine-tuning relies not only on the presence of spontaneous activity, but also on the specific characteristics of these activity patterns, such as their frequency, amplitude and synchronicity. Here, we provide evidence that these crucial characteristics are shaped by the relative balance of excitation and inhibition, where patterns with distinct characteristics have different excitatory/inhibitory ratios. Inhibition can control whether cells participate during a spontaneous event, as pharmacogenetic suppression of the somatostatin (SST) expressing subtype of inhibitory interneurons increased cell recruitment and lateral spread of events.