TY - JOUR T1 - HERI-1 is a Chromodomain Protein that Negatively Regulates Transgenerational Epigenetic Inheritance JF - bioRxiv DO - 10.1101/384792 SP - 384792 AU - Roberto Perales AU - Daniel Pagano AU - Gang Wan AU - Brandon Fields AU - Arneet L. Saltzman AU - Scott G. Kennedy Y1 - 2018/01/01 UR - http://biorxiv.org/content/early/2018/08/03/384792.abstract N2 - Transgenerational epigenetic inheritance (TEI) is the inheritance of epigenetic information for two or more generations. In most cases, TEI is limited to 2-3 generations. This short-term nature of TEI could be set by innate biochemical limitations to TEI or by genetically encoded systems that actively limit TEI. dsRNA-mediated gene silencing (RNAi) can be inherited in C. elegans (termed RNAi inheritance or RNA-directed TEI). To identify systems that might actively limit RNA-directed TEI, we conducted a forward genetic screen for factors whose mutation enhanced RNAi inheritance. This screen identified the gene heritable enhancer of RNAi (heri-1), whose mutation causes RNAi inheritance to last longer (>20 generations) than normal. heri-1 encodes a protein with a chromodomain and a kinase-homology domain that is expressed in germ cells and localizes to nuclei. In C. elegans, a nuclear branch of the RNAi pathway (nuclear RNAi or NRDE pathway) is required for RNAi inheritance. We find that this NRDE pathway is hyper-responsive to RNAi in heri-1 mutant animals, suggesting that a normal function of HERI-1 is to limit nuclear RNAi and that limiting nuclear RNAi may be the mechanism by which HERI-1 limits RNAi inheritance. Interestingly, we find that HERI-1 binds to genes targeted by RNAi, suggesting that HERI-1 may have a direct role in limiting nuclear RNAi and, therefore, RNAi inheritance. Surprisingly, recruitment of the negative regulator HERI-1 to genes depends upon that same NRDE factors that drive co-transcriptional gene silencing during RNAi inheritance. We therefore speculate that the generational perdurance of RNAi inheritance is set by competing pro- and anti-silencing outputs of the NRDE nuclear RNAi machinery. ER -